В чем заключается сущность матричного синтеза. Матричный биосинтез

1. Полимеризация и поликонденсация, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами), находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации), связанными с матрицей. Обычно мономеры и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич., донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с.; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру), а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Лит.: Кабанов В. А., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.], "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А., Марков С. В., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
2. Хим. р-ции, в к-рых строение образующегося мономолекулярного орг. соед. и (или) кинетика процесса определяется атомом металла (т. наз. темплатный синтез). Атом металла может входить в состав соли или комплексного соед. и выполнять в М. с. разл. ф-ции. Он координирует молекулы и тем самым ориентирует их реагирующие фрагменты (т. наз. кинетич. эффект в М. с.); в этом случае образование целевого продукта без участия в р-ции атома металла вообще не происходит. Атом металла может связывать в комплекс только один из конечных продуктов, к-рые образуются в равновесной р-ции (т. наз. термодинамич. эффект в М. с.); образование целевого продукта может происходить и в отсутствие металла, однако под влиянием последнего выход р-ции существенно возрастает. Часто оба эти механизма проявляются одновременно. Известны случаи, когда равновесная р-ция осуществляется на стадии образования промежут. продукта. Последний фиксируется в виде металлокомплекса, и дальнейшее превращ. идет специфич. образом (т. наз. равновесный эффект в М. с.). Возможны и др. механизмы М. с. М. с. обычно используют для синтеза циклич. соединений. Типичный пример М. с. - получение коррина (промежут. в-ва в синтезе витамина В 12) из соед. I:


В отсутствие Со соед. I переходит преим. в эндо -изомер, к-рый бесполезен для дальнейшего синтеза. Нужную экзо- структуру (I) закрепляют, получая комплексное соединение (II). Наличие атома Со в комплексе (он необходим и в витамине В 12) обусловливает пространств. сближение тиометильной и метиленовой групп, что имеет ключевое значение для образования цикла коррина (III). Важное значение приобрел М. с. краун-эфиров в присут. ионов щелочных или щел.-зем. металлов (М). Матричный эффект ионов М n+ обусловлен их способностью к реорганизации пространств. строения молекулы открытоцепного реагента в конфигурацию, удобную для замыкания цикла. При этом обеспечивается большая прочность координац. связей в переходном состоянии, чем в комплексе М n+ с открытоцепной молекулой. Возникает прямой предшественник макроциклич. комплекса, в к-ром соблюдается соответствие между диаметром М n+ и размером полости макроцикла. Ионы атомов металла, размеры к-рых меньше или больше определенного размера (разного для разл. соед.), после осуществления М. с. могут и не входить в координац. полость конечного макроцикла. Так, при конденсации фурана с ацетоном в кислой среде без ионов металла образуется полимер линейного строения; выход циклич. тетрамера IV незначителен. В присут. LiClO 4 выход линейного продукта резко падает, а основным направлением становится образование макрогетероцикла IV:


В подобных р-циях связывание катиона металла посторонними и более сильными комплексообразователями, напр. краун-эфирами, блокирует М. с. Если по завершении М. с. ион металла не уходит самопроизвольно, а образовавшийся лиганд принципиально может существовать в своб. виде, встает задача деметаллизации продукта. Этого достигают действием к-т, реагентов, специфично связывающих металлы (цианиды связывают Ni, о-фенантролин - Fe). Иногда деметаллизацию осуществляют, снижая координац. способность металла изменением его валентности с помощью окислит.-восстановит. р-ций. Принципиально важны случаи, когда образуется продукт, координац. связь к-рого с ионом металла слабее, чем связь этого иона с исходными реагентами. Тогда продукт легко "соскальзывает" с иона металла; исходные реагенты образуют с металлом новый комплекс, идентичный первоначальному. К числу таких р-ций принадлежит циклоолигомеризация ацетилена под действием Ni(CN) 2 . Кол-во атомов С в образующемся цикле зависит от числа молекул ацетилена, координированных у атома Ni, и от их взаимного расположения. Если возникает октаэдрич. шестикоординационный комплекс V, в к-ром 4 координац. места заняты p-связанными молекулами ацетилена, то образуется циклооктатетраен:


Если в реакц. среде присутствует РРh 3 , формируется комплекс VI, в к-ром на долю ацетилена остается лишь 3 своб. места; конечный продукт циклизации - бензол:


В присут. 1,10-фенантролина образуется комплекс VII, в к-ром ацетилен занимает 2 разобщенных положения. Катализатор при этом отравляется и циклизация не происходит.

В нек-рых случаях М. с. могут вызывать и ионы водорода; макроцикл как бы наращивается на протоны, действующие в паре на таком расстоянии между ними, к-рое минимально допустимо с точки зрения кулоновского отталкивания, напр.:


М. с. имеет важное значение для изучения механизмов р-ций. Кроме чисто топологич. ф-ции подготовки и сближения реакц. центров, ионы металлов стабилизируют неустойчивые промежут. соед., облегчая их выделение и исследование. С помощью М. с. получены многочисл. циклич. соед., используемые в разл. областях. Лит.: Гэрбэлэу Н. В., Реакции на матрицах, Киш., 1980; Дзиомко В. М., "Химия гетероциклических соединений", 1982, № 1, с. 3 18; Mandolini L., "Pure and Appl. Chem.", 1986, v.58, № 11, p. 1485-92. 3. В. Тодрес.

