Взаимно простые числа: определение, примеры и свойства. Наибольший общий делитель, взаимно простые числа Наибольший общий делитель взаимно простые

Простые и составные числа

Определение 1 . Общим делителем нескольких натуральных чисел называют число, которое является делителем каждого из этих чисел.

Определение 2 . Самый большой из общих делителей называют наибольшим общим делителем (НОД) .

Пример 1 . Общими делителями чисел 30 , 45 и 60 будут числа 3 , 5 , 15 . Наибольшим общим делителем этих чисел будет

НОД (30 , 45 , 10) = 15 .

Определение 3 . Если наибольший общий делитель нескольких чисел равен 1 , то эти числа называют взаимно простыми .

Пример 2 . Числа 40 и 3 будут взаимно простыми числами, а числа 56 и 21 не являются взаимно простыми, поскольку у чисел 56 и 21 есть общий делитель 7 , который больше, чем 1.

Замечание . Если числитель дроби и знаменатель дроби являются взаимно простыми числами, то такая дробь несократима .

Алгоритм нахождения наибольшего общего делителя

Рассмотрим алгоритм нахождения наибольшего общего делителя нескольких чисел на следующем примере.

Пример 3 . Найти наибольший общий делитель чисел 100, 750 и 800 .

Решение . Разложим эти числа на простые множители :

Простой множитель 2 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 1 , в третье разложение – в степени 5 . Обозначим наименьшую из этих степеней буквой a . Очевидно, что a = 1 .

Простой множитель 3 в первое разложение на множители входит в степени 0 (другими словами, множитель 3 в первое разложение на множители вообще не входит), во второе разложение входит в степени 1 , в третье разложение – в степени 0 . Обозначим наименьшую из этих степеней буквой b . Очевидно, что b = 0 .

Простой множитель 5 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 3 , в третье разложение – в степени 2 . Обозначим наименьшую из этих степеней буквой c . Очевидно, что c = 2 .


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Решение задач из задачника Виленкин, Жохов, Чесноков, Шварцбурд за 6 класс по математике на тему:

  • Глава I. Обыкновенные дроби.
    § 1. Делимость чисел:
    6. Наибольший общий делитель. Взаимно простые числа
  • 146 Найдите все общие делители чисел 18 и 60; 72, 96 и 120; 35 и 88.
    РЕШЕНИЕ

    147 Найдите разложение на простые множители наибольшего общего делителя чисел a и b, если a = 2·2·3·3 и b = 2·3·3·5; a = 5·5·7·7·7 и b = 3·5·7·7.
    РЕШЕНИЕ

    148 Найдите наибольший общий делитель чисел 12 и 18; 50 и 175; 675 и 825; 7920 и 594; 324, 111 и 432; 320, 640 и 960.
    РЕШЕНИЕ

    149 Являются ли взаимно простыми числа 35 и 40; 77 и 20; 10, 30, 41; 231 и 280?
    РЕШЕНИЕ

    150 Являются ли взаимно простыми числа 35 и 40; 77 и 20; 10, 30, 41; 231 и 280?
    РЕШЕНИЕ

    151 Запишите все правильные дроби со знаменателем 12, у которых числитель и знаменатель взаимно простые числа.
    РЕШЕНИЕ

    152 Ребята получили на новогодней елке одинаковые подарки. Во всех подарках вместе было 123 апельсина и 82 яблока. Сколько ребят присутствовало на елке? Сколько апельсинов и сколько яблок было в каждом подарке?
    РЕШЕНИЕ

    153 Для поездки за город работникам завода было выделено несколько автобусов, с одинаковым числом мест. 424 человека поехали в лес, а 477 - на озеро. Все места в автобусах были заняты, и ни одного человека не осталось без места. Сколько автобусов было выделено и сколько пассажиров было в каждом из них?
    РЕШЕНИЕ

    154 Вычислите устно столбиком
    РЕШЕНИЕ

    155 С помощью рисунка 7 определите, являются ли числа a, b и c простыми.
    РЕШЕНИЕ

    156 Существует ли куб, ребро которого выражается натуральным числом и у которого сумма длин всех ребер выражается простым числом; площадь поверхности выражается простым числом?
    РЕШЕНИЕ

    157 Разложите на простые множители числа 875; 2376; 5625; 2025; 3969; 13125.
    РЕШЕНИЕ

    158 Почему если одно число можно разложить на два простых множителя, а второе - на три, то эти числа не равны?
    РЕШЕНИЕ

    159 Можно ли найти четыре различных простых числа, чтобы произведение двух из них равнялось произведению двух других?
    РЕШЕНИЕ

