Закон вебера фехнера не распространяется. §4

Закон (отношение) Вебера

Изучение дифференциального порога занимает заметное место в истории измерения ощущений (психофизики). В 1834 г. Эрнст Вебер, немецкий психолог, изучал способность наблюдателей выполнять задания, связанные с необходимостью различать сигналы. Он определил, что количественные изменения сигнала - увеличение или уменьшение его интенсивности, необходимое для того, чтобы второй сигнал был воспринят как отличный от первого, - пропорциональны абсолютной величине сигнала. Иными словами, он заметил, что определение разницы между интенсивностями двух сигналов - вопрос скорее относительного восприятия, нежели абсолютного. Так, Вебер нашел, что добавление одной свечи к шестидесяти горящим свечам приводит к обнаруживаемому увеличению яркости, а добавление одной свечи к ста двадцати горящим свечам - нет. Для достижения ЕРР при ста двадцати свечах нужны как минимум две свечи. Продолжив разбирать этот пример, мы найдем, что для заметного увеличения освещенности при трехстах горящих свечах понадобятся пять или больше свечей, если горят шестьсот свечей - десять и т. д.

Следовательно, вывод, к которому Вебер пришел более ста пятидесяти лет тому назад, заключается в следующем: чтобы два сигнала - независимо от их абсолютной величины или интенсивности - можно было отличить друг от друга, разница между ними должна быть пропорциональна их абсолютной величине. Интуиция подсказывает, что этот общий принцип относительности сенсорного опыта - зависимость обнаружения разницы между сигналами от их абсолютной величины, действительно имеет смысл. Так, хотя две капли воды будут без труда обнаружены, если их добавят к содержимому маленькой пробирки, те же самые две капли, скорее всего, не вызовут никакого сенсорного эффекта, если их добавят к галлону воды. Точно так же мы легко обнаружим разницу между одним фунтом и двумя, но разницу между пятьюдесятью одним фунтом и пятьюдесятью двумя фунтами уловим с трудом, хотя разница между этими парами весов одна и та же - один фунт. Мы рассказали о фундаментальном принципе относительной сенситивности чувствительности), известном как закон, или отношение, Вебера, который(ое) выражается следующей формулой:

гдe I - интенсивность сигнала, соответствующая порогу чувствительности, ΔI - величина дифференциального порога, или инкремент интенсивности, который, будучи добавлен к интенсивности сигнала I, вызывает ЕРР (т. е. инкремент изменения чувствительности), и k - константа, зависящая от того, чувствительность такой сенсорной системы определяется.

Это уравнение свидетельствует о том, что отношение (k) минимально обнаруживаемого инкремента интенсивности (А/) (в бесконечном ряду разных значений интенсивности) к интенсивности исходного сигнала (I) постоянно. Следовательно, закон Вебера отражает соотношение, в соответствии с которым должна измениться интенсивность стимула, чтобы это изменение можно было обнаружить чтобы оно вызвало ЕРР), a k - константа для сигналов определенного рода, таких как яркость, громкость и вес. В примере с яркостью свечей значение дельта I для 60, 20, 300 и 600 зажженных свечей будет равно 1, 2, 5 и 10, и отношения Вебера будут соответственно равны 1/60, 2/120, 5/300 и 10/600, т. е. все они равны между собой и равны 1/60. Следовательно, в общем виде, определение значения k - это определение соотношения интенсивности сигналов, вызывающего ЕРР.

В табл. 2.8 представлены типичные отношения Вебера для разных сенсорных систем.

Таблица 2.8 Типичные отношения Вебера для разных сенсорных систем

Примечание : для упрощения отношения Вебера выражаются десятичными дробями. Например, «тяжесть», 0,020, выраженная в виде отношения, равна 1/50 (или 2 %). Чем меньше отношение Вебера, тем меньше изменение интенсивности сигнала, воспринимаемое как ЕРР. Источник: Teghtsoonian (1971).

Обратите внимание на то, что отношение Вебера изменяется в широких пределах: для соленого вкуса оно высоко и равно 0,083 (8,3 %), а для электрического тока - всего лишь 0,013 (1,3 %). В случае ощущения веса отношение Вебера равно 0,02, или 2/100, а это значит, что для получения ЕРР необходимо увеличить исходный вес на 2 %. Следовательно, чтобы разница стала ощутимой, к стограммовому весу нужно добавить 2 г, к двухсотграммовому - 4 г, а к килограммовому - 20 г.