  • - pseudobridge, matrix bridge - “псевдомост”, .Aнафазный мост, образующийся в результате слипания хромосомного матрикса расходящихся к противоположным полюсам хромосом...

    Молекулярная биология и генетика. Толковый словарь

  • - англ. matrix analysis; нем. Matrixanalyse. В социологии - метод исследования свойств соц. объектов на основе использования правил теории матриц...

    Энциклопедия социологии

  • - в полиграфии - пресс для тиснения стереотипных матриц или неме-таллич. стереотипов, как правило, гидравлический...

    Большой энциклопедический политехнический словарь

  • - Устройство, применяемое для прессования картонных или винипластовых матриц, а также пластмассовых стереотипов...

    Краткий толковый словарь по полиграфии

  • - анализ, основанный на применении теории матриц, по которым вычисляются параметры элементов модели, составляющие экономические системы...

    Словарь бизнес терминов

  • - метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большой экономический словарь

  • - в экономике, метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большая Советская энциклопедия

  • - метод исследования взаимосвязей между экономическими объектами с помощью их матричного моделирования...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь русского языка

  • - МА́ТРИ-А, -ы, ж. ...

    Толковый словарь Ожегова

  • - МА́ТРИЧНЫЙ, матричная, матричное. прил. к матрица. Матричный картон...

    Толковый словарь Ушакова

  • - ма́тричный I прил. соотн. с сущ. матрица I, связанный с ним II прил. 1. соотн. с сущ. матрица II, связанный с ним 2. Обеспечивающий печать с помощью матрицы. III прил. соотн...

    Толковый словарь Ефремовой

  • - м"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - прил., кол-во синонимов: 1 матрично-векторный...

    Словарь синонимов

  • - прил., кол-во синонимов: 1 четырех...

    Словарь синонимов

"МАТРИЧНЫЙ СИНТЕЗ" в книгах

Синтез

Из книги Листы дневника. Том 2 автора

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

13. СИНТЕЗ

Из книги Рерих автора Антология гуманной педагогики

13. СИНТЕЗ Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез»

Из книги Психология речи и лингвопедагогическая психология автора Румянцева Ирина Михайловна

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез» Можно сказать, что одними из главных положений в обучении через ИЛПТ являются два психологических и психолингвистических закона, которые мы окрестили «формулами детства»,

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации

Из книги Приходи, следуй за Мною. Беседы по притчам Иисуса. Том 3 автора Раджниш Бхагван Шри

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации 18 декабря 1975г., ПунаУ меня часто возникает желание иметь изолированное безопасное место, способствующее отказу от мира. Медитации по нескольку часов в день, все более и

Синтез

Из книги О Вечном… автора Рерих Николай Константинович

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранено. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Синтез

Из книги Легенды Азии (сборник) автора Рерих Николай Константинович

Синтез Синтез самый вмещающий, самый доброжелательный может создавать то благотворное сотрудничество, в котором все человечество так нуждается сейчас. От высших представителей духовного мира до низшего материалиста-торговца - все согласятся на том, что без

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация,

Матричный анализ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Синтез

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

СИНТЕЗ

Из книги Рок-энциклопедия. Популярная музыка в Ленинграде-Петербурге, 1965–2005. Том 3 автора Бурлака Андрей Петрович

СИНТЕЗ Группу СИНТЕЗ организовал в декабре 1976 года музыкант-любитель и специалист по электронике Александр Супрунов (р. 2.07.53 в Ленинграде). В конце 60-х он впервые услышал на альбомах западных рок-групп звучание тогдашних электронных клавишных инструментов

Матричный замер

Из книги Цифровая фотография от А до Я автора Газаров Артур Юрьевич

Матричный замер Матричный замер (Matrix metering, Pattern Evaluative, E) также называют мультизонным, многозональным, многосегментным, оценочным. В автоматическом режиме камера устанавливает стандартный матричный экспозамер, используемый чаще других. Это самый интеллектуальный замер,

12.9. Матричный метод разработки решений

Из книги Системное решение проблем автора Лапыгин Юрий Николаевич

12.9. Матричный метод разработки решений Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс решений при этом выглядит так, как это показано на рис. 12.7. Как мы видим, существует

8.11. Матричный метод РУР

Из книги Управленческие решения автора Лапыгин Юрий Николаевич

8.11. Матричный метод РУР Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс РУР при этом выглядит так, как это показано на рис. 8.13. Рис. 8.13. Модель РУР матричным методомНа

11.3. Матричный метод разработки стратегий

Из книги Стратегический менеджмент: учебное пособие автора Лапыгин Юрий Николаевич

11.3. Матричный метод разработки стратегий Разработка видения организацииРазличные состояния внешней и внутренней среды организаций объясняют разнообразие самих организаций и их фактическое состояние.Многофакторность параметров, определяющих положение каждой

Синтез

Из книги Суверенитет духа автора Матвейчев Олег Анатольевич

Синтез Следующий, и, наверное, завершающий (почему завершающей, мы увидим ниже) всю западную политическую мысль, этап связан с диалектикой Гегеля.В логике вообще, говорит Гегель, смысл слова «единичность» познается только в отношении к «некоторости» и «множественности».

