В виде каких соединений углерод может. Углерод — характеристика элемента и химические свойства

Органическая жизнь на Земле представлена соединениями углерода. Элемент входит в состав главных компонентов клеточных структур: белков, углеводов и жиров, а также составляет основу вещества наследственности - дезоксирибонуклеиновой кислоты. В неорганической природе карбон является одним из самых распространенных элементов, образующих земную кору и атмосферу планеты. Органическая химия как раздел химической науки полностью посвящен свойствам химического элемента углерода и его соединений. Наша статья рассмотрит физико-химическую характеристику карбона и особенности его свойств.

Место элемента в периодической системе Менделеева

Подгруппа углерода - это главная подгруппа IV группы, в которую, кроме карбона, входят также кремний, германий, олово и свинец. Все перечисленные элементы имеют одинаковое строение внешнего энергетического уровня, на котором расположены четыре электрона. Это обуславливает сходство их химических свойств. В обычном состоянии элементы подгруппы двухвалентны, а когда их атомы переходят в возбужденное состояние, они проявляют валентность равную 4. Физические и химические свойства углерода зависят от состояния электронных оболочек его атома. Так, в реакции с кислородом элемент, частицы которого находятся в невозбужденном состоянии, образует безразличный оксид CO. Атомы же углерода в возбужденном состоянии окисляются до диоксида углерода, проявляющего кислотные свойства.

Формы углерода в природе

Алмаз, графит и карбин - это три аллотропных видоизменения углерода как простого вещества. Прозрачные кристаллы с высокой степенью преломления световых лучей, являющиеся самым твердыми соединениями в природе - это алмазы. Они плохо проводят тепло и являются диэлектриками. Кристаллическая решетка - атомная, очень прочная. В ней каждый атом элемента окружен четырьмя другими частицами, образуя правильный тетраэдр.

Совершенно другие физико-химические свойства углерода, образующего графит. Это жирное на ощупь кристаллическое вещество темно-серого цвета. Имеет послойную структуру, расстояния между слоями атомов достаточно велики, тогда как их силы притяжения слабые. Поэтому при надавливании на графитовый стержень вещество расслаивается на тонкие чешуйки. Они оставляют на бумаге темный след. Графит теплопроводен и немного уступает металлам в электропроводности.

Способность проводить электрический ток объясняется строением кристалла вещества. В нем частицы карбона связываются с тремя другими с помощью прочных ковалентных химических связей. Четвертый валентный электрон каждого атома остается свободным и способен перемещаться в толще вещества. Направленное движение отрицательно заряженных частиц и обуславливает появление электрического тока. Сферы применения графита разнообразны. Так, его используют для изготовления электродов в электротехнике и для проведения процесса электролиза, с помощью которого получают, например, щелочные металлы в чистом виде. Графит нашел применение в ядерных реакторах для контроля скорости проходящих в них цепных реакций в качестве замедлителя нейтронов. Известно применение вещества в качестве грифельных стержней или смазки в трущихся частях механизмов.

Что такое карбин?

Черный кристаллический порошок со стеклянным блеском - это карбин. Он был синтезирован в середине XX века в России. Вещество превосходит графит по твердости, химически пассивно, обладает свойствами полупроводника и является самым стабильным видоизменением карбона. Соединение является более прочным, чем графит. Существуют еще и такие формы углерода, химические свойства которых отличаются между собой. Это сажа, древесный уголь и кокс.

Различные характеристики аллотропных модификаций углерода объясняются строением их кристаллической решеток. Он представляет собой тугоплавкое вещество без цвета и запаха. В органических растворителях нерастворим, зато способен образовывать твердые растворы - сплавы, например, с железом.

Химические свойства углерода

В зависимости от того, с каким веществом реагирует карбон, он может проявлять двойственные свойства: как восстановителя, так и окислителя. Например, сплавляя кокс с металлами, получают их соединения - карбиды. В реакции с водородом образуются углеводороды. Это органические соединения, например, метан, этилен, ацетилен, в которых, как и в случае с металлами, карбон имеет степень окисления, равную -4. Восстановительные химические реакции углерода, свойства которого мы изучаем, проявляются во время его взаимодействия с кислородом, галогенами, водой и основными оксидами.

Оксиды карбона

Сжигая уголь на воздухе с низким содержанием кислорода, получают угарный газ - оксид двухвалентного карбона. Он бесцветен, не имеет запахи и сильно токсичен. Соединяясь с гемоглобином крови в процессе дыхания, окись углерода разносится по всему человеческому организму, вызывая отравление, а затем смерть от удушья. В классификации вещество занимает место безразличных оксидов, не реагирует с водой, ему не соответствует ни основание, ни кислота. Химические свойства углерода, имеющего валентность, равную 4, отличаются от ранее рассмотренной характеристики.

