Уравнение цилиндра описанного около эллипсоида. Основные поверхности пространства и их построение

Эллипсоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где а ^ b ^ с > 0. Для того, чтобы выяснить, как выглядит эллипсоид, поступим следующим образом. Возьмем на плоскости Oxz эллипс и будем вращать его вокруг оси Oz (рис. 46). Рис.46 Полученная поверхность Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. - эллипсоид вращения - уже дает представление о том, как устроен эллипсоид общего вида. Чтобы получитьего уравнение, достаточ но равномсрносжать эллипсоид вращения.вдоль оси Оу с коэффициентом J ^ !,т.с. заменить в его уравнении у на Jt/5). 10.2. Гиперболоиды Вращая гиперболу fl i! = а2 с2 1 вокруг оси Oz (рис. 47), получим поверхность, называемую однополостным гиперболоидом вращения. Его уравнение имеет вид *2 + у; получается тем же способом, что и в случае эллипсоида вращения. 5) Эллипсоид врашения можно получить равномерным сжатием сферы +yJ + *J = л" вдоль оси Oz с коэффициентом ~ ^ 1. Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 получим однополостный гиперболоид общего вида. Его уравнение Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. получается тем же способом, что и в разобранном выше случае эллипсоида. Путем вращения вокруг оси Ог сопряженной гиперболы получим двуполостный гиперболоид вращения (рис. 48). Его уравнение а2 С2 Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 приходим к двуполостному гиперболоиду общего вида. Заменой у на -у получаем его уравнение Врашая параболу вокруг оси Oz (рис.49), получаем параболоид вращения. Его уравнение имеет вид х2 + у2 = 2 pz. Путем сжатия параболоида врашения вдоль оси Оу с коэффициентом yj* ^ 1 получаем эллиптический параболоид. Его уравнение получается из уравнения параболоида врашения путем замены Если, то получаем параболоид вида, указанного на рис. 50. 10.4. Гиперболический параболоид Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где р > 0, q > 0. Вид этой поверхности определим, применив так называемый метод сечений, который заключается в следующем: параллельно координатным плоскостям проводятся плоскости, пересекающие исследуемую поверхность, и по изменению конфигурации возникающих в результате плоских кривых делается вывод о структуре самой поверхности. Начнем с сечений плоскостями z = h = const, параллельными координатной плоскости Оху. При h > 0 получаем гиперболы при h - сопряженные гиперболы а при - пару псрссскаюшихся прямых Заметим, что эти прямые являются асимптотами для всех гипербол (т. е. при любом h Ф 0). Спроектируем получаемые кривые на плоскость Оху. Получим следующую картину (рис. 51). Уже это рассмотрение позволяет сделать заключение о седлообразном строении рассматриваемой поверхности (рис. 52). Рис.51 Рис.52 Рассмотрим теперь сечения плоскостями Заменяя в уравнении поверхности у на Л, получаем уравнения парабол (рис.53). Аналогичная картина возникает при рассечении заданной поверхности плоскостями В этом случае также получаются параболы ветви которых направлены вниз (а не вверх, как для сечения плоскостями у = h) (рис. 54). Замечание. Методом сечений можно разобраться в строении и всех ранее рассмотренных поверхностей второго порядка. Однако путем вращения кривых второго порядка н последующего равномерного сжатия к пониманию их структуры можно прийти проще и значительно быстрее. Оставшиеся поверхности второго порядка по существу уже рассмотрены ранее. Это цилиндры: эллиптинескии гиперболический Рис. 56 и параболический и конус второго порядка представление о котором можно получить либо путем вращения пары пересекающихся прямых вокруг оси Oz и последующего сжатия, либо методом сечений. Конечно, в обоих случаях получим, что исследуемая поверхность имеет вид, указанный на рис. 59. а) вычислите координаты фокусов; , . б) вычислите эксцентриситет; . в) напишите уравнения асимптот и директрис; г) напишите уравнение сопряженной гиперболы и вычислите ее эксцентриситет. 2. Составьте каноническое уравнение параболы, если расстояние от фокуса до вершины равно 3. 3. Напишите уравнение касательной к эллипсу ^ + = 1 вето точке М(4, 3). 4. Определите вид и расположение кривой, заданной уравнением: Ответы эллипс, большая ось параллельна Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. оси Ох; б) гипербола центр О (-1,2), угловой коэффициент вешественной оси Х равен 3; в) парабола У2 = , вершина (3, 2), вектор оси, направленный в сторону вогнутости параболы, равен {-2, -1}; г) гипербола с центром, асимптоты параллельны осям координат; д) пара пересекающихся прямых е) пара параллельных прямых

Он представляет собой полое изометрическое тело, сечениями которого являются эллипсы и параболы. Эллиптический параболоид задается вида:
x^2/a^2+y^2/b^2=2z
Все главные сечения параболоида являются параболами. При сечении плоскости XOZ и YOZ получаются только параболы. Если провести перпендикулярное сечение относительно плоскости Xoy, можно получить эллипс. Причем, сечения, представляющие собой параболы, задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=2z
Сечения эллипса задаются другими уравнениями:
x^2 /a^2+y^2/b^2=2h
Эллиптический параболоид при a=b превращается в параболоид вращения. Построение параболоида имеет ряд некоторых особенностей которые нужно учитывать. Операцию начните с подготовки - чертежа графика функции.