Матричный синтез представляет собой образование биополимера, последовательность звеньев в котором определяется первичной структурой другой молекулы. Последняя как бы выполняет роль матрицы, "диктующей" нужный порядок сборки цепи. В живых клетках известны три биосинтетических процесса, основанных на этом механизме.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию - удвоение генетического материала;
  • транскрипцию - синтез рибонуклеиновых кислот;
  • трансляцию - производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на "размножении" генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем "ДНК-РНК-белок" и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с "исходным образцом". Основой такого сопряжения является фундаментальный принцип комплементарности.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент "дочерней" цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину - цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции - УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза - расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза - "зашивает" разрывы между фрагментами Оказаки;
  • праймаза - синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки - стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы - синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) - в обратном направлении и отдельными фрагментами, названными "Оказаки".

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого "списывается" последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Трансляция

Матричный синтез белка и у прокариот, и у эукариот осуществляется в специализированных органоидах - рибосомах. Последние состоят из двух субъединиц, одна из которых (малая) служит для связывания тРНК и матричной РНК, а другая (большая) принимает участие в образовании пептидных связей.

Началу трансляции предшествует активация аминокислот, т. е. присоединение их к соответствующим транспортным РНК с образованием макроэргической связи, за счет энергии которых впоследствии осуществляются реакции транспептидирования (присоединения к цепи очередного звена).

В процессе синтеза также принимают участие белковые факторы и ГТФ. Энергия последнего необходима для продвижения рибосомы по матричной цепи РНК.

При к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами), находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, поликонденсация. Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации), связанными с матрицей. Обычно и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич., донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с.; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру), а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, поликонденсация. Лит.: Кабанов В. А., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.], "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А., Марков С. В., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
2. Хим. р-ции, в к-рых строение образующегося мономолекулярного орг. соед. и (или) кинетика процесса определяется атомом металла (т. наз. ). Атом металла может входить в состав или комплексного соед. и выполнять в М. с. разл. ф-ции. Он координирует молекулы и тем самым ориентирует их реагирующие фрагменты (т. наз. кинетич. эффект в М. с.); в этом случае образование целевого продукта без участия в р-ции атома металла вообще не происходит. Атом металла может связывать в комплекс только один из конечных продуктов, к-рые образуются в равновесной р-ции (т. наз. термодинамич. эффект в М. с.); образование целевого продукта может происходить и в отсутствие металла, однако под влиянием последнего выход р-ции существенно возрастает. Часто оба эти механизма проявляются одновременно. Известны случаи, когда равновесная р-ция осуществляется на стадии образования промежут. продукта. Последний фиксируется в виде металлокомплекса, и дальнейшее превращ. идет специфич. образом (т. наз. равновесный эффект в М. с.). Возможны и др. механизмы М. с. М. с. обычно используют для синтеза циклич. соединений. Типичный пример М. с. - получение коррина (промежут. в-ва в синтезе витамина В 12) из соед. I:


В отсутствие Со соед. I переходит преим. в эндо -изомер, к-рый бесполезен для дальнейшего синтеза. Нужную экзо- структуру (I) закрепляют, получая комплексное соединение (II). Наличие атома Со в комплексе (он необходим и в витамине В 12) обусловливает пространств. сближение тиометильной и метиленовой групп, что имеет ключевое значение для образования цикла коррина (III). Важное значение приобрел М. с. краун-эфиров в присут. ионов щелочных или щел.-зем. металлов (М). Матричный эффект ионов М n+ обусловлен их способностью к реорганизации пространств. строения молекулы открытоцепного реагента в конфигурацию, удобную для замыкания цикла. При этом обеспечивается большая координац. связей в переходном состоянии, чем в комплексе М n+ с открытоцепной молекулой. Возникает прямой предшественник макроциклич. комплекса, в к-ром соблюдается соответствие между диаметром М n+ и размером полости макроцикла. Ионы атомов металла, размеры к-рых меньше или больше определенного размера (разного для разл. соед.), после осуществления М. с. могут и не входить в координац. полость конечного макроцикла. Так, при конденсации фурана с ацетоном в кислой среде без ионов металла образуется полимер линейного строения; выход циклич. тетрамера IV незначителен. В присут. LiClO 4 выход линейного продукта резко падает, а основным направлением становится образование макрогетероцикла IV:


В подобных р-циях связывание катиона металла посторонними и более сильными комплексообразователями, напр. краун-эфирами, блокирует М. с. Если по завершении М. с. ион металла не уходит самопроизвольно, а образовавшийся лиганд принципиально может существовать в своб. виде, встает задача деметаллизации продукта. Этого достигают действием к-т, реагентов, специфично связывающих ( связывают Ni, о-фенантролин - Fe). Иногда деметаллизацию осуществляют, снижая координац. способность металла изменением его валентности с помощью окислит.-восстановит. р-ций. Принципиально важны случаи, когда образуется продукт, координац. связь к-рого с ионом металла слабее, чем связь этого иона с исходными реагентами. Тогда продукт легко "соскальзывает" с иона металла; исходные реагенты образуют с металлом новый комплекс, идентичный первоначальному. К числу таких р-ций принадлежит циклоолигомеризация ацетилена под действием Ni(CN) 2 . Кол-во атомов С в образующемся цикле зависит от числа молекул ацетилена, координированных у атома Ni, и от их взаимного расположения. Если возникает октаэдрич. шестикоординационный комплекс V, в к-ром 4 координац. места заняты p-связанными молекулами ацетилена, то образуется циклооктатетраен:


Если в реакц. среде присутствует РРh 3 , формируется комплекс VI, в к-ром на долю ацетилена остается лишь 3 своб. места; конечный продукт циклизации - бензол:


В присут. 1,10-фенантролина образуется комплекс VII, в к-ром занимает 2 разобщенных положения. Катализатор при этом отравляется и не происходит.