Величина отношения Вебера характеризует общую чувствительность данной сенсорной системы к сигналам разной интенсивности. Вспомните, что чем меньше отношение, тем меньше едва различимая разница между сигналами, следовательно, тем больше чувствительность к разнице в интенсивности сигналов. Данные, представленные в табл. 2.8, свидетельствуют о том, что люди менее чувствительны к разнице во вкусовых ощущениях и в освещенности (изменение - 8,3 % и 7,9 %) и наиболее чувствительны к разнице электрических разрядах и тяжести (изменение 1,3 % и 2 % соответственно).

Насколько точным показателем является отношение Вебера? Вообще оно достаточно валидно для сигналов, интенсивность которых варьирует в широких пределах, включая большинство из тех сигналов, с которыми мы сталкиваемся в повседневности, однако для очень слабых и очень интенсивных сигналов оно уже значительно менее валидно, и последнее утверждение справедливо для всех сенсорных систем. Мы полагаем, что в широком интервале средних значений интенсивности отношение Вебера является полезным критерием способности различать два сигнала. Однако оно имеет не только чисто прикладное значение; закон Вебера сыграл важную роль в измерении ощущений и является одним из самых широких эмпирических обобщений в истории экспериментальной психологии. Более того, он явился основой для количественной оценки связи между физическим раздражителем и сенсорным опытом (ощущением), и в первую очередь - для анализа, выполненного Г. Т. Фехнером.

Закон Фехнера

В 1860 г. Густав Теодор Фехнер опубликовал свой труд «Элементы психофизики» (G. N. Fechner, The Elements of Psychophysics) - работу, которой было суждено оказать огромное влияние на количественную оценку ощущений и восприятия. Основная мысль Фехнера заключалась в том, что между ментальным опытом - ощущением - и физическим раздражителем существует количественная связь. Он пытался вывести формулу, связывающую эти две величины, разработав численную шкалу ощущений, характеризующую данную сенсорную систему. Работа Фехнера завершилась созданием важного уравнения, отражающего зависимость интенсивности ощущения от величины физического сигнала. Он предположил, что дифференциальный порог (ΔI), вызывающий ЕРР, может быть использован в качестве стандартной единицы измерения для величины субъективного ощущения. (Вспомните, что дифференциальный порог характеризует дифференциальное изменение интенсивности раздражителя, соответствующее ЕРР.) Фехнер попытался создать шкалу, связывающую субъективный опыт - ощущения - (в единицах ЕРР) с изменениями интенсивности сигнала (в единицах ΔI). Он начал с предположения, что для данной сенсорной системы все ЕРР являются субъективно равными единицами ощущения. Это значит, что субъективные впечатления о разнице между двумя сигналами, отделенными друг от друга одной ЕРР, одинаковы для двух сигналов любой интенсивности. Следовательно, если взять два сигнала, расположенных на участке низкой интенсивности шкалы интенсивности и отделенных друг от друга одной ЕРР, ощущение разницы между ними будет точно таким же, как ощущение от разницы между двумя сигналами, расположенными на той же шкале на участке высокой интенсивности и тоже разделенными одной ЕРР. Иными словами, в соответствии с представлениями Фехнера каждая ЕРР независимо от места расположения на шкале интенсивности равна любой другой ЕРР.

Вспомните, что в соответствии с отношением Вебера данная ЕРР увеличивается пропорционально увеличению интенсивности сигнала (т. е. поскольку ΔI/I - константа, по мере увеличения I соответственно должна увеличиваться и ΔI). Это значит, что если базовая интенсивность низка, дифференциал, необходимый для того, чтобы возникла ЕРР, соответствует ей и тоже мал. Напротив, если начальная интенсивность высока, дифференциал, необходимый для возникновения ЕРР, относительно велик. Иными словами, в начале шкалы интенсивности два сигнала, разделенные одной ЕРР, будут располагаться рядом и их интенсивности будут различаться мало, в конце шкалы два сигнала, разделенные одной ЕРР, будут весьма существенно отличаться друг от друга по интенсивности. Эта взаимосвязь между ощущением и стимуляцией графически представлена на рис. 2.9.

