Землетрясения. Вулканически причины землетрясений

Вулканические землетрясения

Вулканические землетрясения - разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений - лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при добыче нефти и газа (произошла серия землетрясений с магнитудой до 5 на Ромашкинском месторождении нефти в Татарстане) и выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения
Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Землетрясения искусственного характера
Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при подземном ядерном взрыве (тектоническое оружие). Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

31. Какие силы вызывают землетрясения?

Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными процессами (взрывы, заполнение водохранилищ, обрушение подземных полостей горных выработок). Небольшие толчки могут вызываться также подъёмом лавы при вулканических извержениях.
Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. Большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).
Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.
Международная сеть наблюдений за землетрясениями регистрирует даже самые удалённые и незначительные из них.

32. Основная причина возникновения землетрясений на Земле?

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли - землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.
Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называетсяфокусом , очагом или гипоцентром , а точка на земной поверхности над очагом - эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.
Скорости сейсмических волн могут достигать 8 км/с.

33. Что называется наводнением?

Наводнение - затопление местности в результате подъёма уровня воды в реках, озерах, морях из-за дождей, бурного таяния снегов, ветрового нагона воды на побережье и других причин, которое наносит урон здоровью людей и даже приводит к их гибели, а также причиняет материальный ущерб.

34. Что вызывает наводнения?

Наводнения нередко вызываются повышением уровня воды в реке вследствие загромождения русла льдом при ледоходе (затора) или вследствие закупоривания русла под неподвижным ледяным покровом скоплениями внутриводного льда и образования ледяной пробки (зажора). Нередко наводнения возникают под действием ветров, нагоняющих воду с моря и вызывающих повышение уровня за счёт задержки в устье приносимой рекой воды. Наводнения такого типа наблюдались в Ленинграде (1824, 1924), Нидерландах (1953 ). На морских побережьях и островах наводнения могут возникнуть в результате затопления прибрежной полосы волной, образующейся при землетрясениях или извержениях вулканов в океане (см. Цунами). Подобные наводнения нередки на берегах Японии и на других островах Тихого океана. Наводнения могут быть обусловлены прорывами плотин, оградительных дамб.

35. Что называется половодьем?

Полово́дье - одна из фаз водного режима реки, ежегодно повторяющаяся в один и тот же сезон года, - относительно длительное и значительное увеличение водности реки, вызывающее подъём её уровня; обычно сопровождается выходом вод из меженного русла и затоплением поймы.
Половодье вызывается усиленным продолжительным притоком воды, который может быть обусловлен:
весенним таянием снега на равнинах;
летним таянием снега и ледников в горах;
обильными дождями (например, летними муссонами).
Половодья, вызванные весенним снеготаянием, характерны для многих равнинных рек, которые делятся на 2 группы:
реки с преобладанием весеннего стока (например, Волга, Урал)
реки с преобладанием летнего стока (например, Анадырь, Юкон, Макензи).

36. Что называется паводком?

37. Эпидемия - это...

38. Эпифитотия - это...

39. На какие группы заболеваний подразделяются все инфекционные болезни?

40. На какие группы по мощности делятся селевые потоки?

41. В чем заключаются активные методы защиты от схода снежных лавин?

42. Единый сигнал ГО:

43. Какие отношения регулирует закон Республики Казахстан «О чрезвычайных ситуациях природного и техногенного характера»?

44. Кто осуществляет общее руководство ГО РК?

45. Исполнительным органом по непосредственному руководству ГО РК является

46. Кто несет ответственность за проведения СиДНР?

47. Какой орган осуществляет контроль за состоянием особо-опасных объектов?

48. Объектовые и территориальные ФГО?

49. Средства коллективной защиты населения?

50. Классификация защитных сооружений?

51. Что называется чрезвычайной ситуацией?

52. Классификация ЧС?

53. Экстремальные ситуации?

54. Понятие комфортности?

55. Влияние параметров микроклимата на человека?

56. Вредные вещества и их влияние на организм человека?

57. Вибрация ее влияние на организм?

58. Электромагнитные поля?

59. Ионизирующие излучения?