В нек-рых случаях М. с. могут вызывать и водорода; макроцикл как бы наращивается на протоны, действующие в паре на таком расстоянии между ними, к-рое минимально допустимо с точки зрения кулоновского отталкивания, напр.:


М. с. имеет важное значение для изучения механизмов р-ций. Кроме чисто топологич. ф-ции подготовки и сближения реакц. центров, ионы металлов стабилизируют неустойчивые промежут. соед., облегчая их выделение и исследование. С помощью М. с. получены многочисл. циклич. соед., используемые в разл. областях. Лит.: Гэрбэлэу Н. В., Реакции на матрицах, Киш., 1980; Дзиомко В. М., "Химия гетероциклических соединений", 1982, № 1, с. 3 18; Mandolini L., "Pure and Appl. Chem.", 1986, v.58, № 11, p. 1485-92. 3. В. Тодрес.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "МАТРИЧНЫЙ СИНТЕЗ" в других словарях:

    Матричный синтез - * матрычны сінтэз * template synthesis синтез белка, первичную структуру которого определяет матричная РНК … Генетика. Энциклопедический словарь

    Хим. реакции, в к рых строение образующегося соед. и (или) кинетика процесса определяются атомом металла (т.н. темплатный синтез). Используется гл. обр. для синтеза органич. циклич. соед. Атом металла (он может входить в состав соли или… … Естествознание. Энциклопедический словарь

    темплатный синтез, матричный синтез - Template Synthesis, Matrix Synthesis Темплатный синтез, матричный синтез Процесс комплексообразования, в котором ион металла с определенной стереохимией и электронным состоянием помимо своей основной функции (комплексообразователя) выступает… … Толковый англо-русский словарь по нанотехнологии. - М.

    См. Матричный синтез … Химическая энциклопедия

Это одна из интересных проблем молекулярной биологии, где много еще таких механизмов нерасшифрованно. В живом организме постоянно происходит наряду с распадом синтез белка. Метод линейных атомов позволил установить, что в состав клеток входит большое количество разнообразных белков и скорость синтеза их различны. Белки эритроцитов обмениваются в течении 2-3 месяцев, в тоже время белки уже обмениваются очень быстро, установлено, что основные белки нервной ткани обмениваются в течение 21 дня.

Белки в клетках органов и тканей вступает во взаимодействие с различными компонентами и поэтому в клетках должен существовать механизм, который бы обеспечивал безошибочный синтез белковых веществ. Это имеет значение для метаболических процессов.

Среди заболеваний связанных с нарушениями синтеза белка можно называть «альбинизм». Что происходит:

1) Нарушение процесса образования пигмента меланина, он вырабатывается в специальных клетках меланоцитах, которые находятся в коже, в волосных луковицах, сетчатке глаза. Прекращается выработка пигмента вследствие нарушения процесса превращения фенилаланина в тирозин. При альбинизме не вырабатывается фермент – тирозиназа. Он способствует образованию в дальнейшем пигмента меланина.

Признаки: молочно белый цвет кожи, светлые волосы, светлая радужной оболочки, депигментизация сетчатки, снижение остроты зрения (люди страдают, но живут)

2) Серповидноклеточная анемия происходит вследствие замены одной аминокислоты глу на вал и гемоглобин принимает форму серпа и не может выполнять свою функцию основную – транспорт О 2

Для того чтобы процесс биосинтеза белка проходил нормально необходимо:

1) Поток материи (аминокислоты из которых будут строится белки), обязательное присутствие незаменимых аминокислот. Поток должен быть как количественным так и качественным. Если с пищей наступает недостаточное количество незаменимых аминокислот, то наблюдается белковое голодание. Это приводит к нарушению азотистого равновесия (он становится отрицательный). Это важно учитывать при составлении рационов питания;

2) Поток энергии. Установлено, что синтез сложных веществ в организме протекают с потреблением источников энергии – энергии АТФ, ГТФ и и.д.;

3) Необходима информация о том, какой белок должен синтезироваться;

4) Необходимы непосредственные участники синтеза белка – различные типы РНК, позволяющие клетке синтезировать заданный белок. РНК – переносчик потока информации от ДНК к месту синтеза белка.

Начнем с общих механизмов синтеза ДНК

1) Корнберг в 1953 году предложил энзиматическим путем в безклеточной среде с участием ДНК - полимеразы


Открытие в 1960 одновременно в 2х лабораториях США фермента РНК полимеразы, катализирующего синтез РНК из свободных нуклеотилов. Способствовало расшифрованию механизма синтеза РНК.

Наиболее изучена РНК – полимераза прокариот Е.coli с АС 487000 состоит из 5 субъединиц.