Рис. 2.9. Связь между ощущением и стимуляцией, как ее трактует закон Фехнера Обратите внимание на то, что по мере увеличения интенсивности сигнала для того, чтобы разницы между единицами измерения ощущений (S) оставались равными, требуется все более значительная разница между единицами измерения интенсивности (I). Иными словами, в то время как ощущение увеличивается равномерно (в арифметической прогрессии), соответствующее увеличение интенсивности сигнала происходит физически неравномерно, но пропорционально (в геометрической прогрессии). Связь между величинами, одна из которых изменяется в арифметической прогрессии, а вторая - в геометрической, выражается логарифмической функцией. Следовательно, S = k logI . (

ЗАКОН ВЕБЕРА‑ФЕХНЕРА - логарифмическая зависимость силы ощущения Е от физической интенсивности раздражителя Р: Е = к log P + с, где k и с - некие постоянные, определяемые данной сенсорной системой. Зависимость была выведена немецким психологом и физиологом Г. Т. Фехнером на основе закона Бугера - Вебера и дополнительного предположения о субъективном равенстве едва заметных различий ощущений. Эмпирические исследования подтверждают эту зависимость лишь для средней части диапазона воспринимаемых значений раздражителя. Закону Вебера - Фехнера обычно противопоставляется закон Стивенса, .согласно коему эта зависимость носит степенной, а не логарифмический характер.

(Головин С.Ю. Словарь практического психолога - Минск, 1998 г.)

ЗАКОН ВЕБЕРА (или закон Бугера-Вебера; англ. Weber s law ) - один из законов классической психофизики , утверждающий постоянство относительного дифференциального порога (во всем сенсорном диапазоне варьируемого свойства стимула).

В 1729 г. фр. физик, «отец» фотометрии, Пьер Бугер (1698-1758), исследуя способность человека различать величины физической яркости (или освещенности предмета), установил, что дифференциальный порог для яркости - минимальный прирост яркости (ΔI ), необходимый для того, чтобы вызвать едва заметное различие (е. з. р.) в ощущении яркости, - примерно пропорционален уровню фоновой (сравниваемой) яркости (I ), в силу чего отношение (ΔI / I ) - величина постоянная.

Через 100 лет (1831), независимо от Бугера, нем. физиолог и психофизик Эрнст Вебер (1795-1878) в экспериментах на различение весов, длин линий и высоты звукового тона также обнаружил постоянство отношения дифференциального порога к фоновой (сравниваемой) величине стимула, т. е. (ΔI / I ) = const. Вебер обобщил эти данные в виде общего эмпирического закона, получившего название З. В. Отношение ΔI / I называется относительным дифференциальным порогом (или, короче, относительным порогом), а также дробью Вебера (или константой Вебера). Для различения звуков по высоте (частоте звукового тона) дробь Вебера является рекордно малой - 0,003, для различения яркости она примерно равна 0,02-0,08, для сравнения объектов по весу - 0,02, для длин линий - 0,03. (Подчеркнем, что эти значения сильно меняются в зависимости от др. свойств стимулов: напр., дробь Вебера для яркости зависит от цвета, длительности, площади, положения, конфигурации стимулов.)

Многочисленные исследования показали, что З. В. справедлив только для средней части сенсорного диапазона, где дифференциальная чувствительность максимальна. За пределами этой зоны относительный порог возрастает, причем очень значительно. В связи с этим одни исследователи принимают З. В., но считают его «сильной» идеализацией; др. занимаются поисками новых формул. Следует отметить, что в рамках классической психофизики З. В. имеет большое теоретическое значение, поскольку основатель психофизики Г . Фехнер опирался на него при выводе основного психофизического закона . См. Закон Фехнера . (Б. М.)

(Зинченко В.П., Мещеряков Б.Г. Большой психологический словарь - 3-е изд., 2002 г.)

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера : если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.

Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость ) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности, поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I 0 = 10 -12 Вт/м 2:называют уровнем интенсивности звука (L):

(1)

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L . Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда L измеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I 0 ) уровень интенсивности звука L=0 , а на пороге болевого ощущения (I = 10 Вт/м 2)– L = 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнерапрямо пропорциональна уровнем интенсивности L:

Е = kL, (2)

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент k в формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах . Постановили, что на частоте 1000 Гц 1 фон = 1 дБ , т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают(в формуле (2) коэффициент k = 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).

Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.


Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 - энкодер.

Управление генератором осуществляется с помощью нескольких меню, которые выводятся на жидкокристаллический индикатор (ЖКИ). Система меню организована в виде кольцевой структуры. Короткое нажатие кнопки энкодера позволяет «по кругу» переходить между меню, длинное нажатие в любом из пунктов меню приводит к переходу на главное меню. Любое действие по переходу между пунктами меню сопровождается звуковым сигналом.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.

Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц... 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1 мВ... 1 В.

Порядок выполнения работы.