Углекислый газ

Бесцветное газообразное вещество при температуре 15 и давлении в одну атмосферу переходит в твердую фазу. Она называется сухим льдом. Молекулы CO 2 неполярные, хотя ковалентная связь между атомами кислорода и карбона полярная. Соединение относится к кислотным оксидам. Взаимодействуя с водой, оно образует карбонатную кислоту. Известны реакции между углекислым газом и простыми веществами: металлами и неметаллами, например, с магнием, кальцием или коксом. В них он играет роль окислителя.

Качественная реакция на диоксид карбона

Чтобы убедиться, что исследуемый газ действительно является окисью углерода CO 2 , в неорганической химии проводят следующий опыт: вещество пропускают через прозрачный раствор известковой воды. Наблюдение помутнения раствора вследствие выпадения белого осадка карбоната кальция подтверждает присутствие в смеси реагентов молекул диоксида карбона. При дальнейшем пропускании газа через раствор гидроксида кальция осадок CaCO 3 растворяется вследствие его превращения в гидрокарбонат кальция - водорастворимую соль.

Роль углерода в доменном процессе

Химические свойства углерода используются в промышленном производстве железа из его руд: магнитного, красного или бурого железняка. Главными среди них будут восстановительные свойства углерода и оксидов - угарного и углекислого газа. Процессы, происходящие в домне, можно представить в виде следующей последовательности реакций:

  • Вначале кокс сгорает в потоке воздуха, раскаленного до 1 850 °C с образованием углекислого газа: С + О 2 = СО 2 .
  • Проходя через горячий углерод, он восстанавливается до монооксида карбона: СО 2 + С = 2СО.
  • Угарный газ реагирует с железной рудой, в результате получаем оксид железа: 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СО 2 , Fe 3 O 4 + СО = 3FeO + СО 2 .
  • Реакция получения железа будет иметь следующий вид: FeO + СО = Fe + СО 2

Расплавленное железо растворяет в себе смесь углерода и угарного газа, получается вещество - цементит.

Чугун, выплавленный в домне, кроме железа, содержит до 4,5 % углерода и другие примеси: марганец, фосфор, серу. Сталь, которая отличается от чугуна рядом признаков, например, способностью к прокатыванию и ковке, имеет в своем составе всего от 0,3 до 1,7 % карбона. Стальные изделия нашли широкое применение практически во всех отраслях промышленности: машиностроении, металлургии, медицине.

В нашей статье мы выяснили, какие химические свойства углерода и его соединений используются в различных сферах человеческой деятельности.

В состоянии соединений углерод входит в состав так называемых органических веществ, т. е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал - все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых или, лучше, углеводородистых соединений».

Эти слова из «Основ химии» Д. И. Менделеева служат как бы развернутым эпиграфом к нашему рассказу о жизненно важном элементе - углероде. Впрочем, есть здесь один тезис, с которым, с точки зрения современной науки о веществе, можно и поспорить, но об этом ниже.

Вероятно, пальцев на руках хватит, чтобы пересчитать химические элементы, которым не была посвящена хотя бы одна научная книга. Но самостоятельная научно-популярная книга - не какая-нибудь брошюрка на 20 неполных страницах с обложкой из оберточной бумаги, а вполне солидный том объемом почти в 500 страниц - есть в активе только одного элемента - углерода.

И вообще литература по углероду - богатейшая. Это, во-первых, все без исключения книги и статьи химиков- органиков; во-вторых, почти все, что касается полимеров; в-третьих, бесчисленные издания, связанные с горючими ископаемыми; в-четвертых, значительная часть медикобиологической литературы...

Поэтому не будем пытаться объять необъятное (ведь не случайно авторы популярной книги об элементе № 6 назвали ее «Неисчерпаемый»!, а сконцентрируем внимание лишь на главном из главного - попытаемся увидеть углерод с трех точек зрения.

Углерод - один из немногочисленных элементов «без роду, без племени». История общения человека с этим веществом уходит во времена доисторические. Имя первооткрывателя углерода неизвестно, неизвестно и то, какая из форм элементного углерода - алмаз или графит - была открыта раньше. И то и другое случилось слишком давно. Определенно утверждать можно лишь одно: до алмаза и до графита было открыто вещество, которое еще несколько десятилетий назад считали третьей, аморфной формой элементного углерода - уголь. Но в действительности уголь, даже древесный, это не чистый углерод. В нем есть и водород, и кислород, и следы других элементов. Правда, их можно удалить, но и тогда углерод угля не станет самостоятельной модификацией элементного углерода. Это было установлено лишь во второй четверти нашего века. Структурный анализ показал, что аморфный углерод - это по существу тот же графит. А значит, никакой он не аморфный, а кристаллический; только кристаллы его очень мелкие и больше в них дефектов. После этого стали считать, что углерод на Земле существует лишь в двух элементарных формах - в виде графита и алмаза.

