Внутреннее строение солнца и звезд главной последовательности. Эволюция звезд

Строение Солнца

Мы не можем непосредственно заглянуть внутрь Солнца, поэтому представление о его внутреннем строении получаем только на основе теоретического анализа, используя наиболее общие законы физики и такие характеристики Солнца, как масса, радиус, светимость.

Солнце не расширяется и не сжимается, оно находится в гидростатическом равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давления изнутри.

Расчеты показывают, что для поддержания гидростатического равновесия температура в центре Солнца должна быть примерно 15 10 6 К На расстоянии 0,7R температура падает до порядка 10 6 К. Плотность вещества в центре Солнца около 1,5 10 5 кг/м 3 , что более чем в 100 раз выше его средней плотности.

Термоядерные реакции протекают в центральной области Солнца радиусом, примерно равным 0,3R . Эта область получила название ядра. Вне ядра температура недостаточна для протекания термоядерных реакций.

Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности, двумя способами: лучистым и конвективным переносами. В первом случае энергия переносится излучением; во втором - при механических движениях нагретых масс вещества.

Лучистый перенос энергии происходит в ядре до расстояний (0,6-0,7) R от центра Солнца, далее к поверхности энергия переносится конвекцией. Проявление конвекции наблюдается в виде грануляции в фотосфере. Полное время, которое требуется энергии, выделившейся в ядре, чтобы достигнуть поверхности Солнца, составляет около 10 млн лет. Так что тот свет и тепло, которые согревают и освещают нашу Землю сегодня, были выработаны в термоядерных реакциях в центре Солнца 10 млн лет назад.

Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц - нейтрино. В отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью, близкой к скорости света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Для наблюдений солнечных нейтрино был построен специальный нейтринный телескоп, который в течение многолетних наблюдений и зарегистрировал ожидаемый поток нейтрино от Солнца. Эти наблюдения окончательно подтвердили правильность наших теоретических моделей строения Солнца как звезды. Поэтому мы в полной мере можем использовать полученные результаты для разработки моделей других звезд. Другие звезды главной последовательности по строению во многом похожи на Солнце.


Красные гиганты и сверхгиганты

Отличительной особенностью этих звезд является отсутствие ядерных реакций в самом центре, несмотря на высокие температуры. Ядерные реакции протекают в тонких слоях вокруг плотного центрального ядра. Так как температура звезды уменьшается к поверхности, то в каждом слое идет определенный тип термоядерных реакций. В самых внешних слоях ядра, где температура составляет около 15 10 6 К, из водорода образуется гелий; глубже, где температура выше, из гелия образуется углерод; далее из углерода - кислород, и в самых глубоких слоях у очень массивных звезд при термоядерных реакциях образуется железо. Более тяжелые химические элементы образовываться с выделением энергии не могут. Наоборот их образование требует затраты энергии. Итак, в красных гигантах и сверхгигантах формируются слоевые источники энергии и образуется большинство химических элементов вплоть до атомов железа.

Белые карлики

Эти звезды были названы белыми карликами, так как сначала среди них были обнаружены звезды белого цвета, а значительно позже - желтого и других цветов. Размеры их небольшие, всего лишь тысячи и десятки тысяч километров, т. е. сравнимые с размерами Земли. Но их массы близки к массе Солнца, и поэтому их средняя плотность сотни килограммов в кубическом сантиметре. Примером такой звезды служит спутник Сириуса, обозначаемый обычно как Сириус В. У этой звезды спектрального класса А с температурой 9000 К диаметр лишь в 2,5 раза превышает диаметр Земли, а масса равна солнечной, так что средняя плотность превышает 100 кг/см 3 .


Пульсары и нейтронные звезды

В 1967 г. астрономы с помощью радиотелескопов обнаружили удивительные радиоисточники, которые испускали периодические импульсы радиоизлучения. Эти объекты получили название пульсары. Периоды импульсов пульсаров, которых сейчас известно свыше 400, заключены в пределах от нескольких секунд до 0,001 с. Удивляла высокая стабильность повторения импульсов; так, первый открытый пульсар, который обозначается как PSR 1919, расположенный в неприметном созвездии Лисички, имел период Т = 1,33 730 110 168 с (рис. 16.3). Высокая стабильность периода, доступная только при измерении современными атомными часами, заставила вначале предположить, что астрономы имеют дело с сигналами, посылаемыми внеземными цивилизациями. В конце концов было доказано, что явление пульсации возникает в результате быстрого вращения нейтронных звезд, причем период следования импульсов равен периоду вращения нейтронной звезды.