РНК – полимеразы (называются ДНК – зависимой полимеразой) было установлено, что молекуле ДНК необходимы не только для реакции полимеризации, но что она определяет последовательность рибонуклеотидов во вновь синтезируемой молекуле РНК с заменой тимизинового нуклеотида ДНК на уридиловой в РНК. В общем еще синтез РНК можно представить так:

У Е. coli предполагают, имеется единственная ДНК зависимая РНК – полимераза, которая синтезирует все типы клеточных РНК. Менее изучены РНК – полимеразы эукариотов. Из клеток животных выделены 3группы РНК – полимераз А, В, С, которые принимают участие в синтезе соответственно рРНК, мРНК и тРНК.

Матричный биосинтез состоит из 3х этапов:

1. Биосинтез ДНК – репликация (механизм удвоения ДНК), репарация (ферментативные механизмы, обнаруживают и исправляют повреждения ДНК)

2. Транскрипция – биосинтез ДНК (тРНК, рРНК, мРНК)

3. Этап биосинтеза белка – трансляция

Биохимический смысл процессов репликации заключается в том, что они протекают в несколько этапов. (рис.1)

На первом этапе - инициации - происходит образование с участием ферментов (ДНК -хеликаз, ДНК - гираз) репликационных вилок, т.е. если мы имеем 2-х цепочную ДНК, то на определенном этапе одна из цепочек откручивается и ушедшая часть достраивается в виде антипараллельной цепи (рис. 1).

При инициации к цепям ДНК последовательно присоединяются ДНК - связывающие и ДНК - раскручивающие белки, а затем комплексы ДНК - полимераз и ДНК-зависимая РНК – полимераза (праймаза).

Второй этап. Процесс репликации ДНК подвергаются од­новременно обе цепи. Рост дочерних цепей осуществляется в направлении

5’ _____3’. Первая стадия осуществляется при помощи ДНК - полимеразы 111

далее принимает участие ДНК - полимераза 11 .Синтез на одной цепи идет не прерывно, а на другой фрагментарно (фрагменты Оказаки). Вторая стадия завершается отделением праймеров, объединением отдельных фрагментов ДНК при помощи ДНК - лигаз и формированием дочерней цепи ДНК.

Третий этап - терминация синтеза ДНК, наступает в результате обрыва цепи за счет исчерпывания ДНК матрицы. Точность репликации велика. Если будет ошибка, то она может быть исправлена в ходе репарационных процессов.

Рис.1 Схема основных этапов репликации ДНК (по Т.Т.Березову и Б.Ф.Коровкину)

Репарация ДНК и РНК.

Ряд экзогенных и эндогенных факторов приводят к различным повреж –дениям ДНК в клетке. В клетке существуют системы репарации ДНК. Это фер­ментативные механизмы, которые обнаруживают и исправляют повреждения.

Какие необходимы для этого условия?

1.Необходимо узнавание места повреждения ДНК (с помощью эндонуклеаз);

2.Удаление поврежденного участка (с помощью ДНК –гликозидаз);

3.Синтез нового фрагмента (ДНК – полимеразе репарирующая);

4.Соединение образования новых участков со старой цепью (фермент ДК -лигаза).

Транскрипция РНК.

Транскрипция отличается от репликации. При репликации реплицируется полностью одна из цепей ДНК, а при транскрипции транскрибируется
отдельные гены. Поэтому каждый ген ДНК несет свою информацию.

Процесс образования мРНК на ДНК - затравке возможен только на функционирующей ДК. Процесс транскрипции - многоступенчатый. До открытия феномена сплайсинга (созревание, сращивание) мРНК было известно, что многие мРНК эукариот синтезируются в еще гигантских высокомолекулярных предшественников (пре - мРНК), которые уже в ядре подвергаются посттранскрипционному процеосингу . Оказалось, что ген у эукариотов имеет сложное мозаичное строение. Он включает в себя участки, несущие информацию, это кодирующие - экзоны и участки не несущие информации, т.е. ничего не кодирующие - интроны . Отсюда и возникло понятие об экзонинтронной структуре (рис. 2).

Фермент ДНК - зависимая РНК - полимераза катализирует транскрипцию как экзонов так и интронов с образованием гетерогенной ядерной РНК (гя РНК) называемой также первичным транскриптом. Интроны вместе с экзонами транскрибируются; однако еще в ядре интроны вырезаются малыми ядерными РНК (мя РНК), что приводит к образованию функционирующей мРНК. Ферментативный процесс удаления интронов из РНК - транскрипта и объединение (соединение), соответствующих экзонов получил название - сплайсинга .

Последовательность нуклеотидов в молекуле мРНК начинается с пар ГУ (5"- конец) и заканчивается парой АГ (3" - конец). Эти последователь­ности служат сайтами (местами) узнавания для ферментов сплайсинга.

Кэпирование (КЭП) сводится к присоединению 7 метилгуанозина с помощью трифосфатной связи к 5" концу мРНК, считают, что "НЭП" участвует в узнавании подходящего сайта на молекуле мРНК и, возможно, защищает саму молекулу от ферментативного распада.

Полиаденилирование заключается в последовательном ферментативном присоединении от 100 до 200 остатков АМФ к 3" концу мРНК. Функция этого процесса окончательно изучена, но считают, что этот процесс защищает мРНК от гидролиза клеточными РНКазами.

Процессинг, сплайсинг, кэпирование, полиаденилирование - процессы обеспечивающие синтез молекулы РНК, состоящие лишь из экзонов.

Все типы РНК (рРНК, тРНК, мРНК) синтезируются сходным образом.

Поэтому для любой молекулы РНК, имеющейся в организме можно найти участок ДНК, которому она комплементарна. Но все же в синтезе различных видов имеются некоторые особенности.

