В чем состоит эффект доплера. Эффект доплера для электромагнитных волн

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

1

Юшкевич Р.С., Дегтярева Е.Р.

В статье даётся вывод формул к эффекту Доплера без использования закона сложения скоростей, но с использованием принципа постоянства скорости света только относительно источника света. Определена пространственная граница возможности приёма электромагнитных волн. Рассмотрена зависимость скорости света от расстояния. Определен коэффициент для вычисления скорости света.

Для объяснения эффекта допускаем, что свет, идущий от источника света, связан с источником и распространяется от него со скоростью с = 3 · 10 8 м/с относительно источника. Для приемника скорость света относительно источника будет складываться со скоростью источникаv .

Чтобы определить зависимость частоты света ν от скорости v , рассмотрим распространение света от двух источников, один из которых Ѕ движется по направлению от приемника со скоростью v , а другой S 0 покоится.

Рис. 1.

Одинаковые источники излучают свет одинаковой частоты ν 0 . Свет относительно источников распространяется с одинаковой скоростью с , поэтому и длина излучаемой волны λ 0 будет одинакова. К приемнику от движущегося источника свет подойдет со скоростью с- v и длина волны λ 0 будет принята за время Т = (период), а от покоящегося источника - за время Т 0 = . Периоды есть величины обратные частотам колебаний и . Подставим значения Т и Т 0 в полученные равенства

разделив их почленно, получаем

,

получаем [с. 181].

(1)

В случае, когда источник и приемник сближаются, надо знак v заменить на противоположный, получим . Отметим, что с- v и c - это скорости света соответственно относительно приемника и источника света.

Теперь рассмотрим случай, когда источник света движется перпендикулярно направлению на приемник. Учитывая, что свет связан с источником, распространяется относительно его со скоростью с и сносится с ним со скоростью v , чтобы он попал на приемник его надо направить под некоторым углом α так, что sinα = . В этом случае составляющая скорости света, совпадающая с направлением на приемник А будет , составляющая v на это направление равна 0. Чтобы не повторять предыдущие рассуждения, воспользуемся формулой (1), с- v заменим на , а скорость с относительно источника останется неизменной. В результате получаем:

что соответствует результату, полученному в опытах Айвса [с. 181].

Рис. 2.

При переходе света от источника к приемнику меняется его частота от ν 0 до ν. Из формулы с=λν следует, что должна меняться и длина волны. Если от источника света шла волна длиной λ 0 , то приемник получит ее другой, допустим λ . Получить значение λ можно, воспользовавшись тем, что λ и ν величины обратно пропорциональные . Подставив значение ν из формулы (1), получим

Для большей уверенности получим эту формулу другим способом.

Любой приемник света может быть и излучателем, значит, он имеет такую же светонесущую среду, как и источник, и свет в ней распространяется со скоростью с . Свет, переходя из среды источника в среду приемника, получает скорость с относительно приемника.

Волна длиной λ 0 от источника к границе раздела сред источника и приемника подходит со скоростью с - v и границу пройдет за время C самого начала входа волны в сферу среды приемника ее начало приобретает скорость с относительно приеника и за время Т пройдет путь λ = сТ. Подставив значение Т , получаем:

Рис. 3.

В первой половине ХХ в. американский ученый Хаббл в спектрах далеких звезд обнаружил смещение спектральных линий в сторону красной части спектра по сравнению с лабораторными спектрами - «красное смещение». Это означало, что длина принимаемой волны λ больше, чем λ 0 и чем дальше звезда, тем больше «красное смещение».

В формулу (2) входят четыре величины λ, λ 0 , с и v . Кo времени открытия «красного смещения» скорость света с постулатом Эйнштейна была закреплена постоянной относительно любой системы отсчета, значит, и λ 0 , связанная со скоростью света с и источником излучения, оказалась постоянной. В формуле (2) переменная величина λ , оказалась связанной со скоростью источникаv . Увеличение λ вызывает и увеличение v .

«Красное смещение» наблюдается у звезд, расположенным по всем направлениям, поэтому был признан факт расширения Вселенной.