Вам никогда не приходилось задумываться о причинах резкого «водораздела» свойств, который проходит во втором коротком периоде менделеевской таблицы по линии, отделяющей углерод от следующего за ним азота? Азот , кислород , фтор при обычных условиях газообразны. Углерод - в любой форме - твердое тело. Температура плавления азота - минус 210,5°С, а углерода (в виде графита под давлением свыше 100 атм) - около плюс 4000°С...

Дмитрий Иванович Менделеев первым предположил, что эта разница объясняется полимерным строением молекул углерода. Он писал: «Если бы углерод образовывал молекулу C 2 , как и O 2 , то был бы газом». И далее: «Способность атомов угля соединяться между собой и давать сложные молекулы проявляется во всех углеродистых соединениях. Ни в одном из элементов такая способность к усложнению не развита в такой мере, как в углероде. Поныне нет основания для определения меры полимеризации угольной, графитной, алмазной молекулы, только можно думать, что в них содержится С п, где n есть большая величина».

Углерод и его полимеры

Это предположение подтвердилось в наше время. И графит, и алмаз - полимеры, состоящие из одинаковых, только углеродных атомов.

По меткому замечанию профессора Ю.В. Ходакова, «если исходить из природы преодолеваемых сил, профессию гранильщика алмазов можно было бы отнести к химическим профессиям». Действительно, гранильщику приходится преодолевать не сравнительно слабые силы межмолекулярного взаимодействия, а силы химической связи, которыми объединены в молекулу алмаза углеродные атомы. Любой кристалл алмаза, даже огромный, шестисотграммовый «Куллинан» - это по существу одна молекула, молекула в высшей степени регулярного, почти идеально построенного трехмерного полимера.

Иное дело графит. Здесь полимерная упорядоченность распространяется только в двух направлениях - по плоскости, а не в пространстве. В куске графита эти плоскости образуют достаточно плотную пачку, слои которой соединены между собой не химическими силами, а более слабыми силами межмолекулярного взаимодействия. Вот почему так просто - даже от соприкосновения с бумагой - расслаивается графит. В то же время разорвать графитовую пластинку в поперечном направлении весьма сложно - здесь противодействует химическая связь.

Именно особенности молекулярного строения объясняют огромную разницу в свойствах графита и алмаза. Графит отлично проводит тепло и электричество, алмаз - изолятор. Графит совершенно не пропускает света - алмаз прозрачен. Какими бы способами ни окисляли алмаз, продуктом окисления будет только CO 2 . А окисляя графит, можно при желании получить несколько промежуточных продуктов, в частности графитовую (переменного состава) и меллитовую C 6 (COOH) 6 кислоты. Кислород как бы вклинивается между слоями графитовой пачки и окисляет лишь некоторые углеродные атомы. В кристалле алмаза слабых мест нет, и поэтому возможно или полное окисление или полное неокисление - третьего не дано...

Итак, есть «пространственный» полимер элементного углерода, есть «плоскостной». В принципе давно уже допускалось существование и «одномерного» - линейного полимера углерода, но в природе он не был найден.

Не был найден до поры до времени. Через несколько лет после синтеза линейный полимер углерода был найден в метеоритном кратере, на территории ФРГ. А получили его первыми советские химики В. В. Коршак, А. М. Сладков, В. И. Касаточкин и Ю.П. Кудрявцев. Линейный полимер углерода назвали карбином. Внешне он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами, причем под действием света электропроводность карбина сильно увеличивается. Открылись у карбина и вовсе неожиданные свойства. Оказалось, например, что кровь при контакте с ним не образует сгустков - тромбов, поэтому волокно с покрытием из карбина стали применять при изготовлении неотторгаемых организмом искусственных кровеносных сосудов.

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. В нем могли быть чередующиеся одинарные и тройные связи (-C = C-C=C -С=), а могли быть только двойные (=C=C=C=C=)... А могло быть и то и другое одновременно. Лишь через несколько лет Коршаку и Сладкову удалось доказать, что двойных связей в карбине нет. Однако, поскольку теория допускала существование углеродного линейного полимера только с двойными связями, была предпринята попытка получить эту разновидность - по существу, четвертую модификацию элементного углерода.

Углерод в минералах

Это вещество было получено в Институте элементоорганических соединений АН СССР. Новый линейный полимер углерода назвали поликумуленом. А сейчас известно не меньше восьми линейных полимеров углерода, отличающихся один от другого строением кристаллической решетки. В зарубежной литературе все их называют карбинами.

Этот элемент всегда четырехвалентен, но, поскольку в периоде он находится как раз посередине, степень его окисления в разных обстоятельствах бывает то +4, то - 4. В реакциях с неметаллами он электроположителен, с металлами - наоборот. Даже в тех случаях, когда связь не ионная, а ковалентная, углерод остается верен себе - его формальная валентность остается по-прежнему равной четырем.