Эти необычные звезды имеют радиусы около 10 км и массы, сравнимые с солнечной. Плотность нейтронной звезды фантастическая и равна 2 10 17 кг/м 3 . Она сравнима с плотностью вещества в ядрах атомов. При такой плотности вещество звезды состоит из плотно упакованных нейтронов. По этой причине такие звезды получили название нейтронных звезд .



Черные дыры

В конце XVIII в. известный астроном и математик П. Лаплас (1749-1827) привел простые, основанные на теории тяготения Ньютона рассуждения, которые позволили предсказать существование необычных объектов, получивших название черные дыры. Известно, что для преодоления притяжения небесного тела массой М и радиусом R нужна вторая космическая (параболическая) скорость При меньшей скорости тело станет спутником небесного тела, при ν ≥ ν 2 оно навсегда покинет небесное тело и никогда не вернется к нему Для Земли ν 2 = 11,2 км/с, на поверхности Солнца ν 2 = 617 км/с. На поверхности нейтронной звезды массой, равной массе Солнца, и радиусом около 10 км ν 2 = 170 000 км/с и составляет всего около 0,6 скорости света. Как видно из формулы, при радиусе небесного тела, равном R = 2GM/c 2 , вторая космическая скорость будет равна скорости света с = 300 000 км/с. При еще меньших размерах вторая космическая скорость будет превышать скорость света. По этой причине даже свет не сможет покинуть такое небесное тело и дать информацию о процессах, происходящих на его поверхности, нам - далеким наблюдателям.

Если такие объекты во Вселенной существуют, то они являются как бы дырами, куда все проваливается и откуда ничего не выходит. Поэтому в современной литературе за ними укоренилось такое название - черные дыры.

В настоящее время обнаружены черные дыры в составе двойных звездных систем. Так, в созвездии Лебедя наблюдается тесная двойная система, одна из звезд, излучающая видимый свет, - обычная звезда спектрального класса В, другая - невидимая звезда малого размера - излучает рентгеновские лучи и имеет массу около 10М . Эта невидимая звезда представляет собой черную дыру с размерами около 30 км. Рентгеновское излучение испускает не сама черная дыра, а нагретый до нескольких миллионов градусов диск, вращающийся вокруг черной дыры. Этот диск состоит из вещества, которое черная дыра своим тяготением вытягивает из яркой звезды (рис. XV на цветной вклейке).

Теоретические представления о внутреннем строении звезд главной последовательности были подтверждены прямыми наблюдениями потоков нейтрино из солнечного ядра.
В некоторых двойных звездных системах обнаружены черные дыры.

Эволюция звезд: рождение, жизнь и смерть звезд

В Млечном Пути наблюдаются газопылевые облака. Некоторые из них настолько плотные, что начинают сжиматься под действием собственного тяготения. По мере сжатия плотность и температура облака повышается, и оно начинает обильно излучать в инфракрасном диапазоне спектра. На этой стадии сжатия облако получило название протозвезда . Когда температура в недрах протозвезды повышается до нескольких миллионов кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий и протозвезда превращается в обычную звезду главной последовательности. Продолжительность пребывания звезд на главной последовательности определяется мощностью излучения звезды (светимостью) и запасами ядерной энергии.

После выгорания водорода в недрах звезды она раздувается и становится красным гигантом или сверхгигантом в зависимости от массы.

Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ее ядром и, постепенно удаляясь от него, образует планетарную туманность (рис. X на цветной вклейке). После окончательного рассеяния оболочки остается лишь горячее ядро звезды - белый карлик. От звезды типа Солнца останется углеродный белый карлик.

Эволюция массивных звезд происходит более бурно. В конце своей жизни такая звезда может взорваться сверхновой звездой, а ее ядро, резко сжавшись, превратиться в сверхплотный объект - нейтронную звезду или даже в черную дыру. Сброшенная оболочка, обогащенная гелием и другими тяжелыми элементами, образовавшимися в недрах звезды, рассеивается в пространстве и служит материалом для формирования звезд нового поколения. В частности, есть основания полагать, что Солнце - звезда второго поколения.

– наиболее распространенные из всех наблюдаемых космических объектов Вселенной.

Важнейшим параметром звезд является масса. Звездами называются газовые шары, масса которых превосходит 0,08 масс Солнца.

Изучая свечение звезд, их спектры, установили, что атмосферы звезд состоят из водорода, гелия и примеси некоторых других элементов. Именно в звездах имеются условия для формирования более тяжелых элементов, чем гелий.