мРНК - синтезируется гораздо большего размера, чем требуется для синтеза белка. Так белок иммуноглобулин включает тяжелую цепь, кодируется 1800851 нуклеотидными остатками, из них непосредственно структуру белка кодирует 1300 нуклеотидных остатка.

тРНК - синтезируется также как и мРНК, но при этом синтез идет из большего предшественника. Этот процесс подвергается сплайсингу при учас­тии ферментов цитоплазмы.

рРНК - бывает нескольких типов. У прокариотов синтез рРНК трех ти­пов 235, 16S , 5S . Они образуются из длинного предшественника пре - рРНК. Из них идет образование одной из субъединиц рибосомы.

Таким образом транскрипция - многоступенчатый процесс, в результате которого синтезируются все виды РНК.

Биосинтез белка (трансляция).

Генетический текст при трансляции переводится в линейную последовательность аминокислот полипептидной цепи белка.

Процесс трансляции можно разделить на два этапа, которые имеют разную локализацию в клетке: рекогниция (узнавание аминокислот) и собственно биосинтез белка. Рекогниция протекает в цитоплазме, а биосинтез белка протекает в рибосомах.

Рекогниция,или узнавание аминокислот. Сущность узнавания аминокислот состоит в том, чтобы соединить аминокислоту со своей тРНК. Структура тРНК обладает качествами потенциального "переводчика", так как в одной молекуле совмещены способности ""читать"" нуклеотидный текст (антикодон тРНК специфически спаривается с кодоном мРНК и нести (на акцепторном конце) свою аминокислоту. Специальные ферменты обеспечивают узнавание тРНК своей аминокислоты. Эти ферменты получили название аминоацил - тРНК - синтетаз (АРСазы). Аминокислоты при этом должны быть активированы, активация осуществляется также при помощи АРСаз. Этот процесс протекает в 2 стадии:

Рибосомы, не участвующие в синтезе белка легко диссоциируют на субъединицы. В клетке рибосомы или находятся в свободном состоянии или связаны с мембранами эндоплазматической сети. Свободное перемещение рибосом в различные участки клетки или соединение их в разных местах с мембранами эндоплазматического ретикулума, очевидно, дает возможность соби­рать белки в клетке там, где это нужно.

Биосинтез белков отличается от других типов матричных биосинтезов-репликации и транскрипции - двумя особенностями:

1) Нет соответствия между числом знаков (мономеров) в матрице и продуктов реакции в мРНК 4 разных нуклеотида, в белке 20 разных аминокислот;

2) Структура рибонуклеотидов (мономеров матрицы) и аминокислот (мономеров продукта) такова, что между мРНК (матрицей) и полипептидной цепью белка (продуктом) нет комплементарности.

Синтез белка или трансляцию делят на 3 фазы: инициацию (начало), элонгацию (удлинение полипептидной цепи), терминация (окончание).

В настоящее время установлено, что для начала синтеза белка существует специальный инициирующий комплекс (формил мет тРНК и мРНК связанные с несколькими молекулами белка ГТФ). Происходит взаимодействие между кодонами мРНК и антикодонами формил мет РНК. (рис.3)

Вначале инициирующая формил мет РНК связывается с большой субъединицей рибосомы в участке П (пептидильный центр). Следующая аминокислота в виде алат РНК связывается в участке А (аминоацильный центр). Рибосомы за счет взаимодействия антикодона ала тРНК и кодона мРНК. В результате «NH 2 » этой аминокислоты оказывается вблизи от «СООН» группы первой аминокислоты с помощью пептидотрансферазы образуется пептидная связь в участке А. Образовавшийся дипептид переносится транслоказой из участка А в участок П, вытесняя оттуда тРНК, которая вновь может вступать во взаимодействия с другой аминокислотой, необходимо участие ГТФ. Под действием пептидтрансферазы пептидная цепь с учатска П переносится на участок А. Рибосома сдвигается и против А участка становится новый кодон мРНК. На этом один рибосомальный цикл завершается. Процесс синтеза белка продолжается до тех пор, пока к А участку не подойдет бессмысленный кодон (УАГ, УАА, УГА). На этом синтез белка заканчивается и синтезируемый пептид с участка П отделяется от поверхности рибосомы.

Большинство синтезируемых белков остается в клетке, а часть уходит путем экзоцитоза. Для этого требуется энергия АТФ, поэтому при дефиците АТФ белки задерживаются в клетке. Особенно активно белки выделяются железистыми клетками и клетками печени. Что происходит дальше с синтезируемым белком?

После отделения от рибосомы она тут же гидролизуется цитоплазматическими рибонуклеазами. Уже в ходе трансляции белок начинает укладываться в трехмерную структуру, которую он окончательно принимаем после отделения синтезированного белка от рибосомы. В результате трансляции не всегда образуется функционально активный белок. Во многих слу­чаях необходимы дополнительные посттрансляцивнные изменения. Например, инсулин, образуется из предшественников (проинсулина) в результате отщепления части пептидной цепи под действием специфических протеаз. Сходным образом, т.е. путем частичного протеолиза, активируются многие проферменты.

