Углерод строение. Углерод и его соединения

Углерод в периодической системе элементов располагается во втором периоде в группе IVA. Электронная конфигурация атома углерода ls 2 2s 2 2p 2 . При его возбуждении легко достига­ется электронное состояние, при котором на четырех внешних атомных орбиталях находятся четыре неспаренных электрона:

Это объясняет, почему углерод в соединениях обычно четы­рехвалентен. Равенство в атоме углерода числа валентных элек­тронов числу валентных орбиталей, а также уникальное соотношение заряда ядра и радиуса атома сообщают ему способность одинаково легко присоединять и отдавать электроны в зависимо­сти от свойств партнера (разд. 9.3.1). Вследствие этого для углерода характерны различные степени окисления от -4 до +4 и легкость гибридизации его атомных орбиталей по типу sp 3 , sp 2 и sp 1 при образовании химических связей (разд. 2.1.3):

Все это дает углероду возможность образовывать ординарные, двойные и тройные связи не только между собой, но и с ато­мами других элементов-органогенов. Молекулы, образующиеся при этом, могут иметь линейное, разветвленное и циклическое строение.

Вследствие подвижности общих электронов -МО, образован­ных с участием атомов углерода, происходит их смещение в сто­рону атома более электроотрицательного элемента (индуктивный эффект), что приводит к полярности не только этой связи, но и молекулы в целом. Однако углерод, благодаря среднему значению электроотрицательности (0Э0 = 2,5), образует с атомами других элементов-органогенов слабополярные связи (табл. 12.1). При наличии в молекулах систем сопряженных связей (разд. 2.1.3) происходит делокализация подвижных электронов -МО и неподеленных электронных пар с выравниванием электронной плот­ности и длин связей в этих системах.

С позиции реакционной способности соединений большую роль играет поляризуемость связей (разд. 2.1.3). Чем больше поляризуемость связи, тем выше ее реакционная способность. Зависимость поляризуемости углеродсодержащих связей от их природы отражает следующий ряд:

Все рассмотренные данные о свойствах углеродсодержащих связей свидетельствуют о том, что углерод в соединениях образу­ет, с одной стороны, достаточно прочные ковалентные связи ме­жду собой и с другими органогенами, а с другой стороны - об­щие электронные пары этих связей достаточно лабильны. В ре­зультате этого может происходить как увеличение реакционной способности этих связей, так и стабилизация. Именно эти осо­бенности углеродсодержащих соединений и делают углерод орга­ногеном номер один.

Кислотно-основные свойства соединений углерода. Оксид углерода(4) является кислотным оксидом, а соответствующий ему гидроксид - угольная кислота Н2СО3 - слабой кислотой. Молекула оксида углерода(4) неполярна, и поэтому он плохо растворяется в воде (0,03 моль/л при 298 К). При этом вначале в ратворе образуется гидрат СО2 Н2О, в котором СО2 находится в полости ассоциата из молекул воды, а затем этот гидрат медлен­но и обратимо превращается в Н2СО3. Большая часть растворен­ного в воде оксида углерода(4) находится в виде гидрата.

В организме в эритроцитах крови под действием фермента каррбоангидразы равновесие между гидратом CO2 Н2О и Н2СО3 устанавливается очень быстро. Это позволяет пренебречь нали­чием СО2 в виде гидрата в эритроците, но не в плазме крови, где нет карбоангидразы. Образующаяся Н2СО3 диссоциирует в физиологических условиях до гидрокарбонат-аниона, а в более щелочной среде - до карбонат-аниона:

Угольная кислота существует только в растворе. Она образует два ряда солей - гидрокарбонаты (NаНСОз, Са(НС0 3)2) и карбонаты (Nа2СОз, СаСОз). В воде гидрокарбонаты растворя­ются лучше, чем карбонаты. В водных растворах соли угольной кислоты, особенно карбонаты, легко гидролизуются по аниону, создавая щелочную среду:

Такие вещества, как питьевая сода NaHC03 ; мел СаСОз, белая магнезия 4MgC03 * Mg(OH)2 * Н2О, гидролизующиеся с образонанием щелочной среды, применяются в качестве антацидных (нейтрализующих кислоты) средств для снижения повы­шенной кислотности желудочного сока:

Совокупность угольной кислоты и гидрокарбонат-иона (Н2СО3, НСО3(-)) образует гидрокарбонатную буферную систему (разд. 8.5) -славную буферную систему плазмы крови, которая обеспечива­ет постоянство рН крови на уровне рН = 7,40 ± 0,05.


Наличие в природных водах гидрокарбонатов кальция и магния обуславливает их временную жесткость. При кипяче­нии такой воды ее жесткость устраняется. Это происходит из-за гидролиза аниона HCO3(-)), термического разложения угольной кислоты и осаждения катионов кальция и магния в виде нерас­творимых соединений СаС0 3 и Mg(OH) 2:

Образование Mg(OH) 2 вызвано полным гидролизом по ка­тиону магния, протекающему в этих условиях из-за меньшей растворимости Mg(0H)2 по сравнению с MgC0 3 .

В медико-биологической практике кроме угольной кислоты приходится сталкиваться с другими углеродсодержащими кисло­тами. Это прежде всего большое множество различных органи­ческих кислот, а также синильная кислота HCN. С позиции кислотных свойств сила этих кислот различна:

Эти различия обусловлены взаимным влиянием атомов в мо­лекуле, природой диссоциирующей связи и устойчивостью аниона, т. е. его способностью к делокализации заряда.