Весьма немногочисленны соединения, в которых углерод хотя бы формально проявляет валентность, отличную от четырех. Общеизвестно лишь одно такое соединение - CO, угарный газ, в котором углерод кажется двухвалентным. Именно кажется, потому что в действительности здесь более сложный тип связи. Атомы углерода и кислорода соединены 3-ковалентной поляризованной связью, и структурную формулу этого соединения пишут так: O+=C".

В 1900 г. М. Гомберг получил органическое соединение трифенилметил (C 6 H 5) 3 C. Казалось, что атом углерода здесь трехвалентен. Но позже выяснилось, что и на этот раз необычная валентность - сугубо формальная. Трифенилметил и его аналоги - это свободные радикалы, только в отличие от большинства радикалов достаточно стабильные.

Исторически сложилось так, что лишь очень немногие соединения углерода остались «под крышей» неорганической химии. Это окислы углерода, карбиды - его соединения с металлами, а также бором и кремнием, карбонаты - соли слабейшей угольной кислоты, сероуглерод CS 2 , цианистые соединения. Приходится утешаться тем, что, как это часто бывает (или бывало) на производстве, недоработку по номенклатуре компенсирует «вал». Действительно, наибольшая часть углерода земной коры содержится не в организмах растений и животных, не в угле, нефти и всей прочей органике, вместе взятой, а всего в двух неорганических соединениях - известняке CaCO 3 и доломите MgCa(CO 3) 2 . Углерод входит в состав еще нескольких десятков минералов, достаточно вспомнить о мраморе CaCO 3 (с добавками), малахите Cu 2 (OH) 2 CO 3 , минерале цинка смитсоните ZnCO 3 ... Есть углерод и в магматических породах, и в кристаллических сланцах.

Очень редки минералы, в состав которых входят карбиды. Как правило, это вещества особенно глубинного происхождения; поэтому ученые предполагают, что в ядре земного шара есть углерод.

Для химической промышленности углерод и его неорганические соединения представляют значительный интерес - чаще как сырье, реже как конструкционные материалы.

Многие аппараты химических производств, например теплообменники, изготавливают из графита. И это естественно: графит обладает большой термостойкостью и химической стойкостью и при этом прекрасно проводит тепло. Кстати, благодаря этим же свойствам графит стал важным материалом реактивной техники. Из графита сделаны рули, работающие непосредственно в пламени сопловых аппаратов. В воздухе воспламенить графит практически невозможно (даже в чистом кислороде сделать это непросто), а чтобы испарить графит, нужна температура, намного более высокая, чем развивающаяся даже в ракетном двигателе. И, кроме того, при нормальном давлении графит, как и гранит, не плавится.

Без графита трудно представить современное электрохимическое производство. Графитовые электроды используются не только электрометаллургами, но и химиками. Достаточно вспомнить, что в электролизерах, применяемых для получения каустической соды и хлора, аноды - графитовые.

Использование углерода

Об использовании соединений углерода в химической промышленности написаны многие книги. Карбонат кальция, известняк, служит сырьем в производстве извести, цемента, карбида кальция. Другой минерал - доломит - «праотец» большой группы доломитовых огнеупоров. Карбонат и гидрокарбонат натрия - кальцинированная и питьевая сода. Одним из основных потребителей кальцинированной соды была и остается стекольная промышленность, на нужды которой идет примерно треть мирового производства Na 2 CO 3 .

И наконец, немного о карбидах. Обычно, когда говорят карбид, имеют в виду карбид кальция - источник ацетилена, а следовательно, многочисленных продуктов органического синтеза. Но карбид кальция, хотя и самое известное, но далеко не единственное очень важное и нужное вещество этой группы. Карбид бора B 4 C - важный материал атомной

техники , карбид кремния SiC или карборунд - важнейший абразивный материал. Карбидам многих металлов свойственны высокая химическая стойкость и исключительная твердость; карборунд, к примеру, лишь немного уступает алмазу. Его твердость по шкале Mooca равна 9,5-9,75 (алмаза - 10). Но карборунд дешевле алмаза. Его получают в электрических печах при температуре около 2000°С из смеси кокса и кварцевого песка.

По словам известного советского ученого академика И.Л. Кнунянца, органическую химию можно рассматривать как своеобразный мост, перекинутый наукой от неживой природы к высшей ее форме - жизни. А всего полтора столетия назад лучшие химики того времени сами считали и учили своих последователей, что органическая химия это наука о веществах, образующихся при участии и под руководством некоей странной «материи» - жизненной силы. Но скоро эту силу отправили на свалку естествознания. Синтезы нескольких органических веществ - мочевины, уксусной кислоты, жиров, сахароподобных веществ - сделали ее попросту ненужной.

Появилось классическое определение К. Шорлеммера, не потерявшее смысла и 100 лет спустя: «Органическая химия есть химия углеводородов и их производных, то есть продуктов, образующихся при замене водорода другими атомами или группами атомов».