1. Подключите к сети (220В. 50 Гц ) шнур питания генератора SG-530 нажатием кнопки «POWER» на задней панели;

2. Однократно нажмите кнопку энкодера - произойдет переход из главного меню в меню установки частоты «FREQUENCY» - и вращением энкодера установите первое значение частоты ν =100 Гц;

3. Нажатие кнопки энкодера в меню установки частоты приводит к переходу к меню установки амплитуды «AMPLITUDE» - установите значение амплитуды Uген =300 мВ;

4. Подключите наушники к генератору;

5. Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

6. Если при минимальной амплитуде (100 мВ) звук в наушниках ещё слышен, нажатием кнопки энкодера перейдите в меню установки ослабления аттенюатора «ATTENUATOR» и установите минимальное ослабление L (например, -20dB), при котором звук исчезает ;

7. Запишите полученные значения частотыν , амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1) ;

8. Аналогично добейтесь отсутствия звука для каждой из предложенных частотν ;

9. Произведите расчёт амплитуды на выходе генератораUвых по формулеUвых = Uген ∙ K, где коэффициент ослабленияK определяется по величинеослабления L из таблицы2;

10. Определите минимальное значениеамплитуды на выходе генератораUвых min как наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвых для всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min ;

12. Постройте график зависимости величины уровня громкости на пороге слышимости E от значения логарифма частоты lg ν . Полученная кривая будет представлять собой порог слышимости.

Таблица 1 . Результаты измерений.

ν, Гц lg ν Uген, мВ L, дБ Коэффициент ослабления, K U вых = К·U ген мВ Уровень интенсивности (дБ ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K (1, 0,1, 0,01, 0,001).

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1. Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

Литература:

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.

Закон фехнером закон, согласно коему величина ощущения прямопропорциональна логарифму интенсивности раздражителя - то есть возрастание силы раздражения вгеометрической прогрессии соответствует росту ощущения в арифметической прогрессии. Эта формулаизмерения ощущений была выведена на основе исследований Вебера, где было показано постоянствоотносительной величины приращения раздражителя, вызывающего ощущение едва заметного различия.При этом был введен его собственный постулат о том, что едва заметный прирост ощущения являетсявеличиной постоянной и его можно применять использовать как единицу измерения ощущения.

Ключевую роль в точной формулировке второй интересующей нас закономерности сыграл тот самый Густав Фехнер, основатель психофизиологии, об опытах которого мы говорили в предыдущем Прологе. Эта закономерность - её сегодня называют законом Вебера-Фехнера - связывает физическую интенсивность какого-либо стимула с субъективной реакцией на этот стимул. Например, стимулом может быть громкий звук или вспышка света меняющейся интенсивности. Реакция на стимул - субъективная оценка его интенсивности или сила реакции организма на него.

Закон Вебера-Фехнера записывается так:

тут S - физическая или объективная интенсивность стимула, S min - пороговая интенсивность, обозначающая нижний предел чувствительности органов чувств, R - интенсивность субъективной или органической реакции на стимул (о том, как она измеряется, чуть дальше), k - некоторый коэффициент, величина которого зависит от индивидуума и канала восприятия. Отметим, что интенсивность реакции зависит от отношения S/S min , которое можно понимать как интенсивность стимула, рассчитанная в минимальных значимых единицах.

Легко заметить, что по своей форме этот закон в точности соответствует уравнению субъективной ценности Бернулли. На это сходство обратил внимание ещё сам Фехнер, цитируя Бернулли. Сегодня принято считать, что это не просто сходство, а выражение одной и той же закономерности человеческого восприятия - ведь количество товара в уравнении Бернулли можно трактовать как интенсивность стимула, а его субъективную ценность - как интенсивность реакции на стимул.

Любопытно, что Фехнер вывел своё уравнение отнюдь не исходя из общих соображений, как Бернулли (хотя, в принципе, мог бы). Он проанализировал результаты, полученные другим немецким физиологом, Эрнстом Вебером. В середине 19-го века этот ученый изучал особенности человеческого восприятия веса различных грузов, и обнаружил интересную закономерность. Отвлекаясь от конкретных цифр Вебера, она такова: если испытуемый держал в руке груз весом в 100 гр., он не замечал прибавки в 5 гр., но замечал прибавку в 10 гр. Однако, если испытуемый держал в руке груз весом в 200 гр., он не замечал прибавки в 10 гр., а лишь прибавку в 20 гр. Иными словами, минимальная заметная прибавка к весу груза оказалась прямо пропорциональной его исходному весу. Вебер выяснил, что эта закономерность действует довольно в широких пределах в восприятии веса, силы звука, яркости и т.д. Серьезные отклонения от неё наблюдались лишь при очень слабых и очень сильных интенсивностях стимулов. Математический анализ результатов Вебера и привёл Фехнера к выражению, один-в-один похожему на уравнение Бернулли.