Синильная кислота, или циановодород, HCN - бес­цветная, легколетучая жидкость (Т кип = 26 °С) с запахом горь­кого миндаля, смешивающаяся с водой в любых соотношениях. В водных растворах ведет себя как очень слабая кислота, соли которой называются цианидами. Цианиды щелочных и щелоч­ноземельных металлов растворимы в воде, при этом они гидролизуются по аниону, из-за чего их водные растворы пахнут синильной кислотой (запах горького миндаля) и имеют рН >12:


При длительном воздействии СО2, содержащегося в воздухе, цианиды разлагаются с выделением синильной кислоты:

В результате этой реакции цианид калия (цианистый калий) и его растворы при длительном хранении теряют свою токсич­ность. Цианид-анион - один из самых сильных неорганиче­ских ядов, поскольку он является активным лигандом и легко образует устойчивые комплексные соединения с ферментами, содержащими в качестве ионовкомплексообразователей Fe 3+ и Сu2(+) (разд. 10.4).

Окислительно-восстановительные свойства. Поскольку уг­лерод в соединениях может проявлять любые степени окисле­ния от -4 до +4, то в ходе реакции свободный углерод может и отдавать и присоединять электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств второго реагента:


При взаимодействии сильных окислителей с органическими веществами может протекать неполное или полное окисление атомов углерода этих соединений.

В условиях анаэробного окисления при недостатке или в от­сутствие кислорода атомы углерода органического соединения в зависимости от содержания кислородных атомов в этих соедине­ниях и внешних условий могут превратиться в С0 2 , СО, С и даже СН 4 , а остальные органогены превращаются в Н2О, NH3 и H2S.

В организме полное окисление органических соединений кислородом в присутствии ферментов оксидаз (аэробное окис­ление) описывается уравнением:

Из приведенных уравнений реакций окисления видно, что в органических соединениях степень окисления изменяют только атомы углерода, а атомы остальных органогенов при этом со­храняют свою степень окисления.

При реакциях гидрирования, т. е. присоединения водорода (восстановителя) по кратной связи, образующие ее атомы углерода понижают свою степень окисления (выступают окислителями):

Органические реакции замещения с возникновением новой межуглеродной связи, например в реакции Вюрца, также явля­ются окислительно-восстановительными реакциями, в которых атомы углерода выступают окислителями, а атомы металла -восстановителями:

Подобное наблюдается в реакциях образования металлорганических соединений:


В то же время в реакциях алкилирования с возникновением новой межуглеродной связи роль окислителя и восстановителя играют атомы углерода субстрата и реагента соответственно:

В результате реакций присоединения полярного реагента к субстрату по кратной межуглеродной связи один из атомов уг­лерода понижает степень окисления, проявляя свойства окис­лителя, а другой - повышает степень окисления, выступая вос­становителем:

В этих случаях имеет место реакция внутримолекулярного окисления-восстановления атомов углерода субстрата, т. е. про­цесс дисмутации, под действием реагента, не проявляющего окислительно-восстановительных свойств.

Типичными реакциями внутримолекулярной дисмутации ор­ганических соединений за счет их атомов углерода являются ре­акции декарбоксилирования аминокислот или кетокислот, а так­же реакции перегруппировки и изомеризации органических со­единений, которые были рассмотрены в разд. 9.3. Приведенные примеры органических реакций, а также реакции из разд. 9.3 убедительно свидетельствуют, что атомы углерода в органических соединениях могут быть и окислителями, и восстановите­лями.

Атом углерода в соединении - окислитель, если в ре­зультате реакции увеличивается число его связей с атомами менее электроотрицательных элементов (во­дород, металлы), потому что, притягивая к себе общие электроны этих связей, рассматриваемый атом углеро­да понижает свою степень окисления.

Атом углерода в соединении - восстановитель, если в результате реакции увеличивается число его связей с атомами более электроотрицательных элементов (С, О, N, S), потому что, отталкивая от себя общие элек­троны этих связей, рассматриваемый атом углерода повышает свою степень окисления.

Таким образом, многие реакции в органической химии вслед­ствие окислительно-восстановительной двойственности атомов углерода являются окислительно-восстановительными. Однако, в отличие от подобных реакций неорганической химии, пере­распределение электронов между окислителем и восстановите­лем в органических соединениях может сопровождаться лишь смещением общей электронной пары химической связи к ато­му, выполняющему роль окислителя. При этом данная связь может сохраняться, но в случаях сильной ее поляризации она может и разорваться.

Комплексообразующие свойства соединений углерода. У ато­ма углерода в соединениях нет неподеленных электронных пар, и поэтому лигандами могут выступать только соединения угле­рода, содержащие кратные связи с его участием. Особенно активны в процессах комплексообразования -электроны тройной по­лярной связи оксида углерода(2) и аниона синильной кислоты.

В молекуле оксида углерода(2) атомы углерода и кислорода образуют одну и одну -связь за счет взаимного перекрывания их двух 2р-атомных орбиталей по обменному механизму. Третья связь, т. е. еще одна -связь, образуется по донорно-акцепторному механизму. Акцептором является свободная 2р-атомная ор-биталь атома углерода, а донором - атом кислорода, предостав­ляющий неподеленную пару электронов с 2p-орбитали:

Повышенная кратность связи обеспечивает этой молекуле высокую стабильность и инертность при нормальных ус­ловиях с позиции кислотно-основных (СО - несолеобразующий оксид) и окислительно-восстановительных свойств (СО - вос­становитель при Т > 1000 К). В то же время она делает его ак­тивным лигандом в реакциях комплексообразования с атомами и катионами d-металлов, прежде всего с железом, с которым он образует пентакарбонил железа - летучую ядовитую жидкость:


Способность к образованию комплексных соединений с ка­тионами d-металлов является причиной ядовитости оксида углерода(Н) для живых систем (разд. 10.4) вследствие протекания обратимых реакций с гемоглобином и оксигемоглобином, содер­жащими катион Fe 2+ , с образованием карбоксигемоглобина:

Эти равновесия смещены в сторону образования карбокси­гемоглобина ННbСО, устойчивость которого в 210 раз больше, чем оксигемоглобина ННbО2. Это приводит к накоплению карбоксигемоглобина в крови и, следовательно, к снижению ее спо­собности переносить кислород.

В анионе синильной кислоты CN- также содержатся легко поляризуемые - электроны, из-за чего он эффективно обра­зует комплексы с d-металлами, включая металлы жизни, вхо­дящие в состав ферментов. Поэтому цианиды являются высокотоксичными соединениями (разд. 10.4).