60. Понятие опасного фактора?

61. Качественный и количественный анализ опасности?

62. Методы защиты населения?

63. Эвакуация населения?

64. Защитные сооружения, их квалификация?

65. Средства индивидуальной защиты?

66. Понятие устойчивости функционирования объектов хозяйствования?

67. Правовые и нормативно-технические документы?

68. Управление безопасности жизнедеятельности?

69. Экспертиза и контроль безопасности?

70. Международное сотрудничество?

71. Что находится в центре внимания курса БЖД?

72. Каким закономерностям подчиняются природные опасности?

73. Основная причина возникновения землятрясении?

74. Чем отличаются вирусы от бактерий?

75. Методы защиты от электромагнитных излучений?

76. Методы защиты от радиации?

77. Что такое огнестойкость?

78. Особенности социальных опасностей?

79. Стадии развития ЧС.

80. Что такое пороговая концентрация ВВ в воздухе?

81. От чего зависит степень вертикальной устойчивости атмосферы?

82. Какие методы снижения шума используются?

83. Единица измерения поглощенной дозы облучения?

84. Какими документами определен порядок создания ФГО?

85. Каков принцип создания ГО?

86. Основные способы защиты населения?

87. Простейшие средства защиты органов дыхания?

88. Вибрация, ее влияние на организм?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

В данной статье мы рассмотрим причины землетрясений . Само понятие землетрясения известно всем людям, и даже детям, а вот каковы причины того, что внезапно земля под ногами начинает двигаться и все вокруг рушится?

Прежде всего, нужно сказать, что землетрясения условно разделяются на несколько видов: тектонические, вулканические, обвальные, искусственные и техногенные. Все их мы кратко рассмотрим прямо сейчас. Если вам хочется знать , обязательно читайте до конца.

  1. Тектонические причины землетрясений

Чаще всего землетрясения происходят по причине того, что находятся в постоянном движении. Верхний слой литосферных плит называют тектоническими плитами. Сами по себе платформы движутся неравномерно и постоянно давят друг на друга. Тем не менее, они долгое время остаются в покое.

Постепенно же давление нарастает, в результате чего тектоническая платформа совершает внезапный толчок. Именно он производит колебания окружающей породы, отчего и случается землетрясение.

Разлом Сан-Андреас

Трансформные разломы – это огромные трещины в Земле, где платформы «трутся» друг о друга. Многим читателям должно быть известно, что разлом Сан-Андреас является одним из самых известных и длинных трансформных разломов в мире. Он находится в штате Калифорния в США.


Фото разлома Сан-Андреас

Платформы, движущиеся вдоль него, вызывают разрушительные землетрясения в городах Сан-Франциско и Лос-Анджелес. Интересный факт: в 2015 году в Голливуде выпустили фильм с названием «Разлом Сан-Андреас». Он рассказывает о соответствующей катастрофе.

  1. Вулканически причины землетрясений

Одной из причин возникновения землетрясений являются вулканы. Они хоть и не производят сильные колебания земли, зато длятся достаточно долго. Причины толчков связаны с тем, что глубоко в недрах вулкана нарастает напряжение, образуемое лавой и вулканическими газами. Как правило, вулканические землетрясения продолжаются недели и даже месяцы.

Однако истории известны случаи трагических землетрясений этого типа. В качестве примера можно привести вулкан Кракатау, расположенный в Индонезии, извержение которого произошло в 1883 году.


Кракатау до сих пор иногда возбуждается. Реальное фото.

Сила его взрыва как минимум в 10 тысяч раз превышала силу . Сама гора была почти полностью уничтожена, а остров распался на три маленькие части. Две трети суши исчезли под водой, а поднявшееся цунами уничтожило всех, кто еще имел шансы спастись. Погибло более 36 000 людей.

  1. Обвальные причины землетрясений

Землетрясения, вызванные гигантскими оползнями, называются обвальными. Они имеют локальный характер, и сила их, как правило, невелика. Но и здесь бывают исключения. Например, в Перу, в 1970 году, оползень, объемом 13 млн. кубометров, сошел с горы Уаскаран на скорости свыше 400 км/час. Погибло около 20 000 человек.