Обратим внимание, что Вебер не просил своих испытуемых как-то субъективно оценивать вес грузов, он просил лишь отмечать тот момент, когда они фиксируют изменение веса. Это значит, что выделенная закономерность относится не к каким-то высокоуровневым психологическим особенностям восприятия и мышления - как это можно счесть исходя из закона Бернулли - а характеризует довольно низкоуровневые, первичные процессы восприятия. Более того, закон Вебера-Фехнера действует даже там, где наше восприятие, вроде бы, вообще ни причем. В частности, если в качестве стимула используется инъекция гормона, то интенсивность физиологической реакции организма на инъекцию также подчиняется этому закону. То есть, возможно, что закон Вебера-Фехнера относится не к особенностям восприятия органами чувств, а вообщеописывает реакцию человека и его организма на любого рода внешние воздействия .

Но закон Вебера-Фехнера действует не только на человека. Ещё в 20-х годах прошлого века были получены свидетельства, что ему подчиняются и насекомые. В частности, двигательная активность жуков Popillia Japonica увеличивается с увеличением интенсивности светового стимула в соответствии с законом Вебера-Фехнера.

У нас достаточно оснований, чтобы выдвинуть довольно смелую гипотезу:закономерность вида закона Вебера-Фехнера описывает интенсивность реакции любой сложной когнитивной системы на внешние стимулы - будь это организм человека или любая другая органическая или социальная система.

Может быть, этому закону подчиняются не только когнитивные или органические системы. Характеризуя интенсивность землятресений, обычно используют не линейную, а логарифмическую шкалу, шкалу Рихтера. Если интенсивность землетрясения сопоставлять с амплитудой максимальных колебаний поверхности земли A max , то магнитуда землетрясения по Рихтеру вычисляется так:

Как минимум, шкала Рихтера гораздо лучше отражает субъективную силу землетрясений, лучше описывая масштаб разрушений и другие последствия стихии. Но причина может заключаться не столько в нашем восприятии, сколько в объективной мере масштаба разрушений, которая зависит не от интенсивности толчков, а от логарифма их интенсивности. В этом случае среда реагирует на толчки точно также, как и человек на внешние стимулы - в соответствии с законом Вебера-Фехнера.

7.1.2. Проблема измерения ощущений. Психофизика

Каждое ощущение независимо от его принадлежности к

определенной сенсорной системе, например зрению, слуху, осязанию и т.д.,

обладает свойствами интенсивности, длительности и

пространственной локализации.

Проблеме измерения соотношения объективной и субъективной

интенсивности стимула посвящен особый раздел психологии -

психофизика. Основателем психофизики считается Г.Т. Фехнер A801-

«Элементы психофизики». В дальнейшем установлением количественной

меры ощущений занимались многие ученые.

Психофизика основывается на ряде эмпирических фактов. Во-

первых, легко видеть, что не всякий объективно воздействующий

физический раздражитель вызывает у нас ощущение. Во-вторых, мы

обладаем очень ограниченной способностью различать ощущения,

в то время как технический прибор точно показывает, что их

источники по физическим характеристикам отличаются. Например,

неподготовленному слушателю ноты «си» и «до» могут показаться

одинаковыми, хотя на самом деле они отличаются на целый тон. В-

третьих, даже в том случае, когда мы способны сказать, что одно

ощущение отличается по интенсивности от другого (свет свечи мы

видим как более слабый, чем свет настольной лампы), нам трудно

судить о конкретной величине этого различия. Так, мы не можем

сказать, что звук громкостью в 10 Дб (шорох листьев) в два раза

тише, чем звук громкостью в 20 Дб (шепот), а тот, в свою очередь, в

три раза тише, чем звук громкостью в 60 Дб (нормальный разговор).

Другими словами, объективная (физическая) шкала изменения

раздражителя не совпадает с субъективной шкалой изменения

ощущения. Поэтому возникает вопрос о психологических правилах

(законах) приведения в соответствие шкалы изменения раздражителя и

шкалы изменения ощущения. Фехнер и его последователи были

уверены, что данные соотношения носят не случайный характер, и

попытались описать эти закономерности математически.

Первая проблема, с которой приходится сталкиваться

исследователям, связана с фактом существования порога ощущений.