Круговорот углерода в природе. В основе круговорота угле­рода в природе в основном лежат реакции окисления и восста­новления углерода (рис. 12.3).

Из атмосферы и гидросферы растения ассимилируют (1) ок­сид углерода(4). Часть растительной массы потребляется (2) че­ловеком и животными. Дыхание животных и гниение их остан­ков (3), а также дыхание растений, гниение отмерших растений и горение древесины (4) возвращают атмосфере и гидросфере CO2. Процесс минерализации останков растений (5) и животных (6) с образованием торфа, ископаемых углей, нефти, газа при­водит к переходу углерода в природные ископаемые. В том же направлении действуют кислотно-основные реакции (7), проте­кающие между СО2 и различными горными породами с образо­ванием карбонатов (средних, кислых и основных):

Эта неорганическая часть круговорота приводит к потерям СО2 в атмосфере и гидросфере. Деятельность человека по сжи­ганию и переработке угля, нефти, газа (8), дров (4), наоборот, с избытком обогащает окружающую среду оксидом углерода(4). Долгое время существовала уверенность, что благодаря фото­синтезу концентрация СО2 в атмосфере сохраняется постоян­ной. Однако в настоящее время увеличение содержания СО2 в атмосфере за счет деятельности человека не компенсируется его естественной убылью. Общее поступление СО2 в атмосферу рас­тет в геометрической прогрессии на 4-5 % в год. Согласно рас­четам в 2000 году содержание СО2 в атмосфере достигнет приблизительно 0,04 % вместо 0,03 % (1990 г.).

После рассмотрения свойств и особенностей углеродсодержащих соединений следует еще раз подчеркнуть ведущую роль углерода

Рис. 12.3. Круговорот углерода в природе

органогена № 1: во-первых, атомы углерода формируют скелет молекул органических соединений; во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных про­цессах, поскольку среди атомов всех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность. Подробнее о свойствах органических соедине­ний - см. модуль IV "Основы биоорганической химии".

Общая характеристика и биологическая роль р-элементов группы IVA. Электронными аналогами углерода являются эле­менты IVA группы: кремний Si, германий Ge, олово Sn и свинец Рb (см. табл. 1.2). Радиусы атомов этих элементов закономерно возрастают с увеличением порядкового номера, а их энергия иони­зации и электроотрицательность при этом закономерно снижают­ся (разд. 1.3). Поэтому первые два элемента группы: углерод и кремний - типичные неметаллы, а германий, олово, свинец -металлы, так как для них наиболее характерна отдача электро­нов. В ряду Ge - Sn - Рb металлические свойства усиливаются.

С позиции окислительно-восстановительных свойств элемен­ты С, Si, Ge, Sn и Рb в обычных условиях достаточно устойчи­вы по отношению к воздуху и воде (металлы Sn и Рb - за счет образования оксидной пленки на поверхности). В то же время соединения свинца(4) - сильные окислители:

Комплексообразующие свойства наиболее характерны для свинца, так как его катионы Рb 2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA группы. Катионы свинца образуют прочные комплексы с биолигандами.

Элементы группы IVA резко различаются как по содержанию в организме, так и по биологической роли. Углерод играет осново­полагающую роль в жизнедеятельности организма, где его содер­жание составляет около 20 %. Содержание в организме остальных элементов IVA группы находится в пределах 10 -6 -10 -3 %. В то же время, если кремний и германий, несомненно, играют важную роль в жизнедеятельности организма, то олово и особенно сви­нец - токсичны. Таким образом, с ростом атомной массы эле­ментов IVA группы токсичность их соединений возрастает.

Пыль, состоящая из частиц угля или диоксида кремния SiO2, при систематическом воздействии на легкие вызывает заболе­вания - пневмокониозы. В случае угольной пыли это антракоз -профессиональное заболевание шахтеров. При вдыхании пыли, содержащей Si02, возникает силикоз. Механизм развития пневмокониозов еще не установлен. Предполагается, что при длительном контакте силикатных песчинок с биологическими жидкостями образуется поликремниевая кислота Si02 yH2O в гелеобразном состоянии, отложение которой в клетках ведет к их гибели.

Токсическое действие свинца известно человечеству очень дав­но. Использование свинца для изготовления посуды и водопроводных труб приводило к массовому отравлению людей. В на­стоящее время свинец продолжает быть одним из основных загрязнителей окружающей среды, так как выброс соединений свинца в атмосферу составляет свыше 400 000 т ежегодно. Сви­нец накапливается в основном в скелете в форме малораствори­мого фосфата РЬз(Р04)2, а при деминерализации костей оказы­вает регулярное токсическое действие на организм. Поэтому свинец относится к кумулятивным ядам. Токсичность соедине­ний свинца связана прежде всего с его комплексообразующими свойствами и большим сродством к биолигандам, особенно содержащим сульфгидрильные группы (-SH):

Образование комплексных соединений ионов свинца с бел­ками, фосфолипидами и нуклеотидами приводит к их денату­рации. Часто ионы свинца ингибируют металлоферменты ЕМ 2+ , вытесняя из них катионы металлов жизни:

Свинец и его соединения относятся к ядам, действующим преимущественно на нервную систему, кровеносные сосуды и кровь. При этом соединения свинца влияют на синтез белка, энергетический баланс клеток и их генетический аппарат.

В медицине применяются как вяжущие наружные антисеп­тические средства: свинец ацетат Рb(СНзСОО)2 ЗН2О (свинцо­вые примочки) и свинец(2) оксид РbО (свинцовый пластырь). Ионы свинца этих соединений вступают в реакции с белками (альбуминами) цитоплазмы микробных клеток и тканей, образуя гелеобразные альбуминаты. Образование гелей убивает микробы и, кроме того, затрудняет проникновение их внутрь клеток тка­ней, что снижает местную воспалительную реакцию.