Присоединение простетической группы с образованием сложных белков и объединение протомеров олигомерных белков также относятся к посттрансляционньм изменениям. В некоторых белках после завершения синтеза пептидной цепи происходит модификация аминокислотных остатков, например превращение пролина и лизина в гидроксилизин и гидроксипролин в коллаге­нах, метелирование аргинина и лизина в гистонах, иодирование тирозина в трио глобулине. Некоторые белки подвергаются гликозилированию, присоеди -няя олигосахаридные остатки (образование гликопротеинов). Одной из пост­синтетических модификаций является фосфорилирование некоторых остатков тирозина в молекуле белка и в настоящее время рассматривается как один из специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хотя биосинтез белка, представляющий сложный многоступенчатый процесс, однако структурно - функциональные взаимоотношения различных его этапов еще недостаточно изучены.

Рис.3 Схема элонгации полипептидной цепи

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Реакции матричного синтеза

В живых системах встречается реакции, неизвестные в неживой природе -- реакции матричного синтеза.

Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки -- на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, -- нуклеотиды или аминокислоты -- в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций -- специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого -- его способности к воспроизведению себе подобного.

К реакциям матричного синтеза относят:

1. репликацию ДНК-- процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться -- процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию - синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию-- синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Таким образом, биосинтез белка - это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника - матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план -- в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы. матричный клетка нуклеиновый ген

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом -- полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка -- рибосомам. Лишь после этого наступает следующий этап -- трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом, местом синтеза белков и всех ферментов в клетке являются рибосомы -- это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК. Одна из цепочек ДНК имеет такую последовательность нуклеотидов: АГТАЦЦГАТАЦТЦГАТТТАЦГ... Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы? Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность: ТАЦТГГЦТАТГАГЦТАААТГ... Тип 2. Кодирование белков. Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин... С какой последовательности нуклеотидов начинается ген, соответствующий этому белку? Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько. АААЦАААЦУГЦГГЦУГЦГААГ Тип 3. Декодирование молекул ДНК. С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов: АЦГЦЦЦАТГГЦЦГГТ... По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК: УГЦГГГУАЦЦГГЦЦА... Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту: Цистеин-глицин-тирозин-аргинин-пролин-...

2. Конспект по биологии в 10 «А» классе по теме: Биосинтез белков

Цель: Познакомить с процессами транскрипции и трансляции.

Образовательная. Ввести понятия гена, триплета, кодона, кода ДНК, транскрипции и трансляции, объяснить сущность процесс биосинтеза белков.

Развивающая. Развитие внимания, памяти, логического мышления. Тренировка пространственного воображения.

Воспитательная. Воспитание культуры труда на уроке, уважения к чужому труду.

Оборудование: Доска, таблицы по биосинтезу белков, магнитная доска, динамическая модель.

Литература: учебники Ю.И. Полянского, Д.К. Беляева, А.О. Рувинского; «Основы цитологии» О.Г. Машановой, «Биология» В.Н. Ярыгиной, «Гены и геномы» Сингер и Берг, школьная тетрадь, Н.Д.Лисова учеб. Пособие для 10 класса «Биология».

Методы и методические приемы: рассказ с элементами беседы, демонстрация, тестирование.

Тест по пройденному материалу.

Раздать листочки и варианты теста. Все тетради и учебники закрыты.

1 ошибка при сделанном 10 вопросе это 10, при не сделанном 10-м - 9, и т.д.

Запишите тему сегодняшнего урока: Биосинтез белков.

Вся молекула ДНК поделена на отрезки, кодирующие аминокислотную последовательность одного белка. Запишите: ген - это участок молекулы ДНК, в котором содержится информация о последовательности аминокислот в одном белке.

Код ДНК. У нас есть 4 нуклеотида и 20 аминокислот. Как же их сопоставить? Если бы 1 нуклеотид кодировал 1 а/к, => 4 а/к; если 2 нуклеотида - 1 а/к - (сколько?) 16 аминокислот. Поэтому 1 аминокислоту кодирует 3 нуклеотида - триплет (кодон). Посчитайте сколько возможно комбинаций? - 64 (3 из них это знаки препинания). Достаточно и даже с избытком. Зачем избыток? 1 а/к может кодироваться 2-6 триплетами для повышения надежности хранения и передачи информации.

Свойства кода ДНК.

1) Код триплетен: 1 аминокислоту кодирует 3 нуклеотида. 61 триплет кодирует а/к, причем один АУГ означает начало белка, а 3 - знаки препинания.

2) Код вырожден - 1 а/к кодирует 1,2,3,4,6 триплетов

3) Код однозначен - 1 триплет только 1 а/к

4) Код не перекрывающийся - от 1 и до последнего триплета ген кодирует только 1 белок

5) Код непрерывен - внутри гена нет знаков препинания. Они только между генами.

6) Код универсален - все 5 царств имеют один и тот же код. Только в митохондриях 4 триплета отличаются. Дома подумайте и скажите почему?

Вся информация содержится в ДНК, но сама ДНК в биосинтезе белка участия не принимает. Почему? Информация переписывается на и-РНК, и уже на ней в рибосоме идет синтез белковой молекулы.

ДНК РНК белок.

Скажите есть ли организмы у которых обратный порядок: РНК ДНК?

Факторы биосинтеза:

Наличие информации, закодированной в гене ДНК.

Наличие посредника и-РНК для передачи информации от ядра к рибосомам.

Наличие органоида- рибосомы.

Наличие сырья - нуклеотидов и а/к

Наличие т-РНК для доставки аминокислот к месту сборки

Наличие ферментов и АТФ (Зачем?)