  1. Техногенные причины землетрясений

Землетрясения данного типа обусловлены деятельностью человека. Например, искусственные водохранилища в местах, не предназначенных для этого природой, провоцируют своим весом давление на плиты, что служит к увеличению количества и силы землетрясений.

То же самое касается и нефтегазодобывающей промышленности, когда происходит извлечение большого количества природных материалов. Одним словом, техногенные землетрясения происходят тогда, когда человек взял что-то у природы из одного места, и переложил без спросу на другое.

  1. Искусственные причины землетрясений

По названию этого типа землетрясений несложно догадаться, что вина за него целиком и полностью лежит на человеке.

К примеру, КНДР в 2006 году испытывала ядерную бомбу, что вызвало небольшое землетрясение, зафиксированное во многих странах. То есть всякая деятельность жителей земли, которая заведомо гарантированно повлечет за собой землетрясение, является искусственной причиной данного вида бедствий.

Можно ли предвидеть землетрясения?

Действительно это возможно. Так, например, в 1975 году китайские ученые предсказали землетрясение и спасли множество жизней. Но со стопроцентной гарантией это сделать невозможно даже в наши дни. Сверхчувствительный прибор, который регистрирует землетрясение, называется сейсмографом. На крутящемся барабане самописцем отмечаются колебания земли.


Cейсмограф

Животные перед землетрясениями также остро ощущают тревогу. Лошади начинают вставать на дыбы без видимых причин, собаки странно лают, а змеи выползают из нор на поверхность.

Шкала землетрясений

Как правило, силу землетрясений измеряют по Шкале Землетрясений. Приведем все двенадцать пунктов, чтобы вы имели представление о том, что это такое.

  • 1 балл (незаметное) - землетрясение фиксируется исключительно приборами;
  • 2 балла (очень слабое) - может быть замечено лишь домашними животными;
  • 3 балла (слабое) - ощутимо только в некоторых строениях. Ощущения, как от езды в машине по кочкам;
  • 4 балла (умеренное) - замечается многими людьми, может вызвать движение окон и дверей;
  • 5 баллов (довольно сильное) - дребезжат стекла, висячие предметы качаются, старая побелка может осыпаться;
  • 6 баллов (сильное) - при этом землетрясении отмечаются уже легкие повреждения зданий и трещины в некачественных строениях;
  • 7 баллов (очень сильное) - на данном этапе здания терпят значительные повреждения;
  • 8 баллов (разрушительное) - наблюдаются разрушения в зданиях, падают дымоходы и карнизы, на склонах гор можно видеть трещины в несколько сантиметров;
  • 9 баллов (опустошительное) - землетрясения вызывают обвалы некоторых зданий, рушатся старые стены, а скорость распространения трещин достигает 2 сантиметров в секунду;
  • 10 баллов (уничтожающее) - во многих зданиях обвалы, в большинстве – серьезные разрушения. Грунт исполосован трещинами до 1 метра в ширину, кругом оползни и обвалы;
  • 11 баллов (катастрофа) - большие обвалы в горной местности, многочисленные трещины и картина общего разрушения большинства зданий;
  • 12 баллов (сильная катастрофа) - рельеф глобально видоизменяется практически на глазах. Огромные обвалы и тотальное разрушение всех зданий.

В принципе, по двенадцати бальной шкале землетрясений можно оценить любую катастрофу, вызванную толчками земной поверхности.

187 ..

14.2. АКТИВИЗАЦИЯ ПРИРОДНЫХ ПРОЦЕССОВ ПРИ ПОДЗЕМНОМ СТРОИТЕЛЬСТВЕ

Техногенные (наведенные) землетрясения

Техногенные (наведенные) землетрясения чаще всего проявляются при создании крупных подземных водохранилищ. Возможность возникновения техногенных землетрясений усугубляется сейсмоактивностью района подземного строительства. Около 20% территории бывш. СССР приходилось на сейсмически активную зону, площадь с катастрофическими землетрясениями в 9 баллов и выше составляла примерно 300 тыс. км2.