    160 Сколькими способами в девятиместном микроавтобусе могут разместиться 9 пассажиров? Сколькими они способами могут разместиться, если один из них хорошо знающий маршрут сядет рядом с водителем?
    РЕШЕНИЕ

    161 Найдите значения выражений (3 · 8 · 5-11):(8 · 11); (2 ·2 ·3 ·5 ·7):(2 ·3 ·7); (2 · 3 · 7 ·1 ·3):(3 ·7); (3 ·5 · 11 · 17 · 23):(3 · 11 ·17).
    РЕШЕНИЕ

    162 Сравните 3/7 и 5/7; 11/13 и 8/13;1 2/3 и 5/3; 2 2/7 и 3 1/5.
    РЕШЕНИЕ

    163 С помощью транспортира постройте AOB=35° и DEF = 140°.
    РЕШЕНИЕ

    164 1) Луч ОМ разделил развернутый угол AOB на два: AOM и MOB. Угол АОМ в 3 раза больше MOB. Чему равны углы АОМ и ВОМ. Постройте их. 2) Луч ОК разделил развернутый угол COD на два: СОК и KOD. Угол СОК в 4 раза меньше KOD. Чему равны углы СОК и KOD? Постройте их.
    РЕШЕНИЕ

    165 1) Рабочие отремонтировали дорогу длиной 820 м за три дня. Во вторник они отремонтировали 2/5 этой дороги, а в среду 2/3 оставшейся части. Сколько метров дороги отремонтировали рабочие в четверг? 2) На ферме содержатся коровы, овцы и козы, всего 3400 животных. Овцы и козы вместе составляют 9/17 всех животных, а козы составляют 2/9 общего числа овец и коз. Сколько на ферме коров, овец и коз?
    РЕШЕНИЕ

    166 Представьте в виде обыкновенной дроби числа 0,3; 0,13; 0,2 и в виде десятичной дроби 3/8; 4 1/2; 3 7/25
    РЕШЕНИЕ

    167 Выполните действие, записав каждое число в виде десятичной дроби 1/2 + 2/5; 1 1/4 + 2 3/25
    РЕШЕНИЕ

    168 Представьте в виде суммы простых слагаемых числа 10, 36, 54, 15, 27 и 49 так, чтобы слагаемых было возможно меньше. Какие предложения о представлении чисел в виде суммы простых слагаемых вы можете высказать?
    РЕШЕНИЕ

    169 Найдите наибольший общий делитель чисел a и b, если a = 3·3·5·5·5·7, b = 3·5·5·11; a = 2·2·2·3·5·7, b = 3·11·13 .

    В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.

    Что такое взаимно простые числа

    Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.

    Определение 1

    Взаимно простыми будут два таких числа a и b , наибольший общий делитель которых равен 1 , т.е. НОД (a , b) = 1 .

    Из данного определения можно сделать вывод, что единственный положительный общий делитель у двух взаимно простых чисел будет равен 1 . Всего два таких числа имеют два общих делителя – единицу и минус единицу.

    Какие можно привести примеры взаимно простых чисел? Например, такой парой будут 5 и 11 . Они имеют только один общий положительный делитель, равный 1 , что является подтверждением их взаимной простоты.

    Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.

    Это утверждение иллюстрирует следующий пример: составные числа - 9 и 8 образуют взаимно простую пару. Докажем это, вычислив их наибольший общий делитель. Для этого запишем все их делители (рекомендуем перечитать статью о нахождении делителей числа). У 8 это будут числа ± 1 , ± 2 , ± 4 , ± 8 , а у 9 – ± 1 , ± 3 , ± 9 . Выбираем из всех делителей тот, что будет общим и наибольшим – это единица. Следовательно, если НОД (8 , − 9) = 1 , то 8 и - 9 будут взаимно простыми по отношению друг к другу.

    Взаимно простыми числами не являются 500 и 45 , поскольку у них есть еще один общий делитель – 5 (см. статью о признаках делимости на 5). Пять больше единицы и является положительным числом. Другой подобной парой могут быть - 201 и 3 , поскольку их оба можно разделить на 3 , на что указывает соответствующий признак делимости.

    На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.

    Пример 1

    Условие: выясните, являются ли взаимно простыми числа 275 и 84 .

    Решение

    Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.

    Вычисляем наибольший общий делитель, используя алгоритм Евклида: 275 = 84 · 3 + 23 , 84 = 23 · 3 + 15 , 23 = 15 · 1 + 8 , 15 = 8 · 1 + 7 , 8 = 7 · 1 + 1 , 7 = 7 · 1 .