Итак, органика - это химия даже не одного элемента, а лишь одного класса соединений этого элемента. Зато какого класса! Класса, поделившегося не только на группы и подгруппы - на самостоятельные науки. Из органики вышли, от органики отпочковались биохимия, химия синтетических полимеров, химия биологически активных и лекарственных соединений...

Сейчас известны миллионы органических соединений (соединений углерода!) и около ста тысяч соединений всех остальных элементов, вместе взятых.

Общеизвестно, что на углеродной основе построена жизнь. Но почему же именно углерод - одиннадцатый по распространенности на Земле элемент - взял на себя труднейшую задачу быть основой всего живого?

Ответ на этот вопрос неоднозначен. Во-первых, «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде». Во-вторых, углерод способен соединяться с большинством элементов, причем самыми разнообразными способами. В-третьих, связь атомов углерода между собой, так же как и с атомами водорода, кислорода, азота, серы, фосфора и прочих элементов, входящих в состав органических веществ, может разрушаться под воздействием природных факторов. Поэтому углерод непрерывно круговращается в природе: из атмосферы - в растения, из растений - в животные организмы, из живого - в мертвое,

из мертвого - в живое...

Четыре валентности атома углерода - как четыре руки. А если соединились два таких атома, то «рук» становится уже шесть. Или - четыре, если на образование пары затрачено по два электрона (двойная связь). Или - всего две, если связь, как в ацетилене, тройная. Но эти связи (их называют ненасыщенными) подобны бомбе в кармане или джину в бутылке. Они скрыты до поры до времени, но в нужный момент вырываются на волю, чтобы взять свое в бурной, азартной игре химических взаимодействий и превращений. Самые разнообразные конструкции образуются в результате этих «игрищ», если в них участвует углерод. В редакции «Детской энциклопедии» подсчитали, что из 20 атомов углерода и 42 атомов водорода можно получить 366 319 различных углеводородов, 366 319 веществ состава С 20 Н42. А если в «игре» не шесть десятков участников, а несколько тысяч; если среди них представители не двух «команд», а, скажем, восьми!

Где углерод, там многообразие. Где углерод, там сложности. И самые разные по молекулярной архитектуре конструкции. Простенькие цепочки, как в бутане CH 3 -CH 2 -CH 2 -CH 3 или полиэтилене -CH 2 -CH 2 -CH 2 - CH 2 -, и разветвленные структуры простейшая из них - изобутан.

Важная область практического применения новейших открытий в области физики, химии и даже астрономии - создание и исследование новых материалов с необычными, подчас уникальными свойствами. О том, в каких направлениях ведутся эти работы и чего уже сумели добиться ученые, мы расскажем в серии статей, созданных в партнерстве с Уральским федеральным университетом . Первый наш текст посвящен необычным материалам, которые можно получить из самого обычного вещества - углерода.

Если спросить у химика, какой элемент самый важный, можно получить массу разных ответов. Кто-то скажет про водород - самый распространенный элемент во Вселенной, кто-то про кислород - самый распространенный элемент в земной коре. Но чаще всего вы услышите ответ «углерод» - именно он лежит в основе всех органических веществ, от ДНК и белков до спиртов и углеводородов.

Наша статья посвящена многообразным обличьям этого элемента: оказывается, только из его атомов можно построить десятки различных материалов - от графита до алмаза, от карбина до фуллеренов и нанотрубок. Хотя все они состоят из абсолютно одинаковых атомов углерода, их свойства радикально отличаются - а главную роль в этом играет расположение атомов в материале.

Графит

Чаще всего в природе чистый углерод можно встретить в форме графита - мягкого черного материала, легко расслаивающегося и словно скользкого на ощупь. Многие могут вспомнить, что из графита делаются грифели карандашей - но это не всегда верно. Часто грифель делают из композита графитовой крошки и клея, но встречаются и полностью графитовые карандаши. Интересно, но на карандаши уходит больше одной двадцатой всей мировой добычи естественного графита.

Чем необычен графит? В первую очередь, он хорошо проводит электрический ток - хотя сам углерод и не похож на другие металлы. Если взять пластинку графита, то окажется, что вдоль ее плоскости проводимость примерно в сто раз больше, чем в поперечном направлении. Это напрямую связано с тем, как организованы атомы углерода в материале.

Если посмотреть на структуру графита, то мы увидим, что она состоит из отдельных слоев толщиной в один атом. Каждый из слоев - сетка из шестиугольников, напоминающая собой соты. Атомы углерода внутри слоя связаны ковалентными химическими связями. Более того, часть электронов, обеспечивающих химическую связь, «размазана» по всей плоскости. Легкость их перемещения и определяет высокую проводимость графита вдоль плоскости углеродных чешуек.

Отдельные слои соединяются между собой благодаря ван-дер-ваальсовым силам - они гораздо слабее, чем обычная химическая связь, но достаточны для того, чтобы кристалл графита не расслаивался самопроизвольно. Такое несоответствие приводит к тому, что электронам гораздо сложнее перемещаться перпендикулярно плоскостям - электрическое сопротивление возрастает в 100 раз.