Температуры и светимости звезд заключены в очень широких пределах, но эти параметры не являются независимыми. Светимость звезд сравнивают со светимостью Солнца. Абсолютная звездная величина Солнца M = +4,82 m . Светимость Солнца: L = 3,58·10 26 Вт. Существуют звезды, в сотни тысяч раз более яркие и в сотни тысяч раз более слабые, чем Солнце.

Звезды главной последовательности – это нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности.

Глубокий эволюционный смысл имеет диаграмма спектр–светимость .

Звезды образуются в результате гравитационной неустойчивости в холодных и плотных молекулярных облаках. Поэтому звезды всегда рождаются группами (скоплениями, комплексами). Стадия развития звезды, характеризующаяся сжатием и не имеющая еще термоядерных источников энергии, называется протозвездой . В течение сотен тысяч лет холодное газопылевое облако ощутимо сжимается; температура в центре облака увеличивается до миллионов кельвинов. По достижению температуры в несколько миллионов кельвинов в центре начинаются термоядерные реакции. Минимальная масса, которая необходима для этого, составляет 0,08 M .

В звездах главной последовательности происходит реакции так называемого протон-протонного цикла.

Дальнейшая эволюция звезды зависит от ее массы. Звезды скромных размеров и небольшой массы, включая и Солнце, в конце жизни, после стадии красного гиганта сжимаются и сбрасывают оболочку, превращаясь в белые карлики . Белые карлики имеют массу, не превышающую 1,2 M , радиус в 100 раз меньше солнечного. Их плотность в миллион раз больше солнечной.

Нейтронные звезды образуются при вспышках сверхновых звезд, если первоначальная масса звезды была 10–40 M либо при аккреции вещества на белый карлик в тесной двойной системе. Они быстро вращаются вокруг своей оси и обладают сильным магнитным полем. Движущиеся заряженные частицы генерируют электромагнитные волны, которые излучаются узким быстровращающимся пучком. Нейтронные звезды отождествляются с пульсарами.

Если конечная масса звезды больше 3 M , то звезда становится черной дырой . Гравитационное поле столь массивной звезды так сильно сдавливает ее вещество, что звезда не может остановиться на стадии нейтронной звезды и продолжает сжиматься вплоть до гравитационного радиуса. Предполагают, что количество черных дыр в нашей Галактике около десяти миллионов.

Звезды главной последовательности

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (к примеру, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием

астрономической единицы (а. е.) - среднее расстояние между Землёй и Солнцем (150 млн км).


Рис.1 – Диаграмма Герцшпрунга-Рассела

Виды звёзд

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее делœение звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму ʼʼАбсолютная звёздная величинаʼʼ - ʼʼспектральный классʼʼ различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название Диаграмма Герцшпрунга-Рассела ) оказалось ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Теперь, когда есть теория внутреннего строения звезд и теория их эволюции, стало возможным и объяснение существования классов звезд. Оказалось, что всё многообразие видов звёзд - это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идет буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идет класс светимости (номер области на диаграмме Герцшпрунга-Рассела), а затем идет дополнительная информация. К примеру, Солнце имеет класс G2V.

Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность - это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакции. Время жизни на главной последовательности определяется массой и долей элементов тяжелœее гелия (металличностью).

Современная (гарвардская) спектральная классификация звёзд, разработана в Гарвардской обсерватории в 1890 - 1924 годах.

Основная (гарвардская) спектральная классификация звёзд
Класс Температура, K Истинный цвет Видимый цвет Основные признаки
O 30 000-60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000-30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500-10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000-7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000-6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500-5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000-3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Коричневые карлики

Коричневые карлики - это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в серединœе XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. При этом в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Звезды главной последовательности - понятие и виды. Классификация и особенности категории "Звезды главной последовательности" 2017, 2018.

Картинка выше не имеет никакого отношения к челябинскому болиду; эта картинка называется диаграммой Герцшпрунга-Рассела, и показывает она закономерности в распределении звезд по светимости и цвету (спектральному классу). Наверное, каждый, кто читал хотя бы какую-нибудь научно-популярную книжку по астрономии видел эту картинку, и запомнил, что подавляющее большинство звезд во Вселенной находятся на "главной последовательности" , то есть расположены вблизи кривой, которая идет из верхнего левого в правый нижний угол диаграммы Герцшпрунга-Рассела. Звезды на главной последовательности стабильны, и могут очень медленно двигаться по ней многие миллиарды лет, потихоньку перерабатывая водород в гелий; когда ядерное топливо подходит к концу, обычная звезда покидает главную последовательность, становясь на недолгое время красным гигантом , а потом схлапываясь навсегда в белого карлика , который постепенно затухает.