В астрономии связь между λ и v определяется другой формулой

(3)

для удаляющегося источника излучения.

Для одного и того же явления и одних и тех же величин двумя формулами устанавливается разная зависимость! Чтобы разобраться с этим, сравним результаты, которые дают эти формулы при различных v . Ограничений на значение скорости v формулы не требуют. Для удобства длины волн обозначим λ 3 и λ 2 соответственно обозначению формул (3) и (2 ), в которые они входят. При v =0 :

При 0< v < с сравним делением:

Если v «с , то и λ 3 ≈ λ 2 . При этих двух условиях результаты практически не противоречат друг другу.

При v = с; λ 2 превращается в бесконечность, при этом формула (1) дает . Получается, что световая волна от источника к приемнику не попадает, она со скоростью с от источника будет двигаться к приемнику и вместе с источником будет с такой же скоростью уходить от него с - с = 0 .

Третье сравнение требует сделать вывод, какая же формула правильно отражает действительность. Происхождение формулы (2) рассмотрено в начале статьи. Теперь рассмотрим, как получается формула (3).

Рис. 4.

Представим, что источник света окружен средой, в которой свет распространяется к приемнику со скоростью с . Источник света в точке А начал излучать волну. Время излучения одной волны обозначим Т (период). С момента появления начала волны оно начинает перемещаться к приемнику в окружающей среде со скоростью с и за время Т удалится от точки А на расстояние сТ . Но за это же время источник, двигаясь от приемника окажется в точке С , пройдя расстояние АС = v Т , где и окажется конец волны. Расстояние от С до В и будет длиной волны λ = сТ + v Т = (с + v

Если источник не движется, то v = 0 и длина волны будет λ 0 = сТ. Разделив λ на λ 0 , получим:

В начале статьи мы рассмотрели среду, которая обеспечивает скорость света с, она либо связана с источником, либо с приемником света. Первая - дает формулы (1) и (2). Вероятность того, что вторая, от далеко расположенного приемника света, на скорость света больше влияла, чем среда источника света, ничтожно мала. Остается среда, не связанная ни с источником ни с приемником света, которая действует подобно воздуху (веществу) на распространение звука. Но отрицательный результат опытов Майкельсона по обнаружению «эфирного ветра» доказал, что такой среды в природе нет. Остается сделать предпочтение формуле (2). Ранее отмечалось, что при удалении источника света со скоростью v = с волна не достигнет приемника, и сигнал не будет получен.

Хабл ввел закон, носящий его имя [с. 120]

v = НD ,

где v - скорость удаления источника света, D - расстояние между источником и приемником, Н - коэффициент пропорциональности, называемой постоянной Хабла.

.

1 Мпк = 10 6 пк; 1пк (парсек) = 3,26 светового года = 3 . 10 13 км.

Найдем расстояние, при котором v = с: ;

D - это радиус сферы, ограничивающей прием прямого электромагнитного излучения из просторов Вселенной. Из прилегающих к этой сфере зон во внутренней ее части электромагнитные излучения могут приходить только в виде радиоволн. В природе не наблюдается какого-либо приоритетного направления в распределения звезд, поэтому радиоизлучение должно приходить со всех сторон равномерно.

Рассмотрим вариант, когда v >с. В этом случае формулы (1) и (2) дают: и .

Это означает, что волна должна приходить с направления, противоположного тому, где находиться излучатель.

При v = 2с имеем

.

Волна придет без «красного смещения». Определенная в статье граница возможного приема электромагнитного излучения будет верной, если верен закон Хаббла и «красное смещение» вызвано исключительно удалением излучателя. Если же обнаружатся другие факторы, уменьшающие скорость света относительно приемника (а они могут быть), то граница приема волн может быть приближена.

Обратимся теперь к формулам (1) и (2). В них c-v есть скорость света относительно приёмника, обозначим её с 1 =с-v откуда v=c-c 1 .В формулах v представляет разность скоростей света независимо от природы её возникновения. Принято считать, что это результат удаления источника света. Но эта разность скоростей может возникнуть и за счет уменьшения скорости света с увеличением расстояния. Свет это поток квантов энергии и, возможно, что скорость их может уменьшаться.