Для того чтобы начать строить параболоид, нужно вначале построить параболу. Начертите параболу в плоскости Oxz, как показано на рисунке. Задайте будущему параболоиду определенную высоту. Для этого проведите прямую таким образом, чтобы она касалась верхних точек параболы и была параллельно оси Ox. Затем начертите параболу в плоскости Yoz и проведите прямую. Вы получите две параболоидные плоскости, перпендикулярные друг другу. После этого в плоскости Xoy постройте параллелограмм, который поможет начертить эллипс. В этот параллелограмм впишите эллипс таким образом, чтобы он касался всех его сторон. После этих преобразований сотрите параллелограмм, и останется объемное изображение параболоида.

Существует также гиперболический параболоид, который имеет более вогнутую форму, чем эллиптический. Его сечения также имеют выд параболы, а в некоторых случаях - . Главные сечения по Oxz и Oyz, как и у эллиптического параболоида, представляют собой параболы. Они задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=-2z
Если провести сечение относительно оси Oxy, можно получить гиперболу. При построении гиперболического параболоида руководствуйтесь следующим уравнением:
x^2/a^2-y^2/b^2=2z - гиперболического параболоида

Первоначально постройте неподвижную параболу в плоскости Oxz. В плоскости Oyz начертите подвижную параболу. После этого задайте высоту параболоида h. Для этого отметьте на неподвижной две точки, которые будут вершинами еще двух подвижных . Затем изобразите еще одну систему координат O"x"y", чтобы нанести гиперболы. Центр этой системы координат должен совпадать с высотой параболоида. После всех построений изобразите те две подвижные параболы, о которых упоминалось выше, так чтобы они касались крайних точек гипербол. В результате получится гиперболический параболоид.

В процессе изучения математики, многие школьники и студенты сталкиваются с построением различных графиков, в частности, парабол. Параболы являются одними из самых часто встречающихся графиков, используемых на многих контрольных, проверочных и тестовых работах. Поэтому знание простейших инструкций по их построению окажет вам значительную помощь.

Вам понадобится

  • - линейка и карандаш;
  • - калькулятор.

Инструкция

Для начала, начертите на листе координатные оси: ось абсцисс и ось ординат. Подпишите их. После этого, поработайте над данной квадратичной функцией. Она должна быть такого вида: y=ax^2+bx+c. Самой популярной функцией является y=x^2, поэтому ее можно привести в качестве примера.

После построения осей, найдите координаты вершины вашей параболы. Чтобы найти координату по оси X, подставьте известные данные в эту формулу: x=-b/2a, по оси Y - подставьте полученное в функцию. В случае с функцией y=x^2, координаты вершины совпадают с координат, т.е. в точке (0;0), так как значение переменной b равно 0, следовательно и x=0. Подставив значение x в функцию y=x^2, нетрудно найти ее значение - y=0.

После нахождения вершины, определитесь с направлением ветвей параболы. Если коэффициент a из записи функции вида y=ax^2+bx+c положителен, то направлены вверх, если отрицателен - вниз. График функции y=x^2 направлен вверх, так как коэффицент a равен единице.

Следующим шагом будет вычисление координат точек параболы. Чтобы их найти, подставьте в значение аргумента -либо число и вычислите значение функции. Для построения графика хватит 2-3 точек. Для большего удобства и наглядности, начертите таблицу со значениями функции и аргумента. Также не забывайте, что парабола обладает симметричностью, следовательно это облегчает создания графика. Самые часто используемые точки параболы y=x^2 - (1;1), (-1;1) и (2;4), (-2;4).

После нанесения точек на координатную плоскость, соедините их плавной линией, придавая ей округлые . Не заканчивайте график в верхних точках, а продлите его, так как парабола бесконечна. Не забудьте подписать график на , а также напишите необходимые координаты на осях, в противном случае, это вам могут за ошибку и снять определенное количество баллов.

Источники:

  • как нарисовать параболу

Парабола является графиком квадратичной функции вида y=A·x²+B·x+C. Перед построением графика необходимо провести аналитическое исследование функции. Обычно параболу рисуют в декартовой прямоугольной системе координат, которая представлена двумя перпендикулярными осями Ox и Oy.

Инструкция

Первым пунктом запишите область определения функции D(y). Парабола определена на всей числовой прямой, если не задано никаких дополнительных условий. Обычно это указывается записью D(y)=R , где R – множество всех

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)



Понравилась статья? Поделитесь с друзьями!