Так вот, метафора заключается в том, что про стартапы можно нарисовать аналогичную картинку, и в ней тоже окажется, что есть узкая зона стабильности - "главная последовательность" - и есть нестабильные состояния за ее пределами. Осями могут служить cash burn (скорость расходования инвестиций) и темпы роста ключевых метрик (у каждого проекта они свои, конечно; в наиболее типичном случае это количество пользователей).

На главной последовательности - проекты, которые умеют балансировать одно с другим. Идеальной ситуацией является аккуратное, плавное движение по ней: постепенно растут расходы, и пропорционально увеличиваются темпы роста (именно темпы роста, а не сами метрики!). Другими словами, вкладываемые деньги дают взрывной рост - стартап "взлетает".
Огромное кладбище карликов - под главной последовательностью. Эти проекты заморожены, они не проедают деньги, или проедают очень маленькое, неизменное их количество (грубо говоря, затраты на хостинг) - но и метрики стабильны, не растут или практически не растут. Может, кто-то и заходит, регистрируется, даже начинает пользоваться - но к новому витку роста это не приведет. (Из личного опыта это, конечно - 9facts).
Над главной последовательностью - искусственно раздутые гиганты. Деньги сгорают очень быстро (как гелий!), но это происходит не там, где надо, или просто слишком рано - рынок еще не готов откликнуться соответствующим ростом метрик. На спектрограмме такого стартапа очень хорошо видны характерные признаки: раздутые штаты, отсутствие органического роста пользователей (рост только за счет покупки трафика), метания из стороны в сторону. В анамнезе, как правило, "дикий инвестор" - кто-то, кто очень сильно поверил в идею, но при этом не занимается профессионально развитием стартапов, не может оценить потребности проекта на очередном этапе, и дает слишком много денег. (И это тоже было все у нас с 9facts, кстати).
Очень часто можно наблюдать, как проект проходит ровно тот путь, что и звезда в процессе своей эволюции: из главной последовательности в гиганты (ошибочно решили, что ухватили ту модель, которая обеспечит взрывной рост, и начали накачивать деньгами), а потом в карлики (деньги кончились). Ну и еще несколько забавных аналогий можно увидеть в рамках этой богатой метафоры.

А продуктивность этой метафоры вот в чем.
1) Главная последовательность очень узка. Это тонкая тропинка, пройти по ней невозможно без очень четкого понимания того, как вообще устроена венчурная отрасль (пользуясь случаем, еще раз порекламирую , и ), без очень четкого концентрации на сути своего продукта, без идентификации и контроля собственных ключевых метрик. без опытных лоцманов, без вовлеченности, трудолюбия, фанатизма даже. Шаг влево, шаг вправо - и вернуться будет трудно, почти невозможно. Если все же сход произошел - надо все бросить, и попытаться вернуться. В этом - польза моей метафоры для стартапера.
2) Если проект очевидно за пределами главной последовательности - в него нет смысла инвестировать, его нет смысла рассматривать. Шансов нет. В том числе, нет смысла рассматривать и проект, который еще не начался даже, но основные параметры которого уже с самого начала предполагают отклонение от главной последовательности ("сразу наймем 30 человек"). В этом - польза моей метафоры для инвестора, очень помогает экономить время.
3) Ну и конечно нельзя забывать, что обобщения и догмы полезны лишь тогда, когда ты помнишь об их логическом обосновании, и можешь для себя понять, почему в данной конкретной ситуации обобщение не сработает, а догму можно нарушить.

Ну и, наконец, пару слов о том, как же выглядит главная последовательность для стартапов. (Естественно, об этом можно говорить только в очень обобщенном виде, очень различаются рынки, страны и т.д.).
Начинается все в той части графика, где еще нет пользователей - и на этой стадии в команде не может быть больше 2-3 человек, и она не может сжигать сотни тысяч рублей в месяц, а лучше бы не сжигать вообще ничего. Прототип готов, сформулирована основная гипотеза, начаты попытки продвижения, привлечено посевное финансирование - в команде может быть 5-6 человек, она может тратить пару сотен тысяч в месяц, но должны обязательно быть клиенты, пусть хотя бы в режиме бета-тестирования, и значительная часть денег должна направляться не в разработку. Продукт создан, клиенты пользуются и начали платить первые деньги, удалось привлечь серьезное финансирование от бизнес-ангелов - главное на этой стадии заключается в том, чтобы в какой-то момент остановить рост затрат на разработку, делая акцент на развитие бизнеса и получение устойчивых метрик; тратить миллионы еще нельзя. Достигнут стабильный рост, привлечен первый венчурный раунд финансирования - это не повод для бесконтрольного раздувания штатов и для неаккуратного обращения с деньгами, успешные проекты здесь вырастают до 10-20 человек, и удерживают свои затраты в пределах 50-100 тысяч долларов в месяц. И так далее.