Предположим, что скорость света с увеличением расстояния от источника света уменьшается, образно говоря «свет стареет».

Известно, что скорость света уменьшается при переходе из оптически менее плотной среды в более плотную. Вызвано это тем, что, что меняются условия для прохождения света. Уменьшение скорости характеризуется показателем преломления n; , где с - скорость света в вакууме а с 1 - скорость в другой среде.

Если по предположению, скорость света уменьшается с увеличением расстояния от источника света, то, значит, меняются и условия его прохождения, что также можно характеризовать показателем преломления n. Получаем, что уменьшенная скорость света будет .

В статье «Опыт Физо» (ж. «Современные наукоёмкие технологии» №2, 2007г.) для определения скорости света в движущейся среде показатель преломления n был использован в виде , где часть показателя, определяемая излучающим атомом, а определяется условиями прохождения света в среде.

Применим такое представление показателя преломления и для вакуума. Если мы приняли предположение, что в вакууме скорость света уменьшается, а вакуум является однородной средой, то уменьшение скорости света должно зависеть только от расстояния и пропорционально ему. Поэтому можно записать ,где D -расстояние до источника света, μ - коэффициент пропорциональности постоянная величина. Скорость принимаемого света будет

Разность между начальной и уменьшенной скоростями света будет

Здесь выражена зависимость между уменьшением скорости света и расстоянием D . Связь между этими же величинами выражает и закон Хабла где v - скорость удаления звезды, что для приёмника света есть разность с-с 1 .

Сравним значения v , которые дают эти два уравнения для предельных значений расстояния D.

Если , то из первого уравнения получаем: , n =1 (для малых расстояний) и . Из закона Хаббла также получаем .

Если это совпадение не случайно, можно предположить, что кванты световой энергии связаны с излучателем, на это же указывает и связь светонесущей среды с источником света.

Чтобы определить скорость с 1 , надо решить относительно n уравнение:

и через n найти скорость с 1 .

Для малых значений D можно использовать закон Хаббла.

В статье имеется явное противоречие. Основываясь на понятии о расширении Вселенной, получен вывод о существовании границы возможного приема электромагнитных волн, а, основываясь на естественном уменьшении скорости света, такая граница отсутствует. Получается, что обнаружение такой границы будет являться доказательством расширения Вселенной.

В статье также без убедительных оснований принято предположение о зависимости скорости света от расстояний. Основания для этого предположения будут обнаружены при рассмотрении процесса излучения квантов света атомом.

СПИСОК ЛИТЕРАТУРЫ:

  1. Зисман Г.А., Тодес О.М., Курс общей физики т.3. - М.: «Наука», 1972г.
  2. Воронцов - Вельяминов Б.А. Астрономия 10. - М.: «Просвещение», 1983г.

Библиографическая ссылка

Юшкевич Р.С., Дегтярева Е.Р. ЭФФЕКТ ДОПЛЕРА И СКОРОСТЬ СВЕТА // Фундаментальные исследования. – 2008. – № 3. – С. 17-24;
URL: http://fundamental-research.ru/ru/article/view?id=2764 (дата обращения: 04.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Пусть в газе или жидкости на некотором расстоянии от источника волн располагается воспринимающее колебания среды устройство, которое мы будем называть приемником. Если источник и приемник волн неподвижны относительно среды, в которой распространяется волна, то частота колебаний, воспринимаемых приемником, будет равна частоте колебаний источника. Если же источник или приемник либо оба они движутся относительно среды, то частота v, воспринимаемая приемником, может оказаться отличной от Это явление называется эффектом Доплера.

Предположим, что источник и приемник движутся вдоль соединяющей их прямой. Скорость источника будем считать положительной, если источник движется по направлению к приемнику, и отрицательной, если источник движется в направлении от приемника. Аналогично скорость приемника будем считать положительной, если приемник движется по направлению к источнику, и отрицательной, если приемник движется в направлении от источника.