Благодаря своей электропроводности, а также возможности встраивать атомы других элементов между слоями, графит применяется в качестве анодов литий-ионных аккумуляторов и других источников тока. Электроды из графита необходимы для производства металлического алюминия - и даже в троллейбусах используются графитовые скользящие контакты токосъемников.

Кроме того, графит - диамагнетик, причем обладающий одной из самых высоких восприимчивостей на единицу массы. Это означает, что если поместить кусочек графита в магнитное поле, то он всячески будет пытаться вытолкнуть это поле из себя - вплоть до того, что графит может левитировать над достаточно сильным магнитом.

И последнее важное свойство графита - невероятная тугоплавкость. Самым тугоплавким веществом на сегодняшний день считается один из карбидов гафния с температурой плавления около 4000 градусов Цельсия. Однако если попытаться расплавить графит, то при давлениях около ста атмосфер он сохранит твердость вплоть до 4800 градусов Цельсия (при атмосферном давлении графит сублимирует - испаряется, минуя жидкую фазу). Благодаря этому материалы на основе графита используют, например, в корпусах ракетных сопел.

Алмаз

Многие материалы под давлением начинают менять свою атомарную структуру - происходит фазовый переход. Графит в этом смысле ничем не отличается от других материалов. При давлениях в сто тысяч атмосфер и температуре в 1–2 тысячи градусов Цельсия слои углерода начинают сближаться между собой, между ними возникают химические связи, а когда-то гладкие плоскости становятся гофрированными. Образуется алмаз, одна из самых красивых форм углерода.

Свойства алмаза радикально отличаются от свойств графита - это твердый прозрачный материал. Его чрезвычайно сложно поцарапать (обладатель 10-ки по шкале твердости Мооса, это максимум твердости). При этом электропроводность алмаза и графита отличается в квинтиллион раз (это число с 18 нулями).

Алмаз в горной породе

Wikimedia Commons

Этим определяется применение алмазов: большая часть добываемых и получаемых искусственно алмазов используется в металлообработке и других отраслях промышленности. Например, широко распространены точильные диски и режущие инструменты с алмазным порошком или напылением. Алмазные напыления используются даже в хирургии - для скальпелей. Об использовании этих камней в ювелирной промышленности хорошо известно всем.

Потрясающая твердость находит применение и в научных исследованиях - именно с помощью высококачественных алмазов в лабораториях изучают материалы при давлениях в миллионы атмосфер. Подробнее об этом можно прочитать в нашем материале « ».

Графен

Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его - на скотче останется тонкий слой графита. Повторим эту операцию еще раз - приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше. Повторив процедуру еще несколько раз, мы получим графен - материал, за который вышеупомянутые британские физики получили Нобелевскую премию в 2010 году.

Графен представляет собой плоский монослой из атомов углерода, полностью идентичный атомарным слоям графита. Его популярность связана с необычным поведением электронов в нем. Они двигаются так, словно бы вовсе не обладают массой. В действительности, конечно, масса электронов остается все той же, что и в любом веществе. Во всем «виноваты» атомы углерода графенового каркаса, притягивающие заряженные частицы и образующие особенное периодическое поле.

Устройство на основе графена. На заднем плане фотографии - золотые контакты, над ними находится графен, выше - тонкий слой полиметилметакрилата

Engineering at Cambridge / flickr.com

Следствием такого поведения стала большая подвижность электронов - они перемещаются в графене гораздо быстрее, чем в кремнии. По этой причине многие ученые надеются, что основой электроники будущего станет именно графен.

Интересно, что у графена есть углеродные собратья - и . Первый из них состоит из немного искаженных пятиугольных секций и, в отличие от графена, плохо проводит электрический ток. Фаграфен состоит из пяти-, шести- и семиугольных секций. Если свойства графена одинаковы во всех направлениях, то фаграфен будет обладать выраженной анизотропией свойств. Оба этих материала были предсказаны теоретически, но в реальности пока не существуют.


Обломок кремниевого монокристалла (на переднем плане) на вертикальном массиве углеродных нанотрубок

Углеродные нанотрубки

Представьте себе, что вы свернули небольшой кусочек графенового листа в трубку и склеили ее края. Получилась полая конструкция, состоящая из тех же самых шестиугольников атомов углерода, что и графен и графит, - углеродная нанотрубка. Этот материал во многом родственен графену - он обладает высокой механической прочностью (когда-то из углеродных нанотрубок предлагали строить лифт в космос), высокой подвижностью электронов.

Однако есть одна необычная особенность. Графеновый лист можно скручивать параллельно воображаемому краю (стороне одного из шестиугольников), а можно и под углом. Оказывается, от того, как мы скрутим углеродную нанотрубку, будут очень сильно зависеть ее электронные свойства, а именно: будет она больше похожа на полупроводник с запрещенной зоной или на металл.