Углерод (С) - шестой элемент периодической таблицы Менделеева с атомным весом 12. Элемент относится к неметаллам и имеет изотоп 14 С. Строение атома углерода лежит в основе всей органической химии, т. к. все органические вещества включают молекулы углерода.

Атом углерода

Положение углерода в периодической таблице Менделеева:

  • шестой порядковый номер;
  • четвёртая группа;
  • второй период.

Рис. 1. Положение углерода в таблице Менделеева.

Опираясь на данные из таблицы, можно заключить, что строение атома элемента углерода включает две оболочки, на которых расположено шесть электронов. Валентность углерода, входящего в состав органических веществ, постоянна и равна IV. Это значит, что на внешнем электронном уровне находится четыре электрона, а на внутреннем - два.

Из четырёх электронов два занимают сферическую 2s-орбиталь, а оставшиеся два - 2p-орбиталь в виде гантели. В возбуждённом состоянии один электрон с 2s-орбитали переходит на одну из 2p-орбиталей. При переходе электрона с одной орбитали на другую затрачивается энергия.

Таким образом, возбуждённый атом углерода имеет четыре неспаренных электрона. Его конфигурацию можно выразить формулой 2s 1 2p 3 . Это даёт возможность образовывать четыре ковалентные связи с другими элементами. Например, в молекуле метана (СН 4) углерод образует связи с четырьмя атомами водорода - одна связь между s-орбиталями водорода и углерода и три связи между p-орбиталями углерода и s-орбиталями водорода.

Схему строения атома углерода можно представить в виде записи +6C) 2) 4 или 1s 2 2s 2 2p 2 .

Рис. 2. Строение атома углерода.

Физические свойства

Углерод встречается в природе в виде горных пород. Известно несколько аллотропных модификаций углерода:

  • графит;
  • алмаз;
  • карбин;
  • уголь;
  • сажа.

Все эти вещества отличаются строением кристаллической решётки. Наиболее твёрдое вещество - алмаз - имеет кубическую форму углерода. При высоких температурах алмаз превращается в графит с гексагональной структурой.

Рис. 3. Кристаллические решётки графита и алмаза.

Химические свойства

Атомное строение углерода и его способность присоединять четыре атома другого вещества определяют химические свойства элемента. Углерод реагирует с металлами, образуя карбиды:

  • Са + 2С → СаС 2 ;
  • Cr + C → CrC;
  • 3Fe + C → Fe 3 C.

Также реагирует с оксидами металлов:

  • 2ZnO + C → 2Zn + CO 2 ;
  • PbO + C → Pb + CO;
  • SnO 2 + 2C → Sn + 2CO.

При высоких температурах углерод реагирует с неметаллами, в частности с водородом, образуя углеводороды:

С + 2Н 2 → СН 4 .

С кислородом углерод образует углекислый газ и угарный газ:

  • С + О 2 → СО 2 ;
  • 2С + О 2 → 2СО.

Угарный газ также образуется при взаимодействии с водой:

C + H 2 O → CO + H 2 .

Концентрированные кислоты окисляют углерод, образуя углекислый газ:

  • 2H 2 SO 4 + C → CO 2 + 2SO 2 + 2H 2 O;
  • 4HNO 3 + C → CO 2 + 4NO 2 + 2H 2 O.

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 75.

УГЛЕРОД
С (carboneum) , неметаллический химический элемент IVA подгруппы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19% (см. также АЛМАЗ ; ФУЛЛЕРЕНЫ).

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al4C3, SiC, B4C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость.
См. также СПЛАВЫ . В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении - это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.
Историческая справка. Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец". В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа. Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.
Аллотропия. Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации - алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С-С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С-С (длина связи 1,54 , отсюда ковалентный радиус 1,54/2 = 0,77) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).



Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит - мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом*см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.



Структура графита (рис. 1,б) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита - эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см3, алмаза - 3,51 г/см3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита. Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода. При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов. К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь - примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты - коксовый газ (H2, CH4, CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса - коксовой печи - приведена на рис. 3. Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.
Строение атома углерода. Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода - 13C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14C с периодом полураспада 5730 лет, обладающий b-излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO2. После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14С. Снижение b-излучения 14CO2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.
См. также ДАТИРОВКА ПО РАДИОАКТИВНОСТИ. В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s22s22px12py12pz0. Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s-электронов и перескок одного из этих электронов на 2pz-орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С-С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si-Si она составляет всего 210 кДж/моль, поэтому длинные цепочки -Si-Si- неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF4 и CCl4. Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры.
См. ХИМИЯ ОРГАНИЧЕСКАЯ . В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды - углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, - фторхлоруглеводороды). В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе "геодезического купола", изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван "бакминстерфуллеренами" или "фуллеренами" (а также более коротко - "фазиболами" или "бакиболами"). Фуллерены - третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, - была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С60 УГЛЕРОД 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.
См. также ФУЛЛЕРЕНЫ .
Стандартная атомная масса. В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе.
См. АТОМНАЯ МАССА . Химические свойства углерода и некоторых его соединений. Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:


Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов. Субоксид углерода C3O2 образуется при дегидратации малоновой кислоты над P4O10:

C3O2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.
Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H2O = CO + H2; образующаяся газовая смесь называется "водяной газ" и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO2: CO + O2 (r) CO2, эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO2, но при 1000° C равновесие устанавливается при малых концентрациях СO2. CO реагирует с хлором, образуя фосген - COCl2, аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO)x, являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа - более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО - "угарный газ"). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице. Диоксид углерода, или оксид углерода(IV) CO2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO2 (тривиальное название - "углекислый газ") образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО2:

Такой реакцией часто пользуются в лабораторной практике для получения CO2. Этот газ можно получить и при прокаливании бикарбонатов металлов:

При газофазном взаимодействии перегретого пара с СО:

При сжигании углеводородов и их кислородпроизводных, например:


Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же - СO2 и H2O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:


CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА). Электронное строение оксидов углерода. Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар - тремя резонансными формами:


Все оксиды углерода имеют линейное строение.
Угольная кислота. При взаимодействии СO2 с водой образуется угольная кислота H2CO3. В насыщенном растворе CO2 (0,034 моль/л) только часть молекул образует H2CO3, а большая часть CO2 находится в гидратированном состоянии CO2*H2O.
Карбонаты. Карбонаты образуются при взаимодействии оксидов металлов с CO2, например, Na2O + CO2 -> NaHCO3 которые при нагревании разлагаются с выделением СО2: 2NaHCO3 -> Na2CO3 + H2O + CO2 Карбонат натрия, или соду, производят в содовой промышленности в больших количествах преимущественно методом Сольве:


Другим методом соду получают из CO2 и NaOH


Карбонат-ион CO32- имеет плоское строение с углом O-C-O, равным 120°, и длиной СО-связи 1,31
(см. также ЩЕЛОЧЕЙ ПРОИЗВОДСТВО).
Галогениды углерода. Углерод непосредственно реагирует с галогенами при нагревании, образуя тетрагалогениды, но скорость реакции и выход продукта невелики. Поэтому галогениды углерода получают другими методами, например, хлорированием дисульфида углерода получают CCl4: CS2 + 2Cl2 -> CCl4 + 2S Тетрахлорид CCl4 - негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl4 образуется и по фотохимической реакции между метаном СH4 и Сl2; при этом возможно образование продуктов неполного хлорирования метана - CHCl3, CH2Cl2 и CH3Cl. Аналогично протекают реакции и с другими галогенами.
Реакции графита. Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl3) проникают между слоями, образуя соединения типа KC8, KC16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (-СООН) - соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С6(COOH)6. В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.
Карбиды. Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA-IIIA подгрупп) образуют солеподобные карбиды, например Na2C2, CaC2, Mg4C3, Al4C3. В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:


Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например CaC2 + 2H2O = C2H2 + Ca(OH)2 Образующийся по реакции ацетилен C2H2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B4C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W2C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC - наиболее тугоплавкие вещества (т.пл. = 4000-4200° С), карбид диниобия Nb2C - сверхпроводник при 9,18 К, TiC и W2C по твердости близки алмазу, а твердость B4C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см. рис. 2). Инертные карбиды образуются, если радиус переходного металла Азотпроизводные углерода. К этой группе относится мочевина NH2CONH2 - азотное удобрение, применяемое в виде раствора. Мочевину получают из NH3 и CO2 при нагревании под давлением:

Дициан (CN)2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu2+: 2CN- -> (CN)2 + 2e. Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу []-0,5x, где х - координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион []2-, гексацианоферрат(III) []3-, дицианоаргентат []-:


Карбонилы. Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO)4, Fe(CO)5, Fe2(CO)9, []3, Mo(CO)6, []2. Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO)4 - летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H2Fe(CO)4 и HCo(CO)4, проявляющие кислотные свойства и реагирующие со щелочью: H2Fe(CO)4 + NaOH -> NaHFe(CO)4 + H2O Известны также карбонилгалогениды, например Fe(CO)X2, Fe(CO)2X2, Co(CO)I2, Pt(CO)Cl2, где Х - любой галоген
(см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ).
Углеводороды. Известно огромное количество соединений углерода с водородом
(см. ХИМИЯ ОРГАНИЧЕСКАЯ).
ЛИТЕРАТУРА
Сюняев З.И. Нефтяной углерод. М., 1980 Химия гиперкоординированного углерода. М., 1990

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "УГЛЕРОД" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Углерод 14, 14C Альтернативные названия радиоуглерод, радиокарбон Нейтронов 8 Протонов 6 Свойства нуклида Атомная масса … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 12, 12C Нейтронов 6 Протонов 6 Свойства нуклида Атомная масса 12,0000000(0) … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 13, 13C Нейтронов 7 Протонов 6 Свойства нуклида Атомная масса 13,0033548378(10) … Википедия

    - (лат. Carboneum) С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких… … Большой Энциклопедический словарь

Его называют основой жизни. Он есть во всех органических соединениях. Только он способен формировать молекулы из миллионов атомов, такие, как ДНК.

Узнали героя ? Это углерод . Число его соединений, известных науке, приближается к 10 000 000.

Столько не наберется у всех остальных, вместе взятых элементов. Не удивительно, что один из двух разделов химии изучает исключительно соединения углерода и проходится в старших классах.

Предлагаем вспомнить школьную программу, а так же, дополнить ее новыми фактами.

Что такое углерод

Во-первых, элемент углерод – составная . В ее новом стандарте, вещество располагается в 14-ой группе.

В устаревшем варианте системы, углерод стоит в главной подгруппе 4-ой группы.

Обозначение элемента – буква С. Порядковый номер вещества – 6, относится к группе неметаллов.

Органический углерод соседствует в природе с минеральным. Так, , и камень фуллерен – 6-ой элемент в чистом виде.

Различия во внешности обусловлены несколькими типами строения кристаллической решетки. От нее зависят и полярные характеристики минерального углерода.

Графит, к примеру, мягок, не зря же добавляется в пишущие карандаши, а всех остальных на Земле. Поэтому, логично рассмотреть свойства самого углерода, а не его модификаций.

Свойства углерода

Начнем со свойств, общих для всех неметаллов. Они электроотрицательны, то есть, оттягивают на себя общие электронные пары, образованные с другими элементами.

Получается, углерод может восстановить оксиды неметаллов до состояния металлов.

Однако, делает это 6-ой элемент лишь при нагреве. В обычных условиях вещество химически инертно.

На внешних электронных уровнях неметаллов больше электронов, чем у металлов.

Именно поэтому, атомы 6-го элемента стремятся достроить толику собственных орбиталей, чем отдавать свои частицы кому-то.

Металлам же, с минимумом электронов на внешних оболочках проще отдать отдаленные частицы, чем перетягивать на себя чужие.