    Ответ: поскольку НОД (84 , 275) = 1 , то данные числа будут взаимно простыми.

    Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.

    Определение 2

    Взаимно простыми целые числа a 1 , a 2 , … , a k , k > 2 будут тогда, когда они имеют наибольший общий делитель, равный 1 .

    Иными словами, если у нас есть набор некоторых чисел с наибольшим положительным делителем, большим 1 , то все эти числа не являются по отношению друг к другу взаимно обратными.

    Возьмем несколько примеров. Так, целые числа − 99 , 17 и − 27 – взаимно простые. Любое количество простых чисел будет взаимно простым по отношению ко всем членам совокупности, как, например, в последовательности 2 , 3 , 11 , 19 , 151 , 293 и 667 . А вот числа 12 , − 9 , 900 и − 72 взаимно простыми не будут, потому что кроме единицы у них будет еще один положительный делитель, равный 3 . То же самое относится к числам 17 , 85 и 187: кроме единицы, их все можно разделить на 17 .

    Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.

    Пример 2

    Условие: определите, являются ли числа 331 , 463 и 733 взаимно простыми.

    Решение

    Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.

    Ответ: все эти числа будут взаимно простыми по отношению друг к другу.

    Пример 3

    Условие: приведите доказательство того, что числа − 14 , 105 , − 2 107 и − 91 не являются взаимно простыми.

    Решение

    Начнем с выявления их наибольшего общего делителя, после чего убедимся, что он не равен 1 . Поскольку у отрицательных чисел те же делители, что и у соответствующих положительных, то НОД (− 14 , 105 , 2 107 , − 91) = НОД (14 , 105 , 2 107 , 91) . Согласно правилам, которые мы привели в статье о нахождении наибольшего общего делителя, в данном случае НОД будет равен семи.

    Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.

    Основные свойства взаимно простых чисел

    Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.

    Определение 3

    Если разделить целые числа a и b на число, соответствующее их наибольшему общему делителю, мы получим взаимно простые числа. Иначе говоря, a: НОД (a , b) и b: НОД (a , b) будут взаимно простыми.

    Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.

    Определение 4

    Необходимым и достаточным условием взаимной простоты чисел a и b является существование таких целых чисел u 0 и v 0 , при которых равенство a · u 0 + b · v 0 = 1 будет верным.

    Доказательство 1

    Начнем с доказательства необходимости этого условия. Допустим, у нас есть два взаимно простых числа, обозначенных a и b . Тогда по определению этого понятия их наибольший общий делитель будет равен единице. Из свойств НОД нам известно, что для целых a и b существует соотношение Безу a · u 0 + b · v 0 = НОД (a , b) . Из него получим, что a · u 0 + b · v 0 = 1 . После этого нам надо доказать достаточность условия. Пусть равенство a · u 0 + b · v 0 = 1 будет верным, в таком случае, если НОД (a , b) делит и a , и b , то он будет делить и сумму a · u 0 + b · v 0 , и единицу соответственно (это можно утверждать, исходя из свойств делимости). А такое возможно только в том случае, если НОД (a , b) = 1 , что доказывает взаимную простоту a и b .

    В самом деле, если a и b являются взаимно простыми, то согласно предыдущему свойству, будет верным равенство a · u 0 + b · v 0 = 1 . Умножаем обе его части на c и получаем, что a · c · u 0 + b · c · v 0 = c . Мы можем разделить первое слагаемое a · c · u 0 + b · c · v 0 на b , потому что это возможно для a · c , и второе слагаемое также делится на b , ведь один из множителей у нас равен b . Из этого заключаем, что всю сумму можно разделить на b , а поскольку эта сумма равна c , то c можно разделить на b .

    Определение 5

    Если два целых числа a и b являются взаимно простыми, то НОД (a · c , b) = НОД (c , b) .

    Доказательство 2

    Докажем, что НОД (a · c , b) будет делить НОД (c , b) , а после этого – что НОД (c , b) делит НОД (a · c , b) , что и будет доказательством верности равенства НОД (a · c , b) = НОД (c , b) .

    Поскольку НОД (a · c , b) делит и a · c и b , а НОД (a · c , b) делит b , то он также будет делить и b · c . Значит, НОД (a · c , b) делит и a · c и b · c , следовательно, в силу свойств НОД он делит и НОД (a · c , b · c) , который будет равен c · НОД (a , b) = c . Следовательно, НОД (a · c , b) делит и b и c , следовательно, делит и НОД (c , b) .