Примером активизации сейсмоактивности в результате ведения строительных работ может служить опыт создания водохранилища в окрестностях Бомбея (Индия). На р. Койне плотиной высотой 103 м было образовано водохранилище объемом 2,8 км3. Оно находилось в регионе, сложенном траппами, разорванными сбросами с амплитудой смещений в несколько сот метров. Район считался сейсмически малоактивным. При заполнении водохранилища на l/3 были зарегистрированы слабые толчки (не более 4 баллов). Эпицентры землетрясений находились под плотиной и в 40 км от нее. При заполнении водохранилища до высоты 100 м произошло сильное землетрясение с магнитудой 6,4, повлекшее сильные разрушения в Койнагаре, расположенном в 1,5 км от плотины (рис. 14.5).

При строительстве и эксплуатации гидротехнических сооружений могут наблюдаться следующие особенности техногенных землетрясений:

1) между созданием водохранилищ и сейсмической активностью существует неоднозначная связь: известны случаи уменьшения сейсмоактивности вблизи водохранилища;

2) техногенные землетрясения локализуются в радиусе 30 км от створа крупных гидроузлов;
3) существует связь между сейсмоактивностью и изменением уровня водохранилища, причем проявления сейсмичности отстают во времени на один-два месяца;

4) активизация землетрясений наступает в тех случаях, когда уровень водохранилища превышает 90-100 м при его объеме более 10 млрд м3.

Сила техногенных землетрясений может меняться от небольших колебаний грунта, вызванных движением машин и поездов, до заметных сотрясений при залпах, взрывах, подземных ядерных испытаниях и т.п.

Техногенные землетрясения могут быть вызваны подземным захоронением отходов. Так, закачка воды, зараженной радиоактивными отходами, в глубокие скважины, пробуренные для этой цели в 70-е годы близ военного завода «Роки-Маунте» (штат Колорадо, окрестности Денвера, США), вызвала более 700 небольших землетрясений вокруг скважин. Возросшее давление флюидов у забоя скважин облегчало подвижки по трещинам в местных, сильно трещиноватых породах, частота землетрясений соответствовала объему и давлению закачиваемой воды. Прекращение закачки воды приводило к прекращению колебаний. Этот опыт в штате Колорадо позволил выдвинуть предположение о том, что с помощью искусственно вызванных землетрясений можно ослабить упругие деформации вдоль активных разрывов, способствуя развитию смещений по ним, и тем самым уменьшить опасность мощного толчка.

Техногенные землетрясения отмечаются и в областях недавнего материкового оледенения, что обусловлено снятием нагрузки ледникового покрова и приводит к вертикальному поднятию областей ведения горностроительных работ.

Причинами техногенных землетрясений в подземном строительстве является особый характер изменения напряженно-деформированного состояния массива горных породе результате горно-строительной деятельности, при котором активизируются имеющиеся тектонические или появляются новые разрывы или зоны глубинных сколов, обладающие некоторой наклонной поверхностью. При этом нарушенные породы претерпевают искажение формы и уменьшение объема на глубине под влиянием давления, что в свою очередь вызывает фазовые изменения минералов от менее плотных к более плотным, несмотря на их разогрев. Блоки горных пород, залегающих по разные стороны разрыва, находясь в тесном контакте, способны накапливать упругую деформацию, постепенно меняя свою форму, пока не достигается их предел упругости. После

этого происходит резкий скол, и значительная часть накопленной упругой энергии высвобождается в виде сейсмических волн. Блоки пород возвращаются к первоначальной форме, однако оказываются нарушенными и смещенными относительно друг друга по разные стороны образовавшегося разрыва (рис. 14.6).

Рис. 14.5. Схема землетрясения Койна:
I - водохранилище; 2 - плотина Койна; 3 - эпицентр (8-9 баллов); 4 - нзосейсты

Другой причиной техногенных землетрясений может быть нарушение процессов теплопереноса в результате подработки породного массива. Появление неоднородных тепловых зон в сочетании с высоким давлением вызывает непосредственное изменение объема пород. Изменение объема - будь то расширение или сжатие - приводит к подвижкам, которые могут сопровождаться образованием разрывов.