Главная форма 6-го вещества – атом. По идее, речь должна идти о молекуле углерода . Из молекул составлено большинство неметаллов.

Однако, углерод с и – исключения, имеют атомную структуру. Именно за счет нее соединения элементов отличаются высокими температурами плавления.

Еще одно отличительное свойство многих форм углерода – . У того же она максимальна, равна 10-ти баллам по .

Раз разговор зашел о формах 6-го вещества, укажем, что кристаллическая – лишь одна из.

Атомы углерода не всегда выстраиваются в кристаллическую решетку. Встречается аморфная разновидность.

Примеры таковой: — древесный , кокс, стеклоуглерод. Это соединения, но не имеющие упорядоченной структуры.

Если же вещество соединено с другими, могут получиться и газы. Кристаллический углерод переходит в них при температуре в 3700 градусов.

В обычных условиях элемент газообразен, если это, к примеру, оксид углерода .

В народе его именуют угарным газом. Однако, реакция его образования активнее и быстрее, если, все же, поддать жару.

Газообразных соединений углерода с кислородом несколько. Есть еще, к примеру, монооксид.

Этот газ бесцветный и ядовитый, причем, при обычных условиях. Такая окись углерода имеет тройную связь в молекуле.

Но, вернемся к чистому элементу. Будучи довольно инертным в химическом плане, он, все же, может взаимодействовать не только с металлами, но и их оксидами, , и как видно из разговора про газы, с кислородом.

Реакция возможна и с водородом. Углерод вступит во взаимодействие, если «сыграет» один из факторов, или все вместе: температура, аллотропное состояние, дисперсность.

Под последней, подразумевается отношение площади поверхности частиц вещества к занимаемому ими объему.

Аллотропия – возможность нескольких форм одного и того же вещества, то есть, имеется в виду кристаллический, аморфный, или газообразный углерод .

Однако, как не совпадай факторы, с кислотами и щелочами элемент не реагирует вовсе. Игнорирует углерод и почти все галогены.

Чаще всего, 6-ое вещество связывается само с собой, образовывая те самые масштабные молекулы из сотен и миллионов атомов.

Сформированные молекулы, углерода реагируют с еще меньшим числом элементов и соединений.

Применение углерода

Применение элемента и его производных столь же обширно, как их число. Содержание углерода в жизни человека больше, чем может казаться.

Активированный уголь из аптеки – 6-е вещество. в из – он же.

Графит в карандашах – тоже углерод, нужный, так же, в ядерных реакторах и контактах электрических машин.

Метановое топливо тоже в списке. Диоксид углерода нужен для производства и может быть сухим льдом, то есть, хладагентом.

Углекислый газ служит консервантом, заполняя овощные хранилища, а еще, нужен для получения карбонатов.

Последние, используют в строительстве, к примеру, . А карбонат пригождается в мыловарении и стекольном производстве.

Формула углерода соответствует еще и коксу. Он пригождается металлургам.

Кокс служит восстановителем во время переплавки руды, извлечения из нее металлов.

Даже обычная сажа – углерод, используемый в качестве удобрения и наполнителя .

Не задумывались, почему автомобильные шины цвета? Это сажа. Она придает резине прочность.

Сажа, так же, входит в крема для обуви, краски для печати, туши для ресниц. Народное название употребляется не всегда. Промышленники зовут сажу техническим углеродом .

Масса углерода начинает использоваться в сфере нанотехнологий. Сделаны сверхмалые транзисторы, а еще трубки, которые в 6-7 раз прочнее .

Вот вам и неметалл. К наноизысканиям, кстати, подключились ученые из . Из углеродных трубок и графена они создали аэрогель.

Это и прочный материал. Звучит увесисто. Но, на самом деле, аэрогель легче воздуха.

В железо углерод добавляют, чтобы получить так называемую углеродистую сталь. Она тверже обычной.

Однако, массовая доля 6-го элемента в не должна превышать пары, тройки процентов. Иначе, свойства стали идут на спад.

Список можно продолжать бесконечно. Но, где бесконечно брать углерод? Добывают его или синтезируют? На эти вопросы ответим в отдельной главе.

Добыча углерода

Двуокись углерода , метан, отдельно углерод, можно получать химическим путем, то есть, намеренным синтезом. Однако, это не выгодно.

Газ углерод и его твердые модификации проще и дешевле добывать попутно с каменным углем.

Из земных недр этого ископаемого извлекают примерно 2 миллиарда тонн ежегодно. Хватает, чтобы обеспечить мир техническим углеродом.

Что касается , их извлекают из кимбирлитовых трубок. Это вертикальные геологические тела, сцементированные лавой осколки породы.

Именно в таких встречаются . Поэтому, ученые предполагают, что минерал формируется на глубинах в тысячи километров, там же, где и магма.

Месторождения графита, напротив, горизонтальны, располагаются у поверхности.

Поэтому, добыча минерала довольно проста и не затратна. В год из недр извлекают около 500 000 тонн графита.

Чтобы получить активированный уголь, приходится нагреть каменный уголь и обработать струей водяного пара.

Ученые даже разобрались, как воссоздать белки человеческого тела. Их основа – тоже углерод. Азот и водород – аминогруппа, к нему примыкающая.

Нужен, так же, кислород. То есть, белки построены на аминокислоте. Она не у всех на слуху, но для жизни куда важнее остальных.

Популярные серная, азотная, соляная кислоты, к примеру, организму нужны куда меньше.

Так что, углерод – то, за что стоит платить. Узнаем, на сколько велик разброс цен на разные товары из 6-го элемента.

Цена углерода

Для жизни, как несложно понять, углерод бесценен. Что же касается остальных сфер бытия, ценник зависит от наименования продукции и ее качества.

За , к примеру, платят больше, если не содержат сторонних включений.

Образцы аэрогеля, пока, стоят десятки долларов за несколько квадратных сантиметров.

Но, в будущем, производители обещают поставлять материал рулонами и просить недорого.