Выделяют абсолютный нижний и абсолютный верхний пороги

ощущений. Абсолютный нижний порог ощущения определяется

минимальной интенсивностью раздражителя, при котором возникает

соответствующее ощущение. Для установления значения нижнего

абсолютного порога (который различен для каждой модальности,

зависим от свойств анализатора и психологического состояния

человека) пользуются следующими приемами:

246 Глава 7. Познавательные процессы. Ощущение и восприятие

Постепенно увеличивая интенсивность стимула (например

громкость звука) от неощущаемой зоны до момента возникновения

ощущения (испытуемый сообщает, что «появился чуть слышный

звук»), экспериментатор фиксирует эту критическую точку, замеры

производятся несколько раз и вычисляется среднее значение;

Постепенно уменьшая интенсивность стимула (например,

громкость звука), двигаясь из отчетливо ощущаемой зоны к моменту

исчезновения ощущения (испытуемый сообщает «звук пропал»),

экспериментатор фиксирует это критическое значение, замеры

также производятся несколько раз и вычисляется среднее;

Вычисляют среднюю интенсивность раздражителя, в ответ на

который в 50% случаев фиксируется наличие ощущения, при этом

предъявление дискретных стимулов разной интенсивности

(близкой к зоне порога) осуществляется в случайном порядке с разными

интервалами, а испытуемый должен сообщать о каждом замеченным

им раздражителе.

Данные замеров, полученных разными методами, как правило,

несколько отличаются, что объясняется явлением адаптации и

эффектом ожидания.

Абсолютный верхний порог ощущения - это максимальная

интенсивность раздражителя, при котором ощущение теряет свою

модальную специфичность (часто переходя в боль). Так, для

слуховой чувствительности нижним абсолютным порогом будет

громкость примерно в 0,3 Дб (тиканье ручных часов в полной тишине на

расстоянии 6 м), а верхним абсолютным порогом - громкость в

150 Дб (шум взлетающего самолета). Следует заметить, что даже

для одного и того же человека величина абсолютного порога носит

непостоянный характер: он оказывается то выше, то ниже. Еще

И. Мюллер в середине XIX в. отмечал, что по мере накопления

опыта (тренировки) величина нижнего абсолютного порога

понижается, а по мере утомления - повышается. Влияние фактора

«тренированности» испытуемого на порог чувствительности его

сенсорных систем связано с тем, что человек начинает предвосхищать

нужные стимулы и поэтому легче находит их (в процесс ощущения

включаются механизмы восприятия).

Еще в большей степени эта неразрывность процессов ощущения

и восприятия проявилась в концепции «обнаружения сигнала»

Д. Грина и Дж. Светса A966). Они предположили, что вероятность

обнаружения слабого раздражителя, близкого по своему значению

к пороговому, зависит от «цены» ответа. Грин и Свете разделили два

типа ошибок - «ошибки пропуска» и «ложные тревоги». Первый

тип ошибки означает, что слабое ощущение присутствует в сознании

7.1. Ощущение

субъекта, но он не обнаруживает его и не дает реакции. Второй тип

ошибки проявляется в том, что субъект реагирует на ощущение,

которого объективно нет. Для иллюстрации концепции Грина и

Светса представим себе врача-диагноста. Он рассматривает

рентгенограмму больного и должен определить, свидетельствует ли она о

наличии опухоли. Если он пропустит тревожный сигнал, расплатой

может стать жизнь пациента. А если поднимет ложную тревогу,

пациенту придется всего лишь пройти процедуру повторного

обследования. Очевидно, что в такой ситуации врач скорее будет «замечать»

признаки опухоли в недостаточно определенном изображении, чем

игнорировать их (Дж. Лофтус (G. Loftus), 2002). Аналогичный

пример можно привести из области обоняния. Например, запах какого-

то блюда кажется вам немного подозрительным. Если вы заботитесь

о своем здоровье, вы не станете есть такое блюдо: лучше остаться

голодным (ошибка ложной тревоги), чем отравиться (ошибка

пропуска). Обратная тенденция будет наблюдаться, если цена ложной

тревоги высока. Например, влюбленный упорно не хочет замечать

недостатки характера предмета своего обожания, которые

очевидны для всех окружающих. Ведь в противном случае он рискует

потерять прекрасное чувство.

Другим понятием, связанным с проблемой порогов, является

дифференциальный порог, или порог различения.

Дифференциальный порог - это минимальное различие в интенсивности двух

раздражителей, при которой возникают отличные друг от друга

ощущения. Измерение дифференциального порога связано с

упомянутым уже нами эмпирическим фактом - нашей ограниченной

способностью к различению стимулов. Изучение

дифференциальных порогов оказывается очень важным для решения широкого

круга практических задач. Насколько автомобилист может превысить

допустимую скорость, чтобы его нарушение визуально не было

замечено регулировщиком движения? Не покажется ли вам, что

чемодан стал намного тяжелее, если положить в него еще одно платье?