Если источник неподвижен и колеблется с частотой то к моменту, когда источник будет завершать колебание, порожденный первым колебанием «гребень» волны успеет пройти в среде путь v (v - скорость распространения волны относительно среды). Следовательно, порождаемые источником за секунду «гребней» и «впадин» волны уложатся на длине v. Если же источник движется относительно среды со скоростью то в момент, когда источник будет завершать колебание, «гребень», порожденный первым колебанием, будет находиться от источника на расстоянии (рис. 103.1). Следовательно, «гребней» и «впадин» волны уложатся на длине , так что длина волны будет равна

Мимо неподвижного приемника пройдут за секунду «гребни» и «впадины», укладывающиеся на длине v. Если приемник движется со скоростью то в конце длящегося 1 с промежутка времени он будет воспринимать «впадину», которая в начале этого промежутка отстояла от его теперешнего положения на расстояние, численно равное .

Таким образом, приемник воспримет за секунду колебания, отвечающие «гребням» и «впадинам», укладывающимся на длине, численно равной (рис. 103.2), и будет колебаться с частотой

Подставив в эту формулу выражение (103.1) для К, получим

(103.2)

Из формулы (103.2) вытекает, что при таком движении источника и приемника, при котором расстояние между ними уменьшается, воспринимаемая приемником частота v оказывается больше частоты источника

Если расстояние между источником и приемником увеличивается, v будет меньше, чем

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, вместо в формуле (103.2) нужно брать проекции векторов на направление указанной прямой.

Из формулы (103.2) следует, что эффект Доплера для звуковых волн определяется скоростями движения источника и приемника относительно среды, в которой распространяется звук. Для световых волн также наблюдается эффект Доплера, однако формула для изменения частоты имеет иной вид, чем (103.2). Это обусловлено тем, что для световых волн не существует вещественной среды, колебания которой представляли бы собой «свет». Поэтому скорости источника и приемника света относительно «среды» не имеют смысла. В случае света можно говорить лишь об относительной скорости приемника и источника. Эффект Доплера для световых волн зависит от величины и направления этой скорости. Эффект Доплера для световых волн рассматривается в § 151.

Известно, что при приближении к неподвижному наблюдателю быстро движущегося электропоезда его звуковой сигнал кажется более высоким, а при удалении от наблюдателя – более низким, чем сигнал того же электропоезда, но неподвижного.

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника.

Источник, двигаясь к приемнику, как бы сжимает пружину – волну (рис. 5.6).

Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Рассмотрим несколько случаев проявления акустического эффекта Доплера .

Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис. 5.7, а ).

Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника.

Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике:

,

где – фазовая скорость волны в среде.

Частота волны, регистрируемая приемником,

(5.7.1)

Если вектор скорости источника направлен под произвольным углом к радиус-вектору , соединяющему неподвижный приемник с источником (рис. 5.7, б ), то

(5.7.2)

Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис. 5.7, в ), то длина волны в среде . Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником

(5.7.3)

В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 5.7, г ), имеем:

Эту формулу можно также представить в виде (если )

, (5.7.6)

где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника.

Оптический эффект Доплера

При движении источника и приемника электромагнитных волн относительно друг друга также наблюдается эффект Доплера , т.е. изменение частоты волны , регистрируемой приемником. В отличие от рассмотренного нами эффекта Доплера в акустике, закономерности этого явления для электромагнитных волн можно установить только на основе специальной теории относительности.

Соотношение, описывающее эффект Доплера для электромагнитных волн в вакууме, с учетом преобразований Лоренца, имеет вид:

. (5.7.7)

При небольших скоростях движения источника волн относительно приемника, релятивистская формула эффекта Доплера (5.7.7) совпадает с классической формулой (5.7.2).

Если источник движется относительно приемника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера .

В случае сближения источника и приемника ()

, (5.7.8)

а в случае их взаимного удаления ()

. (5.7.9)

Кроме того, из релятивистской теории эффекта Доплера следует существование поперечного эффекта Доплера , наблюдающегося при и , т.е. в тех случаях, когда источник движется перпендикулярно линии наблюдения (например источник движется по окружности, приемник в центре):

. (5.7.10)

Поперечный эффект Доплера необъясним в классической физике. Он представляет чисто релятивистский эффект.

Как видно из формулы (5.7.10), поперечный эффект пропорционален отношению , следовательно он значительно слабее продольного, который пропорционален (5.7.9).

В общем случае вектор относительной скорости можно разложить на составляющие: одна обеспечивает продольный эффект, другая – поперечный.

Существование поперечного эффекта Доплера следует непосредственно из замедления времени в движущихся системах отсчета.

Впервые экспериментальная проверка существования эффекта Доплера и правильности релятивистской формулы (5.7.7) была осуществлена американскими физиками Г. Айвсом и Д. Стилуэллом в 30-х гг. Они с помощью спектрографа исследовали излучение атомов водорода, разогнанных до скоростей м/с. В 1938 г. результаты были опубликованы. Резюме: поперечный эффект Доплера наблюдался в полном соответствии с релятивистскими преобразованиями частоты (спектр излучения атомов оказался сдвинут в низкочастотную область); вывод о замедлении времени в движущихся инерциальных системах отсчета подтвержден.

Эффект Доплера нашел широкое применение в науке и технике. Особенно большую роль это явление играет в астрофизике. На основании доплеровского смещения линий поглощения в спектрах звезд и туманностей можно определять лучевые скорости этих объектов по отношению к Земле: при по формуле (5.7.6)

. (5.7.11)

Американский астроном Э. Хаббл обнаружил в 1929 г. явление, получившее название космологического красного смещения и состоящее в том, что линии в спектрах излучения внегалактических объектов смещены в сторону меньших частот (больших длин волн). Оказалось, что для каждого объекта относительное смещение частоты ( – частота линии в спектре неподвижного источника, – наблюдаемая частота) совершенно одинаково по всем частотам. Космологическое красное смещение есть не что иное, как эффект Доплера. Оно свидетельствует о том, что Метагалактика расширяется, так что внегалактические объекты удаляются от нашей Галактики.

Под Метагалактикой понимают совокупность всех звездных систем. В современные телескопы можно наблюдать часть Метагалактики, оптический радиус которой равен . Существование этого явления было теоретически предсказано еще в 1922 г. советским ученым А.А. Фридманом на основе развития общей теории относительности.

Хаббл установил закон, согласно которому относительное красное смещение галактик растет пропорционально расстоянию до них .

Закон Хаббла можно записать в виде

, (5.7.12)

где H – постоянная Хаббла. По самым современным оценкам, проведенным в 2003 г., . (1 пк (парсек) – расстояние, которое свет проходит в вакууме за 3,27 лет ()).

В 1990 г. на борту шаттла «Дискавери» был выведен на орбиту космический телескоп имени Хаббла (рис. 5.8).

Рис. 5.8 Рис. 5.9

Астрономы давно мечтали о телескопе, который работал бы в видимом диапазоне, но находился за пределами земной атмосферы, сильно мешающей наблюдениям. «Хаббл» не только не обманул возлагавшихся на него надежд, но даже превзошел практически все ожидания. Он фантастически расширил «поле зрения» человечества, заглянув в немыслимые глубины Вселенной. За время своей работы космический телескоп передал на землю 700 тыс. великолепных фотографий (рис. 5.9). Он, в частности, помог астрономам определить точный возраст нашей Вселенной – 13,7 млрд. лет; помог подтвердить существование во Вселенной странной, но оказывающей огромное влияние, формы энергии – темной энергии; доказал существование сверхмассивных черных дыр; удивительно четко заснял падение кометы на Юпитер; показал, что процесс формирования планетных систем является широко распространенным в нашей Галактике; обнаружил небольшие протогалактики, зарегистрировав излучение, испущенное ими, когда возраст Вселенной составлял менее 1 млрд. лет.