Технический углерод, то есть, сажа, реализуется по 5-7 рублей за кило. За тонну, соответственно, отдают около 5000-7000 рублей.

Однако, углеродный налог, вводимый в большинстве развитых стран, может обеспечить рост цен.

Углеродную промышленность считают причиной парникового эффекта. Предприятия обязывают платить за выбросы, в частности, CO 2 .

Это главный парниковый газ и, одновременно, индикатор загрязнения атмосферы. Эта информация – ложка дегтя в бочке меда.

Она позволяет понять, что у углерода, как и всего в мире, есть обратная сторона, а не только плюсы.

Углерод

УГЛЕРО́Д -а; м. Химический элемент (C), важнейшая составная часть всех органических веществ в природе. Атомы углерода. Процент содержания углерода. Без углерода невозможна жизнь.

Углеро́дный, -ая, -ое. У-ые атомы. Углеро́дистый, -ая, -ое. Содержащий углерод. У-ая сталь.

углеро́д

(лат. Carboneum), химический элемент IV группы периодической системы. Основные кристаллические модификации - алмаз и графит. При обычных условиях углерод химически инертен; при высоких температурах соединяется со многими элементами (сильный восстановитель). Содержание углерода в земной коре 6,5·10 16 т. Значительное количество углерода (около 10 13 т) входит в состав горючих ископаемых (уголь, природный газ, нефть и др.), а также в состав углекислого газа атмосферы (6·10 11 т) и гидросферы (10 14 т). Главные углеродсодержащие минералы - карбонаты. Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии - органической химии. Углерод - биогенный элемент; его соединения играют особую роль в жизнедеятельности растительных и животных организмов (среднее содержание углерода - 18%). Углерод широко распространён в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