Почувствуют ли гости, что блюдо пересолено, если хозяйка

положила в кастрюлю на 1 г больше соли, чем было указано в рецепте?

Ответ на эти вопросы дает психофизический закон Э. Вебера A795-

1878). Вебер поставил перед собой цель установить величину едва

заметного различия, т.е. наименьшего различия между двумя

физическими раздражителями, которое может определить человек. Он

экспериментировал со способностью различения веса. Оказалось,

что различительная способность зависит не от абсолютной, а от

относительной величины изменения. Так, испытуемому казались

разными грузы весом 40 г и 41 г, но грузы весом 80 г и 81 г оценивались

248 Глава 7 Познавательные процессы Ощущение и восприятие

как равные. Таким образом, Вебер установил, что величина едва

заметного различия составляет 1/40 от первоначального веса и

является константой. Одновременно с Вебером вел исследования и дру.

гой ученый - П. Бугер, поэтому этот психофизический закон

выражается формулой

AI/1= const., где I - интенсивность стимула, Д/ - приращение

Впоследствии были получены данные о величине едва

заметного различия относительно других модальностей (табл. 14)

Таблица 14

Дифференциальные пороги для ощущений различных модальностей

Вид ощущения

Ощущение изменения высоты звука 0,3

Ощущение изменения яркости света 1,7

Ощущение изменения веса предметов 2,5

Ощущение изменения громкости звука 1

Ощущения изменения давления на поверхность кожи 3,4

Ощущение изменения вкуса соляного раствора 20

Величина едва

заметного различия

(константа Вебера -

Бугера), %

Последующие исследования, правда, показали, что закон

Вебера - Бугера действителен только для средней части диапазона

чувствительности сенсорной системы. При приближении к пороговым

величинам в закон должна быть внесена поправка, отражающая

величину ощущения от деятельности самой системы (например,

биения сердца в слуховой модальности или собственного свечения

сетчатки в зрительной модальности).

Таким образом, в окончательном виде этот закон имеет

следующий вид. А//1" + Р= const., где Р - поправка на «шум» от работы

сенсорной системы.

Эмпирический факт несовпадения объективной шкалы

изменения раздражителя и субъективной шкалы изменения ощущения был

описан основным психофизическим законом, установленным Фех-

нером и впоследствии модифицированным Стивенсом. Фехнер,

используя математические преобразования соотношения Вебера -

Бугера, пришел к выводу, что изменение силы ощущения

пропорционально десятичному логарифму изменения силы воздействующего

раздражителя. Другими словами, когда раздражитель растет в гео-

метрической прогрессии (увеличивается в N раз), ощущение

вырастает лишь в арифметической прогрессии (увеличивается на N).

Основной психофизический закон Фехнера выражается формулой

R = С (lg I - lg /о), где R - интенсивность ощущения, / -

интенсивность действующего стимула, /0 - интенсивность стимула,

соответствующая нижнему абсолютному порогу, а С - константа Вебе-

па - Бугера, специфичная для каждой модальности.

форма психофизической кривой для ощущения громкости

звука условно отражена на рис. 41.

Рис. 41. Логарифмическая кривая зависимости интенсивности

ощущения громкости от силы звука

При выведении этого закона Фехнер исходил из

невозможности непосредственной оценки испытуемым интенсивности

возникающего у него ощущения. Поэтому в его формуле единицами

измерения выступают физические величины. В 1941 г. С. Стивене из

Гарвардского университета выдвинул идею о возможности прямой

оценки человеком своих ощущений.

Во второй половине XIX в. отдельные вопросы и проблемы, лежащие на границе физиологии и психологии, становятся предметом специальных и систематических исследований, которые затем обособляются и оформляются в относительно самостоятельные научные направления. Одной из первых таких областей и явилась психофизика, созданная немецким физиологом Г. Фехнером (1801-1887).

Психофизика была задумана Фехнером как наука о всеобщей связи физического и духовного мира. Исследователь выступил с учением о тождестве психического и физического, выдвинул принцип всеобщей одушевленности природы. По мнению Фехнера, должна быть создана специальная наука, которая с помощью эксперимента и математики могла бы доказать выдвинутую им философскую концепцию. Такой наукой и явилась психофизика, которая определялась им как точное учение о функциональных отношениях между телом и душой.