Изменение характера массообменных процессов также может являться причиной возникновения техногенного землетрясения. Известно, что прочность пород может резко снижаться на контакте с некоторыми жидкостями или газами. Умеренная минерализация подземных вод усиливает снижение прочности пород, особенно если в растворе содержатся те же ионы, что и в породе. Вода, заключенная в трещиноватых породах или в зонах дробления, испытывает упругое сжатие, которое распространяется на глубину в несколько километров и измеряется несколькими десятками миллиметров. Для передачи давления на 1 км необходимо время, определяемое в несколько дней; поверхностное поровое давление передается на глубину 10 км в течение 100 дней. Вне зоны трещиноватых пород передача давления осуществляется еще медленнее. Вследствие разницы во времени между увеличением порового давления в зоне интенсивной трещиноватости и в нетрещиноватой части породного массива может произойти уменьшение сопротивления в зоне интенсивной трещиноватости или дробления. Следствием этого может явиться разрядка напряжений, выражающаяся на поверхности в виде землетрясения. Следовательно, в более общем виде причины техногенных землетрясений можно охарактеризовать следующим образом:

1) приуроченность участка горно-строительных работ к тектонически активным и разрывным структурам района;

2) наличие аномалий температурного режима (геотермальный градиент, термальные воды и т.п.);

3) наличие гидравлической связи поверхностных и подземных вод и активизация массообменных процессов.

Все описанные процессы - оползни, обрушение пород, карстообра-зование, техногенные землетрясения - результаты сложного строения толщи горных пород и напряженно-деформированного состояния массива, который быстро теряет свою устойчивость при любом инженерном воздействии на него. Подземное строительство, характеризующееся, как правило, наличием слабых, обводненных вмещающих пород, сопряжено с активизацией всех негативных природных процессов естественного перераспределения напряжений в массиве. Поэтому экологическая опасность процессов подземного строительства может рассматриваться лишь при комплексном подходе к изучению закономерностей взаимовлияния подземных объектов и окружающей среды.

По причинам, вызывающим землетрясения, они делятся на тектонические, вулканические, денудационные и техногенные.

Тектонические землетрясения являются результатом тектонических процессов, происходящих в земной коре и мантии. Они составляют подавляющее большинство землетрясений, распространяются на огромных площадях и характеризуются наиболее разрушительными последствиями. При разрядке тектонических напряжений, когда они превышают предел прочности пород, происходит «вспарывание» тектонического разрыва, распространяющееся с большой скоростью до 3-4 км/с. Сейсмические волны, достигая поверхности Земли, вызывают образование различных сейсмодислокаций, которые при сильных землетрясениях распространяются на площадях в десятки и сотни тысяч квадратных километров. Они могут выражаться в горизонтальных смещениях (рис. 10.6) на десятки сантиметров и первые метры, в вертикальных смещениях с амплитудой до первых метров и десятков метров, образованием трещин без смещения (рис. 10.7), провалов и т. д. Вертикальные смещения при катастрофическом землетрясении Канто (Япония) в 1923 г., когда погибло 143 тыс. человек, достигали 250 м - на такую глубину опустилось дно залива Сагами к югу от Токио, а на п-ве Босо возникло поднятие высотой до 1,9 м.

Существуют землетрясения, которые по терминологии американского сейсмолога Р. Стейна получили название скрытых тектонических землетрясений , когда напряжение снимается за счет образования тектонических деформаций, не достигающих земной поверхности, или выражается в образовании складок (рис. 10.8). Такое землетрясение магнитудой 7,3 произошло в 1980 г. в Эль-Саме (Алжир) и унесло жизни 3,5 тыс. человек. Землетрясения с магнитудой 6,5 «под складками» произошло в США в Коалинге в 1983 г., когда оказались разрушенными до 75% неукрепленных зданий. Существование подобных землетрясений таит в себе скрытую угрозу при освоении новых территорий. Так, в кажущихся пустынными и безопасными местах зачастую размещают могильники и захоронения токсичных отходов (например, район Каолинга в США), а сейсмический толчок способен нарушить их целостность, вызвав угрожающие последствия.