    Также можно сказать, что поскольку НОД (c , b) делит и c , и b , то он будет делить и c , и a · c . Значит, НОД (c , b) делит и a · c и b , следовательно, делит и НОД (a · c , b) .

    Таким образом, НОД (a · c , b) и НОД (c , b) взаимно делят друг друга, значит, они являются равными.

    Определение 6

    Если числа из последовательности a 1 , a 2 , … , a k будут взаимно простыми по отношению к числам последовательности b 1 , b 2 , … , b m (при натуральных значениях k и m), то их произведения a 1 · a 2 · … · a k и b 1 · b 2 · … · b m также являются взаимно простыми, в частности, a 1 = a 2 = … = a k = a и b 1 = b 2 = … = b m = b , то a k и b m – взаимно простые.

    Доказательство 3

    Согласно предыдущему свойству, мы можем записать равенства следующего вида: НОД (a 1 · a 2 · … · a k , b m) = НОД (a 2 · … · a k , b m) = … = НОД (a k , b m) = 1 . Возможность последнего перехода обеспечивается тем, что a k и b m взаимно просты по условию. Значит, НОД (a 1 · a 2 · … · a k , b m) = 1 .

    Обозначим a 1 · a 2 · … · a k = A и получим, что НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = НОД (b 1 · b 2 · … · b m , A) = НОД (b 2 · … · b · b m , A) = … = НОД (b m , A) = 1 . Это будет справедливым в силу последнего равенства из цепочки, построенной выше. Таким образом, у нас получилось равенство НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = 1 , с помощью которого можно доказать взаимную простоту произведений a 1 · a 2 · … · a k и b 1 · b 2 · … · b m

    Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.

    Понятие попарно простых чисел

    Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.

    Определение 7

    Попарно простые числа – это последовательность целых чисел a 1 , a 2 , … , a k , где каждое число будет взаимно простым по отношению к остальным.

    Примером последовательности попарно простых чисел может быть 14 , 9 , 17 , и − 25 . Здесь все пары (14 и 9 , 14 и 17 , 14 и − 25 , 9 и 17 , 9 и − 25 , 17 и − 25) взаимно просты. Отметим, что условие взаимной простоты является обязательным для попарно простых чисел, но взаимно простые числа будут попарно простыми далеко не во всех случаях. Например, в последовательности 8 , 16 , 5 и 15 числа не являются таковыми, поскольку 8 и 16 не будут взаимно простыми.

    Также следует остановиться на понятии совокупности некоторого количества простых чисел. Они всегда будут и взаимно, и попарно простыми. Примером может быть последовательность 71 , 443 , 857 , 991 . В случае с простыми числами понятия взаимной и попарной простоты будут совпадать.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Запомните!

    Если натуральное число делится только на 1 и на само себя, то оно называется простым.

    Любое натуральное число всегда делится на 1 и на само себя.

    Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

    Простых чисел много, и первое среди них — число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

    Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

    Например:

    • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
    • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .

    Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

    Запомните!

    Делитель натурального числа a — это такое натуральное число, которое делит данное число «a » без остатка.

    Натуральное число, которое имеет более двух делителей называется составным.

    Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел — 12 .

    Общий делитель двух данных чисел «a » и «b » — это число, на которое делятся без остатка оба данных числа «a » и «b ».

    Запомните!

    Наибольший общий делитель (НОД) двух данных чисел «a » и «b » — это наибольшее число, на которое оба числа «a » и «b » делятся без остатка.

    Кратко наибольший общий делитель чисел «a » и «b » записывают так :

    НОД (a; b) .

    Пример: НОД (12; 36) = 12 .

    Делители чисел в записи решения обозначают большой буквой «Д».

    Д (7) = {1, 7}

    Д (9) = {1, 9}

    НОД (7; 9) = 1

    Числа 7 и 9 имеют только один общий делитель — число 1 . Такие числа называют взаимно простыми числами .

    Запомните!

    Взаимно простые числа — это натуральные числа, которые имеют только один общий делитель — число 1 . Их НОД равен 1 .

    Как найти наибольший общий делитель

    Чтобы найти НОД двух или более натуральных чисел нужно:

    1. разложить делители чисел на простые множители;

    Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

    Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .


    1. Подчёркиваем одинаковые простые множители в обоих числах.
      28 = 2 · 2 · 7

      64 = 2 · 2 · 2 · 2 · 2 · 2

    2. Находим произведение одинаковых простых множителей и записать ответ;
      НОД (28; 64) = 2 · 2 = 4

      Ответ: НОД (28; 64) = 4

    Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».



    Понравилась статья? Поделитесь с друзьями!