Согласно Фехнеру, психофизика должна заниматься экспериментально-математическим изучением различных психических процессов в их отношении, с одной стороны, к физическим факторам, что должно составить предмет внешней психофизики, с другой - в отношении к анатомо-физиологическим основаниям, что должно было представить предмет внутренней психофизики.

Особую роль в изучении этого вопроса сыграли работы Э. Вебера по изучению осязания и порогов чувствительности. Именно опыты Вебера показали, что существует определенная зависимость между физическим и психическим, в частности, между раздражением и ощущением, и что обнаруженные отношения между ними поддаются экспериментальному измерению. Немалое значение для определения специфики новой науки сыграли идеи Гербарта, в частности, его учение о порогах сознания и обоснование возможности применения математики в психологии.

Психофизика становилась наукой о связи раздражений и ощущений. Установленные Фехнером положения об измеримости психофизических отношений и о возможности применения математического закона к ним ставили на передний план проблему разработки специальных методов психофизического измерения и способов математического анализа и описания психофизических отношений. Общая программа построения психофизики включила три главные задачи:

) установить, какому закону подчиняются отношения психического и физического мира, на примере связи раздражений и ощущений;

) дать математическую формулировку этому закону;

) разработать психофизические методы измерения.

Закон,открытый Э.Г.Вебером <#"justify">Ощущения возникают в результате преобразования специфической энергии раздражителей в энергию нервных процессов организма. Физиологической основой ощущения является нервный процесс, стимулируемый действием того или иного раздражителя на адекватный анализатор. Ощущение имеет рефлекторный характер.

Вебера - Фехнера закон, основной психофизический закон, определяет связь между интенсивностью ощущения и силой раздражения, действующего на какой-либо орган чувств. Основан на наблюдении немецкого физиолога Э. Вебера <#"41" src="doc_zip2.jpg" />

где?I - разностный порог, I - исходный раздражитель.

Отношение разностного порога к величине исходного раздражителя является величиной постоянной и называется относительным разностным или дифференциальным порогом. Величина, обратная дифференциальному порогу, называется дифференциальной чувствительностью. Исследования показали, что величина дифференциальной чувствительности не одинакова для различных модальностей.

Так, люстра в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в разы, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Например, если добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости. В то же время, одна лампочка, добавленная к люстре из двух лампочек, даёт значительный кажущийся прирост яркости.

Любопытно, что Фехнер вывел своё уравнение отнюдь не исходя из общих соображений, как Бернулли (хотя, в принципе, мог бы). Он проанализировал результаты, полученные другим немецким физиологом, Эрнстом Вебером. В середине 19-го века этот ученый изучал особенности человеческого восприятия веса различных грузов, и обнаружил интересную закономерность. Отвлекаясь от конкретных цифр Вебера, она такова: если испытуемый держал в руке груз весом в 100 гр., он не замечал прибавки в 5 гр., но замечал прибавку в 10 гр. Однако, если испытуемый держал в руке груз весом в 200 гр., он не замечал прибавки в 10 гр., а лишь прибавку в 20 гр. Иными словами, минимальная заметная прибавка к весу груза оказалась прямо пропорциональной его исходному весу. Вебер выяснил, что эта закономерность действует довольно в широких пределах в восприятии веса, силы звука, яркости и т.д. Серьезные отклонения от неё наблюдались лишь при очень слабых и очень сильных интенсивностях стимулов. Математический анализ результатов Вебера и привёл Фехнера к выражению, один-в-один похожему на уравнение Бернулли.

Обратим внимание, что Вебер не просил своих испытуемых как-то субъективно оценивать вес грузов, он просил лишь отмечать тот момент, когда они фиксируют изменение веса. Это значит, что выделенная закономерность относится не к каким-то высокоуровневым психологическим особенностям восприятия и мышления - как это можно счесть исходя из закона Бернулли - а характеризует довольно низкоуровневые, первичные процессы восприятия. Более того, закон Вебера-Фехнера действует даже там, где наше восприятие, вроде бы, вообще ни причем. В частности, если в качестве стимула используется инъекция гормона, то интенсивность физиологической реакции организма на инъекцию также подчиняется этому закону. То есть, возможно, что закон Вебера-Фехнера относится не к особенностям восприятия органами чувств, а вообще описывает реакцию человека и его организма на любого рода внешние воздействия.

Но закон Вебера-Фехнера действует не только на человека. Ещё в 20-х годах прошлого века были получены свидетельства >



Понравилась статья? Поделитесь с друзьями!