Многослойная углеродная нанотрубка

Wikimedia commons

Когда углеродные нанотрубки наблюдались впервые, достоверно неизвестно. В 1950–1980-х года разные группы исследователей, занимавшихся катализом реакций с участием углеводородов (например, пиролиза метана), обращали внимание на продолговатые структуры в саже, покрывавшей катализатор. Сейчас, чтобы синтезировать углеродные нанотрубки только конкретного вида (конкретной хиральности), химики предлагают использовать специальные затравки. Это небольшие молекулы в виде колец, состоящих, в свою очередь, из шестиугольных бензольных колец. Про работы по их синтезу можно почитать, например, .

Как и графен, углеродные нанотрубки могут найти большое применение в микроэлектронике. Уже сейчас созданы первые транзисторы на нанотрубках, по своим свойствам традиционные кремниевые приборы. Кроме того, нанотрубки легли в основу транзистора с .

Карбин

Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена - по меньшей мере в два раза меньше.

Тонкая нить, тянущаяся к железной частице внизу - карбин

Wikimedia Commons

Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации - при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен- диэлектрик.

Главная сложность в изучении карбинов - их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе - его удастся уменьшить до одного атома.

Фуллерены

Хотя шестиугольник - одна из самых стабильных конфигураций, которые могут образовывать атомы углерода, есть целый класс компактных объектов, где встречается правильный пятиугольник из углерода. Эти объекты называются фуллеренами.

В 1985 году Гарольд Крото, Роберт Кёрл и Ричард Смолли исследовали пары углерода и то, в какие фрагменты слипаются атомы углерода при охлаждении. Оказалось, что в газовой фазе есть два класса объектов. Первый - кластеры, состоящие из 2–25 атомов: цепочки, кольца и другие простые структуры. Второй - кластеры, состоящие из 40–150 атомов, не наблюдавшиеся ранее. За следующие пять лет химикам удалось доказать, что этот второй класс представляет собой полые каркасы из атомов углерода, наиболее устойчивый из которых состоит из 60 атомов и повторяет по форме футбольный мяч. C 60 , или бакминстерфуллерен, состоял из двадцати шестиугольных секций и 12 пятиугольных, скрепленных между собой в сферу.

Открытие фуллеренов вызвало большой интерес химиков. Впоследствии был синтезирован необычный класс эндофуллеренов - фуллеренов, в полости которых находился какой-либо посторонний атом или небольшая молекула. К примеру, всего лишь год назад в фуллерен впервые молекулу плавиковой кислоты, что позволило очень точно определить ее электронные свойства.

Фуллериты - кристаллы фуллеренов

Wikimedia Commons

В 1991 году оказалось, что фуллериды - кристаллы фуллеренов, в которых часть полостей между соседними многогранниками занимают металлы, - это молекулярные сверхпроводники с рекордно высокой температурой перехода для этого класса, а именно 18 кельвин (для K 3 C 60). Позднее нашлись фуллериды и с еще большей температурой перехода - 33 кельвина, Cs 2 RbC 60 . Такие свойства оказались напрямую связаны с электронной структурой вещества.

Q-углерод

Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp 2 -гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

Q-углерод

В отличие от алмаза, графита и других форм углерода, Q-углерод ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия - только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

***

Перечисленное - не все известные формы углерода. Более того, прямо сейчас теоретики и экспериментаторы создают и изучают новые углеродные материалы. В частности, такие работы ведутся в Уральском федеральном университете. Мы обратились к Анатолию Федоровичу Зацепину, доценту и главному научному сотруднику Физико-технологического института УрФУ, чтобы выяснить, как можно предсказывать свойства еще не синтезированных материалов и создавать новые формы углерода.

Анатолий Зацепин работает над одним из шести прорывных научных проектов УрФУ «Разработка фундаментальных основ новых функциональных материалов на базе низкоразмерных модификаций углерода». Работа осуществляется с академическими и индустриальными партнерами России и мира.

Проект реализует Физико-технологический институт УрФУ - стратегическая академическая единица (САЕ) университета. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

N + 1: Свойства углеродных наноматериалов очень сильно зависят от структуры и варьируются в широких пределах. Можно ли как-то заранее предсказать свойства материала по его структуре?

Анатолий Зацепин: Предсказать можно, и мы этим занимаемся. Существуют методы компьютерного моделирования, с помощью которых осуществляются расчеты из первых принципов (ab initio ) - мы закладываем определенную структуру, моделируем и берем все фундаментальные характеристики атомов, из которых состоит эта структура. В результате получаются те свойства, которыми может обладать материал или новое вещество, которое мы моделируем. В частности, что касается углерода, мы сумели смоделировать новые модификации, не известные природе. Их можно создать искусственно.