На эффекте Доплера основаны радиолокационные лазерные методы измерения скоростей различных объектов на Земле (например автомобиля, самолета и др.). Лазерная анемометрия является незаменимым методом изучения потока жидкости или газа. Хаотическое тепловое движение атомов светящегося тела также вызывает уширение линий в его спектре, которое возрастает с увеличением скорости теплового движения, т.е. с повышением температуры газа. Это явление можно использовать для определения температуры раскаленных газов.

Эффект Доплера описывается формулой:

где - частота волны, регистрируемой приемником; - частота волны, испускаемой источником; - в среде; и - скорости приемника и источника относительно упругой среды соответственно.

Если источник звука приближается к приемнику, то его скорость имеет знак «плюс». Если источник удаляется от приемника, его скорость имеет знак «минус».

Из формулы видно, что при таком движении источника и приемника, при котором расстояние между ними уменьшается, воспринимаемая приемником частота оказывается больше частоты источника . Если расстояние между источником и приемником увеличивается, будет меньше, чем .

Эффект Доплера лежит в основе радаров, с помощью которых сотрудники ГАИ определяют скорость автомобиля. В медицине используют эффект Доплера для того, чтобы с помощью ультразвукового прибора отличить вены от артерий при проведении инъекций. Благодаря эффекту Доплера, астрономы установили, что Вселенная расширяется — галактики разбегаются друг от друга. С помощью эффекта Доплера определяются параметры движения планет и космических аппаратов.

Примеры решения задач

ПРИМЕР 1

Задание На шоссе сближаются два автомобиля со скоростями м/с и м/с. Первый из них подает звуковой сигнал частотой 600 Гц. Определить частоту сигнала, который услышит водитель второго автомобиля: а) до встречи; б) после встречи. Скорость звука принять равной 348 м/с.
Решение

До встречи автомобили сближаются т.е. расстояние между ними уменьшается и источник звука (первый автомобиль) приближается к приемнику звука (второму автомобилю), поэтому скорость первого автомобиля войдет в формулу со знаком «плюс».

Вычислим:

Гц

После встречи автомобили будут удаляться друг от друга, т.е. источник звукового сигнала будет удаляться от приемника, поэтому скорость источника войдет в формулу со знаком «минус»:

Гц

Ответ Частота сигнала, который услышит водитель второй автомашины до встречи с первой, составит 732 Гц, а после встречи – 616 Гц.

ПРИМЕР 2

Задание Скорый поезд приближается к стоящему на путях электропоезду со скоростью 72 км/ч. Электропоезд подает звуковой сигнал частотой 0,6 кГц. Определить кажущуюся частоту звукового сигнала, который услышит машинист скорого поезда. Скорость звука принять равной 340 м/с.
Решение Запишем формулу для эффекта Доплера:

В системе отсчета, связанной со скорым поездом, машинист скорого поезда (приемник сигнала) неподвижен, поэтому , а электропоезд (источник сигнала) движется навстречу скорому поезду со скоростью , которая имеет знак «плюс», так как расстояние между источником и приемником звукового сигнала уменьшается.

Переведем единицы в систему СИ: скорость движения электропоезда относительно скорого поезда км/ч м/с; частота звукового сигнала электропоезда кГц Гц.

Вычислим:

Гц

Ответ Кажущаяся частота , который услышит машинист скорого поезда, 638 Гц.

ПРИМЕР 3

Задание Мимо железнодорожной платформы проходит электропоезд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается? наблюдатель слышит звук частотой 1100 Гц, когда поезд удаляется, кажущаяся частота звука 900 Гц. Найти скорость электровоза и частоту звука, издаваемого сиреной. Скорость звука в воздухе принять равной 340 м/с.
Решение Так как наблюдатель, стоящий на платформе, неподвижен, скорость приемника .

Запишем формулу для эффекта Доплера для обоих случаев.

а) когда поезд приближается:

б) когда поезд удаляется:

Выразим частоты звукового сигнала сирены и приравняем правые части полученных равенств:



Понравилась статья? Поделитесь с друзьями!