К тектоническим относятся и землетрясения, происходящие на морском или океаническом дне и называемые «моретрясениями». Резкое смещение горных пород по крупному разрыву, проходящему под океаническим дном, в результате чего могут возникать поднятия и впадины, вызывают зарождение в плейстосейстовой области волн, которые в открытом океане, благодаря своей длине до 200 км, почти незаметны. Распространяясь со скоростью до 800 км/ч, а на мелководье, притормаживаясь, они резко увеличивают свою высоту до 15-20-25 м и обрушиваются на берег с колоссальной мощью, все сметая и разрушая на своем пути. Такие волны называются цунами. Особенно часты и разрушительны цунами в Тихом океане. Одно из самых сильных катастрофических цунами обрушилось на восточное побережье о. Хонсю в 1896 г. в результате землетрясения, эпицентр которого находился в море. Высота волны была на 25-32 м выше максимального уровня прилива и целые деревни оказались под водой. Погибло 26 тыс. человек.

Вулканические землетрясения предшествуют или сопровождают извержения вулканов и возникают в результате глубинных взрывов газов, выделяющихся из магмы, гидравлических ударов магмы или эксплозивных (взрывных) извержений вулканов. Вулканические извержения иногда обладают колоссальной силой (извержение вулкана Кракатау в 1883 г.), но имеют локальное распространение. К вулканическому можно отнести землетрясение, сопровождающее извержение вулкана Бандайсан в Японии в 1988 г., когда сильнейший взрыв вулканических газов уничтожил андезитовую гору высотой 670 м. На Камчатке многочисленные вулканические землетрясения связаны с извержениями вулканов Ключевского, Шивелуч и др. Во время извержений одного из активнейших вулканов Европы - Этны постоянно происходят многочисленные микротрясения.

Наблюдения за сейсмичностью в регионах вулканов являются одним из параметров для мониторинга их состояния. Зачастую сильные землетрясения сопровождаются активизацией вулканов (как было в Чили и Японии) и начало крупного извержения может сопровождаться сильным землетрясением (извержение Везувия).

Денудационные землетрясения (обвальные и провальные) связаны с обрушением массивов горных пород или провалами в областях карстообразования. Сотрясения могут быть вызваны обвалами и большими оползнями, не связанными с тектоническими землетрясениями. Обрушение при потере устойчивости горных склонов громадных масс породы, сход снежных лавин тоже сопровождаются сейсмическими колебаниями, которые обычно далеко не распространяются. В 1974 г. со склона хребта Викунаек в Перуанских Андах в долину реки Мантаро с высоты почти 2 км обрушилось 1,6 млрд м3 горных пород, похоронивших под собой 450 чел. Сейсмические волны оттуда по дну и противоположному склону долины были зарегистрированы на удалении почти 3000 км, а магнитуда землетрясения достигла 5 по шкале Рихтера.

Иногда землетрясения провоцируют обвалы и оползни. При землетрясении 1958 г. дно заливов Крихлон и Джильберт на Аляске резко сдвинулось по тектоническому разлому на 6,4 м и приподнялось более чем на 6 м. Несколько часов спустя вниз обрушилось более 36 млн м3 горных пород. При землетрясении 1964 г. на Аляске возник грандиозный оползень Шерман объемом 30 млн м3. Только незначительная заселенность этих мест свела до минимума возможные потери от грандиозных по своему масштабу геологических явлений. Слабые сотрясения почвы наблюдаются при обвале подземных пустот в областях развития карста. Денудационные землетрясения носят в основном локальный характер и имеют относительно невысокую балльность.

Техногенные землетрясения связаны с воздействием человека на природу. Проводя подземные ядерные взрывы, закачивая в недра или извлекая оттуда большое количество воды, нефти и газа, создавая крупные водохранилища, которые своим весом давят на земные недра, человек вызывает подземные удары. Повышение гидростатического давления, вызванное закачкой воды в глубокие горизонты земной коры, провоцирует подземные толчки. Достаточно спорные примеры таких землетрясений (наложение антропогенной деятельности на тектонический фактор) - Газлийское землетрясение 1976 г. в Узбекистане и землетрясение в Нефтеюганске на Сахалине.