В частности, наша лаборатория на физтехе УрФУ сейчас занимается разработкой, синтезом и исследованиями свойств новой разновидности углерода. Ее можно назвать так: двумерно-упорядоченный линейно-цепочный углерод. Такое длинное название связано с тем, что этот материал представляет из себя так называемую 2D-структуру. Это пленки, составленные из отдельных цепей углерода, причем в пределах каждой цепи атомы углерода находятся в одной и той же «химической форме» - sp 1 -гибридизация. Это придает совершенно необычные свойства материалу, в цепочках sp 1 -углерода прочность превышает прочность алмаза и других углеродных модификаций.

Когда мы формируем из этих цепочек пленки, получается новый материал, обладающий свойствами, присущими цепочкам углерода, плюс к тому совокупность этих упорядоченных цепочек формирует двумерную структуру или сверхрешетку на специальной подложке. Такой материал обладает большими перспективами не только благодаря механическим свойствам. Самое главное, что углеродные цепочки в определенной конфигурации можно замкнуть в кольцо, при этом возникают очень интересные свойства, такие как сверхпроводимость, а магнитные свойства таких материалов могут быть лучше, чем у существующих ферромагнетиков.

Задача остается в том, чтобы их реально создать. Наше моделирование показывает путь, куда двигаться.

Как сильно отличаются реальные и предсказанные свойства материалов?

Погрешность всегда существует, но дело в том, что расчеты и моделирование из первых принципов используют фундаментальные характеристики отдельных атомов - квантовые свойства. И когда на таком микро- и наноуровне из этих квантовых атомов формируются структуры, то ошибки связаны с существующим ограничением теории и тех моделей, которые существуют. Например, известно, что уравнение Шредингера точно можно решить только для атома водорода, а для более тяжелых атомов надо использовать определенные приближения, если мы говорим о твердых телах или более сложных системах.

С другой стороны - ошибки могут возникать за счет компьютерных вычислений. При всем этом грубые ошибки исключены, а точности вполне достаточно, чтоб предсказать то или иное свойство или эффект, которые будут присущ данному материалу.

Много ли материалов можно предсказать такими способами?

Если говорить об углеродных материалах, то тут много вариаций, и я уверен, что многое еще не исследовано и не открыто. В УрФУ есть все для исследования новых углеродных материалов, и впереди предстоит большая работа.

Мы занимаемся и другими объектами, к примеру, кремниевыми материалами для микроэлектроники. Кремний и углерод - это, кстати, аналоги, они находятся в одной группе в таблице Менделеева.

Владимир Королёв



В этой книге слово «углерод» встречается довольно часто: в рассказах о зелёном листе и о железе, о пластмассах и кристаллах и ещё во многих других. Углерод - «рождающий уголь» - один из удивительнейших химических элементов. Его история - это история возникновения и развития жизни на Земле, потому что он входит в состав всего живого Земли.

А как выглядит углерод?

Сделаем несколько опытов. Возьмём сахар и нагреем его без доступа воздуха. Он сначала расплавится, станет коричневым, а потом почернеет и превратится в уголь, выделив воду. Если теперь нагреть этот уголь в присутствии , он сгорит без остатка и превратится в . Стало быть, сахар состоял из угля и воды (сахар, кстати, и называют углеводом), а «сахарный» уголь - это, видимо, и есть чистый углерод, потому что углекислый газ - это соединение углерода с кислородом. Значит, углерод - чёрный, мягкий порошок.

Возьмём серый мягкий камень графит, хорошо тебе знакомый благодаря карандашам. Если его нагреть в кислороде, он тоже сгорит без остатка, хотя и немного медленней, чем уголь, а в приборе, где он горел, останется углекислый газ. Значит, графит тоже чистый углерод? Конечно, но и это ещё не всё.

Если в том же приборе в кислороде накалить алмаз, прозрачный сверкающий драгоценный камень, самый твердый из всех минералов, он тоже сгорит, превратившись в углекислый газ. Если же нагревать алмаз без доступа кислорода, он превратится в графит, а при очень высоких давлениях и температурах можно из графита получить алмаз.

Итак, уголь, графит и алмаз - это различные формы существования одного и того же элемента - углерода.

Ещё более удивительна способность углерода «принимать участие» в огромном количестве разнообразных соединений (поэтому-то слово «углерод» так часто встречается в этой книге).

104 элемента периодической системы образуют более сорока тысяч изученных соединений. А соединений, основу которых составляет углерод, уже известно свыше миллиона!

Причина такого разнообразия заключается в том, что атомы углерода могут соединяться между собой и с другими атомами прочной связью, образуя сложные в виде цепей, колец и других фигур. Ни один элемент в таблице , кроме углерода, не способен на это.

Бесконечно число фигур, которые можно построить из атомов углерода, и поэтому бесконечно число возможных его соединений. Это могут быть и очень простые вещества, например светильный газ метан, в молекуле которого четыре атома связаны с одним атомом углерода, и настолько сложные, что строение их молекул ещё не установлено. К таким веществам относится

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.




Понравилась статья? Поделитесь с друзьями!