УГЛЕРОД

УГЛЕРО́Д (лат. Carboneum, от cаrbo - уголь), С (читается «це»), химический элемент с атомным номером 6, атомная масса 12,011. Природный углерод состоит из двух стабильных нуклидов: 12 С, 98,892% по массе и 13 C - 1,108%. В природной смеси нуклидов в ничтожных количествах всегда присутствует радиоактивный нуклид 14 C (b - -излучатель, период полураспада 5730 лет). Он постоянно образуется в нижних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N:
14 7 N + 1 0 n = 14 6 C + 1 1 H.
Углерод расположен в группе IVA, во втором периоде периодической системы. Конфигурация внешнего электронного слоя атома в основном состоянии 2s 2 p 2 . Важнейшие степени окисления +2 +4, –4, валентности IV и II.
Радиус нейтрального атома углерода 0,077 нм. Радиус иона C 4+ 0,029 нм (координационное число 4), 0,030 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома равны 11,260, 24,382, 47,883, 64,492 и 392,09 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,5.
Историческая справка
Углерод известен с глубокой древности. Древесный уголь использовали для восстановления металлов из руд, алмаз (см. АЛМАЗ (минерал)) - как драгоценный камень. В 1789 французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) сделал вывод об элементарной природе углерода.
Искусственные алмазы впервые были получены в 1953 шведскими исследователями, но результаты они не успели опубликовать. В декабре 1954 искусственные алмазы получили, а в начале 1955 опубликовали результаты сотрудники компании «Дженерал электрик». (см. ДЖЕНЕРАЛ ЭЛЕКТРИК)
В СССР искусственные алмазы впервые были получены в 1960 группой ученых под руководством В. Н. Бакуля и Л. Ф. Верещагина (см. ВЕРЕЩАГИН Леонид Федорович) .
В 1961 группой советских химиков под руководством В. В. Коршака была синтезирована линейная модификация углерода - карбин. Вскоре карбин был обнаружен в метеоритном кратере Рис (Германия). В 1969 в СССР были синтезированы нитевидные кристаллы алмаза при обычном давлении, обладающие высокой прочностью и практически лишенные дефектов.
В 1985 Г. Крото (см. КРОТО Гаролд) обнаружил новую форму углерода -фуллерены (см. ФУЛЛЕРЕНЫ) С 60 и С 70 в масс-спектре испаряемого при облучении лазером графита. При высоких давлениях получен лонсдейлит.
Нахождение в природе
Содержание в земной коре 0,48% по массе. Накапливается в биосфере: в живом веществе 18% угля, в древесине 50%, торфе 62%, природных горючих газах 75%, горючих сланцах 78%, каменном и буром угле 80%, нефти 85%, антраците 96%. Значительная часть угля литосферы сосредоточена в известняках и доломитах. Углерод в степени окисления +4 входит в состав карбонатных пород и минералов (мел, известняк, мрамор, доломиты). Углекислый газ CO 2 (0,046% по массе) постоянный компонент атмосферного воздуха. Углекислый газ в растворенном виде всегда присутствует в воде рек, озер и морей.
В атмосфере звезд, планет и в метеоритах обнаружены вещества, содержащие углерод.
Получение
С древности уголь получали при неполном сгорании древесины. В 19 веке древесный уголь в металлургии заменили каменным углем (коксом).
В настоящее время для промышленного получения чистого углерода используют крекинг (см. КРЕКИНГ) природного газа метана (см. МЕТАН) СН 4:
СН 4 = С + 2Н 2
Уголь для медицинских целей готовят сжиганием кожуры кокосовых орехов. Для лабораторных нужд чистый уголь, не содержащий несгораемых примесей, получают неполным сжиганием сахара.
Физические и химические свойства
Углерод - неметалл.
Многообразие соединений углерода объясняется способностью его атомов связываться между собой, образуя объемные структуры, слои, цепи, циклы. Известны четыре аллотропические модификации углерода: алмаз, графит, карбин и фуллерит. Древесный уголь состоит из мельчайших кристалликов с неупорядоченной структурой графита. Его плотность 1,8-2,1 г/см 3 . Сажа представляет собой сильно измельченный графит.
Алмаз - минерал с кубической гранецентрированной решеткой. Атомы С в алмазе находятся в sp 3 -гибридизованном состоянии. Каждый атом образует 4 ковалентные s-связи с четырьмя соседними атомами С, расположенными по вершинам тетраэдра, в центре которого находится атом С. Расстояния между атомами в тетраэдре 0,154 нм. Электронная проводимость отсутствует, ширина запрещенной зоны 5,7 эВ. Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема. Его плотность 3,51 г/см 3. . Твердость по минералогической шкале Мооса (см. МООСА ШКАЛА) принята за 10. Алмаз можно поцарапать только другим алмазом; но он хрупок и при ударе раскалывается на куски неправильной формы. Термодинамически устойчив лишь при высоких давлениях. Однако, при 1800 °C превращение алмаза в графит происходит быстро. Обратное превращение графита в алмаз происходит при 2700°C и давлении 11-12 ГПа.
Графит - слоистое темно-серое вещество с гексагональной кристаллической решеткой. Термодинамически устойчив в широком интервале температур и давлений. Состоит из параллельных слоев, образованных правильными шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях; положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм. Внутри слоя связи между атомами ковалентные, образованы sp 2 -гибридными орбиталями. Связи между слоями осуществляются слабыми ван-дер-ваальсовыми (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ) силами, поэтому графит легко расслаивается. Такое состояние стабилизирует четвертая делокализованная p-связь. Графит обладает хорошей электрической проводимостью. Плотность графита 2,1-2,5 кг/дм 3 .
Во всех аллотропических модификациях при обычных условиях углерод химически малоактивен. В химические реакции вступает только при нагревании. При этом химическая активность углерода убывает в ряду сажа-древесный уголь-графит-алмаз. Сажа на воздухе воспламеняется при нагревании до 300°C, алмаз - при 850-1000°C. При горении образуется углекислый газ СО 2 и CO. Нагревая СО 2 с углем, также получают оксид углерода (II) CО:
СО 2 + С = 2СО
С + Н 2 О (перегретый пар) = СО +Н 2
Синтезирован оксид углерода С 2 О 3 .
СО 2 - кислотный оксид, ему отвечает слабая неустойчивая, существующая только в сильно разбавленных холодных водных растворах угольная кислота Н 2 СО 3 . Соли угольной кислоты - карбонаты (см. КАРБОНАТЫ) (К 2 СО 3 , СаСО 3) и гидрокарбонаты (см. ГИДРОКАРБОНАТЫ) (NaHCO 3 , Са(НСО 3) 2).
С водородом (см. ВОДОРОД) графит и древесный уголь реагируют при температуре выше 1200°C, образуя смесь углеводородов. Реагируя со фтором при 900°C, образует смесь фторуглеродных соединений. Пропуская электрический разряд между угольными электродами в атмосфере азота, получают газ циан (CN) 2 ; если в газовой смеси присутствует водород, образуется синильная кислота HCN. При очень высоких температурах графит реагирует с серой, (см. СЕРА) кремнием, бором, образуя карбиды - CS 2 , SiC, В 4 С.
Карбиды получают взаимодействием графита с металлами при высоких температурах: карбид натрия Na 2 C 2 , карбид кальция CaC 2 , карбид магния Mg 2 C 3 , карбид алюминия Al 4 C 3 . Эти карбиды легко разлагаются водой на гидроксид металла и соответствующий углеводород:
Al 4 C 3 + 12Н 2 О = 4Al(ОН) 3 + 3СН 4
С переходными металлами углерод образует металлоподобные химически стойкие карбиды, например, карбид железа (цементит) Fe 3 C, карбид хрома Cr 2 C 3 , карбид вольфрама WС. Карбиды - кристаллические вещества, природа химической связи может быть различной.
При нагревании уголь восстанавливает многие металлы из их оксидов:
FeO + C = Fe + CO,
2CuO+ C = 2Cu+ CO 2
При нагревании восстанавливает серу(VI) до серы(IV) из концентрированной серной кислотой:
2H 2 SO 4 + C = CO 2 + 2SO 2 + 2H 2 O
При 3500°C и нормальном давлении углерод сублимирует.
Применение
Свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо. 10% добываемого топлива используется в качестве сырья для основного органического и нефтехимического синтеза, для получения пластмасс.
Физиологическое действие
Углерод - важнейший биогенный элемент, является структурной единицей органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, витамины, гормоны, медиаторы и другие). Содержание углерода в живых организмах в расчете на сухое вещество составляет 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду CO 2 . Углекислый газ (см. УГЛЕРОДА ДИОКСИД) , растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды. В составе CaCO 3 углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе.
При различных производственных процессах частицы угля, сажи, графита, алмаза попадают в атмосферу и находятся в ней в виде аэрозолей. ПДК для углеродной пыли в рабочих помещениях 4,0 мг/м 3 , для каменного угля 10 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "углерод" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Углерод 14, 14C Альтернативные названия радиоуглерод, радиокарбон Нейтронов 8 Протонов 6 Свойства нуклида Атомная масса … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 12, 12C Нейтронов 6 Протонов 6 Свойства нуклида Атомная масса 12,0000000(0) … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 13, 13C Нейтронов 7 Протонов 6 Свойства нуклида Атомная масса 13,0033548378(10) … Википедия

    - (лат. Carboneum) С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких… … Большой Энциклопедический словарь

    - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3?10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Современная энциклопедия

    Углерод - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3´10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Иллюстрированный энциклопедический словарь

    УГЛЕРОД - (1) хим. элемент, символ С (лат. Carboneum), ат. и. 6, ат. м. 12,011. Существует в нескольких аллотропных модификациях (формах) (алмаз, графит и редко карбин, чаоит и лонсдейлит в метеоритных кратерах). С 1961 г. / массы атома изотопа 12С принята … Большая политехническая энциклопедия

    - (символ С), широко распространенный неметаллический элемент четвертой группы периодической таблицы. Углерод образует огромное количество соединений, которые вместе с углеводородами и другими неметаллическими веществами составляют основу… … Научно-технический энциклопедический словарь



Понравилась статья? Поделитесь с друзьями!