«Наведенные» землетрясения могут происходить при заполнении крупных водохранилищ. Накопление массы воды приводит к увеличению гидростатического давления и возрастанию напряжения, разрядка которого выражается в подземных толчках, достигающих силы 4-5 баллов. Подобная сейсмичность наблюдалась при заполнении Нурекского водохранилища в Таджикистане, в районе Токтогульской ГЭС в Киргизии, Чарвакской - в Узбекистане и в др.

При неблагоприятном сочетании техногенных факторов и природных особенностей регионов с высокой тектонической активностью возрастает вероятность возникновения техногенных землетрясений, способных привести к катастрофическим ситуациям. В заключение следует отметить, что тектонические землетрясения составляют 95 % от общего числа землетрясений, а магнитуда (M) их достигает 9; вулканические - 5 % (М до 8); денудационные < 1 % (M - не более 5); техногенные - менее 0,1 % (М до 5).

Техногенные землетрясения

Вулканические землетрясения

Курумы.

Курумы – крупные обломки глыбы прочных скальных пород, образующихся в результате выветривания на пологих склонах и у их подножия. Характерной особенностью курумов является медленное перемещение их вниз по склону.


Вулканические землетрясения -
разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений - лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.
Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при ядерном взрыве. Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Количество санитарных (временных) и безвозвратных потерь зависит от:

ü сейсмической и геологической активности региона;

ü конструктивных особенностей застройки;

ü плотности населения и его половозрастного состава;

ü особенностей расселения жителей населенного пункта;

ü времени суток при возникновении землетрясения;

ü местонахождения граждан (в зданиях или вне их) в момент ударов.

В качестве примера можно сравнить результаты землетрясений в Никарагуа (Манагуа, 1972 г., 420 тыс. жителей) и в США (Сан-Фернандо, 1971 г., 7 млн жителей). Сила толчков составила соответственно 5,6 и 6,6 балла по шкале Рихтера, а продолжительность обоих землетрясений - порядка 10с. Но если в Манагуа погибло 6000 и было ранено 20 тыс. человек, то в Сан-Фернандо погибло 60, а было ранено 2450 человек. В Сан-Фернандо землетрясение произошло рано утром (когда на дорогах мало автомобилей), а здания города отвечали требованиям сейсмостойкости. В Манагуа землетрясение произошло на рассвете, постройки не отвечали требованиям сейсмостойкости, а территорию города пересекли 5 трещин, что вызвало разрушение 50 тыс. жилых домов (в Сан-Фернандо пострадало 915 жилых зданий).



При землетрясениях соотношение погибших и раненых в среднем составляет 1:3, а тяжело- и легкораненых примерно 1:10, причем до 70% раненых получают травмы мягких тканей; до 21% - переломы, до 37% - черепно-мозговые травмы, а также травмы позвоночника (до 12%), таза (до 8%), грудной клетки (до 12%). У многих пострадавших наблюдаются множественные травмы, синдром длительного сдавливания, ожоги, реактивные психозы и психоневрозы.

Чаще жертвами землетрясений становятся женщины и дети. Например:

1) Ашхабад (1948 г.), среди погибших - 47% женщин, 35% детей;

2) Ашкент (1966 г.), среди санитарных потерь женщин было на 25% больше, чем мужчин, а среди безвозвратных потерь преобладали дети в возрасте от года до 10 лет;

3) Токио (1923 г.), до 65% погибших женщин и детей имели ожоги.

Для оценки силы и характера землетрясения используют определенные параметры.

В 1935г. Профессор Калифорнийского технологического института Ч. Рихтер предложил оценивать энергию землетрясений магнитудой .

Шкала Рихтера – это сейсмическая шкала магнитуд, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях.

Интенсивность - мера сотрясения грунта. Определяется степенью разрушения, степенью изменения земной поверхности и ощущениями людей. Измеряется по 12-балльной международной шкале МЗК-64.



Понравилась статья? Поделитесь с друзьями!