Процесс биосинтеза.

Транскрипция.(показать на модели)

Переписывание последовательности нуклеотидов с ДНК на и-РНК. Биосинтез молекул РНК идет на ДНК по принципам:

Матричного синтеза

Комплиментарности

ДНК и-РНК

ДНК при помощи специального фермента расшивается, другой фермент начинает на одной из цепей синтезировать и-РНК. Размер и-РНК это 1 или несколько генов. И-РНК выходит из ядра через ядерные поры и идет к свободной рибосоме.

Трансляция. Синтез полипептидных цепей белков, осуществляемая на рибосоме.

Найдя свободную рибосому и-РНК продевается через нее. И-РНК входит в рибосому триплетом АУГ. Одновременно в рибосоме может находиться только 2 триплета (6 нуклеотидов).

Нуклеотиды в рибосоме у нас есть теперь надо туда как-то доставить а/к. С помощью чего?- т-РНК. Рассмотрим ее строение.

Транспортные РНК (т-РНК) состоят примерно из 70 нуклеотидов. Каждая т-РНК имеет акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, несущий тройку нуклеотидов, комплементарную какому-либо кодону и-РНК, потому этот триплет назвали антикодоном. Сколько типов т-РНК нужно в клетке?

Т-РНК с соответствующей а/к, пытается присоединиться к и-РНК. Если антикодон комплиментарен кодон, то присоединяется и возникает связь, которая служит сигналом для передвижения рибосомы по нити и-РНК на один триплет.

А/к присоединяется к пептидной цепочке, а т-РНК, освободившись от а/к выходит в цитоплазму в поисках другой такой же а/к.

Пептидная цепочка, таким образом, удлиняется до тех пор, пока не закончится трансляция, и рибосома не соскочит с и-РНК. На одной и-РНК может помещаться несколько рибосом (в учебнике рисунок в п.15). Белковая цепь поступает в ЭПС, где приобретает вторичную, третичную или четвертичную структуру. Весь процесс изображен в учебнике рис.22 - дома найдите ошибку в этом рисунке - получите 5)

Скажите, каким образом эти процессы идут о прокариот, если у них нет ядра?

Регуляция биосинтеза.

Каждая хромосома в линейном порядке разделена на опероны, состоящие из гена регулятора и структурного гена. Сигналом для гена регулятора является либо субстрат, либо конечные продукты.

1.Найдите аминокислоты закодированные во фрагменте ДНК.

Т-А-Ц-Г-А-А-А-А-Т-Ц-А-А-Т-Ц-Т-Ц-У-А-У- Решение:

А-У-Г-Ц-У-У-У-У-А-Г-У-У-А-Г-А-Г-А-У-А-

МЕТ ЛЕЙ ЛЕЙ ВАЛ АРГ АСП

Надо составить фрагмент и-РНК и разбить на триплеты.

2.Найдите антикодоны т-РНК для переноса указанных аминокислот к месту сборки. Мет, три, фен, арг.

Домашнее задание параграф 29.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

Вариант 1

1. Генетический код - это

а) система записи порядка расположения аминокислот в белке с помощью нуклеотидов ДНК

б) участок молекулы ДНК из 3х соседних нуклеотидов, отвечающий за постановку определенной аминокислоты в молекуле белка

в) свойство организмов передавать генетическую информацию от родителей потомству

г) единица считывания генетической информации

40. Каждая аминокислота кодируется тремя нуклеотидами - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

41. Аминокислоты шифруются более чем одним кодоном - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

42. У эукариот один нуклеотид входит в состав только одного кодона - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

43. Все живые организмы на нашей планете имеют одинаковый генетический код - это

а) специфичность

б) унивесальность

в) вырожденность

г) неперекрываемость

44. Разделение по три нуклеотида на кодоны чисто функциональное и существует только на момент процесса трансляции

а) код без запятых

б) триплетность

в) вырожденность

г) неперекрываемость

45. Количество смысловых кодонов в генетическом коде

Размещено на Allbest.ru

...

Подобные документы

    Изучение строения гена эукариот, последовательности аминокислот в белковой молекуле. Анализ реакции матричного синтеза, процесса самоудвоения молекулы ДНК, синтеза белка на матрице и-РНК. Обзор химических реакций, происходящих в клетках живых организмов.

    презентация , добавлен 26.03.2012

    Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.

    презентация , добавлен 19.12.2014

    Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация , добавлен 14.04.2014

    Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.

    реферат , добавлен 19.05.2015

    Сущность, состав нуклеотидов, их физические характеристики. Механизм редупликации дезоксирибонуклеиновой кислоты (ДНК), транскрипция ее с переносом наследственной информации на РНК и механизм трансляции - синтез белка, направляемый этой информацией.

    реферат , добавлен 11.12.2009

    Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.

    курсовая работа , добавлен 26.08.2009

    Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).

    презентация , добавлен 14.04.2014

    История изучения нуклеиновых кислот. Состав, структура и свойства дезоксирибонуклеиновой кислоты. Представление о гене и генетическом коде. Изучение мутаций и их последствий в отношении организма. Обнаружение нуклеиновых кислот в растительных клетках.

    контрольная работа , добавлен 18.03.2012

    Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.

    реферат , добавлен 26.11.2014

    Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.



Понравилась статья? Поделитесь с друзьями!