Короче, все как в космосе, с одной только разницей.
Там - 90% звезд находятся на главной последовательности, а у нас не будет большим преувеличением сказать, что 90% стартапов пытаются найти себя за ее пределами.
Из интервью и питчей только этой недели:
- стартап А потратил уже $1.5M за два года на разработку продукта, востребованность решения не доказана, пользовательская база не растет, пытаются привлечь еще $2M - в основном на продолжение разработки (а кто им даст? и, главное, по какой оценке?),
- у стартапа Б закончились все деньги, привлеченные на посевной стадии, и основатели продолжают ковыряться с ним параллельно с основной работой, покуда конкуренты ушли вперед в хорошем темпе; в свое время основатели не взяли приличные инвестиции по неплохой оценке, пытаясь не размываться и рассчитывая на собственные силы, а сейчас уже согласны и на значительно меньшую оценку, но...,
- стартап В пытается поднять несколько десятков миллионов рублей на стадии идеи, планируя собрать команду около 20 человек для создания прототипа и проверки гипотезы,
... и так далее.

Posted on Feb. 17th, 2013 at 02:10 pm |

В 1910 г. двое астрономов — датчанин Эйнар Герцшпрунг и американец Генри Ресселл — независимо друг от друга решили выяснить, как зависит светимость звезды от ее спектрального класса или цвета. Для этого они нанесли на график данные обо всех известных в то время спектральных классах и светимостях звезд. В левой части диаграммы расположились горячие белые и голубые звезды, в правой — «холодные» красные, вверху — те, что излучают много энергии, внизу — те, которые «скупятся» на излучение. Если бы зависимость спектр- светимость была однозначной, на диаграмме образовалась бы прямая линия, если бы никакой зависимости вообще не существовало, точки расположились бы по всему полю диаграммы.

Получилось нечто совсем иное: точки, соответствующие тем или иным звездам, сгруппировались в различных областях. Больше всего их (около 90 %) разместилось на диагонали, проведенной из левого верхнего угла (звезды классов О и В, излучающие много энергии) к правому нижнему углу (слабые красные звезды). Эту диагональ астрономы назвали «главной последовательностью». Выше горизонтально протянулась последовательность звезд с наибольшей светимостью, которые назвали гигантами, так как для того, чтобы излучать столько энергии, звезда должна иметь очень большую поверхность. Еще выше, над последовательностью гигантов, расположились гипергиганты и сверхгиганты, а между гигантами и главной последовательностью — субгиганты.

Заполненной оказалась еще одна область — в левом нижнем углу разместились горячие звезды малой светимости, которые называют белыми карликами — ведь для того, чтобы излучать мало энергии, горячая звезда должна быть очень маленькой.

Ученым поначалу казалось, что на протяжении своей жизни звезды проходят путь вдоль главной последовательности — постепенно теряя энергию и остывая. Однако в действительности все выглядит сложнее. «Новорожденная» звезда почти сразу «садится» на главную последовательность, а ее место в ней зависит прежде всего от массы — чем больше масса, тем более высокое место она занимает. Там звезда и проводит большую часть своей жизни. Потому-то на главной последовательности и «собралось» наибольшее количество звезд.

Но когда водородное «горючее» подходит к концу, звезда начинает менять свой облик. Ее оболочка начинает разбухать, звезда стремительно увеличивается и переходит в класс красных гигантов, меняя место на диаграмме. Затем остывающая оболочка сбрасывается — и остается только раскаленное ядро звезды. На свет появляется новый белый карлик.

Так живут звезды главной последовательности, в том числе и наше Солнце. У других типов звезд «биография» и сложнее, и богаче событиями.

С помощью диаграммы Герцшпрунга-Ресселла нередко удается определять и возраст удаленных звездных скоплений. Если все звезды скопления лежат на главной последовательности — скопление молодое, если часть звезд уже покинула главную последовательность — его возраст на порядок больше.



Понравилась статья? Поделитесь с друзьями!