«Аминокислоты строение, классификация, свойства, биологическая роль. СО2 на этапе превращения

Макасеева О.Н., Дудинская, О.В., Ткаченко Л.М., Ильичева Н.И.

Р… Биологическая химия. Раздел «Белки и нуклеиновые кислоты»: конспект лекций /О.Н. Макасеева, О.В. Дудинская, Л.М. Ткаченко, Н.И. Ильичева. – Могилев: МГУП, 2014. – …… с.

ISBN ……978-985-6979-70-8 ……

ISBN …….978-985-6979-69-2.

Конспект лекций по дисциплине «Биологическая химия». Раздел «Белки и нуклеиновые кислоты» является дополнительным источником, который поможет студентам всех форм обучения освоить данную дисциплину. Конспект лекций содержит основные темы раздела «Белки и нуклеиновые кислоты» курса в соответствии с учебной программой.

Предназначается для студентов технологических специальностей пищевой промышленности.

УДК…. 547

ББК…. 24.2

1 АМИНОКИСЛОТЫ.. 4

1.1 Строение аминокислот. 4

1.2 Классификация аминокислот. 7

1.3 Общие свойства аминокислот. 9

1.3.1 Оптические свойства. 9

1.3.2 Кислотно-основные свойства аминокислот. Изоэлектрическая точка. 10

1.3.1 Химические свойства аминокислот. 14

1.3.2 Реакция меланоидинообразования. 14

2 ПЕПТИДЫ.. 16

3 БЕЛКИ.. 20

3.1 Функции белков. 20

3.2 Строение белковой молекулы.. 23

3.3 Физико-химические свойства белков. 34

3.3.1 Амфотерные свойства белков. Изоэлектрическая точка белков. 34

3.3.2 Денатурация белков. 34

3.3.3 Гидрофильные свойства белков. Высаливание белков. 37

3.4 Методы выделения белков. 40

3.5 Классификация белков. 43

4 НУКЛЕИНОВЫЕ КИСЛОТЫ.. 46

4.1 Состав нуклеиновых кислот. 46

4.2 Нуклеозиды.. 49

4.3 Нуклеотиды.. 51

4.4 Первичная структура нуклеиновых кислот. 54

4.5 Вторичная и третичная структуры ДНК.. 55

АМИНОКИСЛОТЫ

Строение аминокислот

Основной структурной единицей белков являются a-аминокислоты. В природе известно свыше 300 аминокислот, однако в состав белков входит лишь 20 a-аминокислот (одна из них – пролин, является не амино -, а имино кислотой), получивших название белковых, или протеиногенных, аминоктслот (см. Таблица 1). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.



a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом у a-углеродного атома замещен на аминогруппу (–NН 2), например:

Различаются аминокислоты строением и свойствами радикалов ®. Радикалы аминокислот могут быть алифатическими, ароматическими и гетероциклическими. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме.

Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например:

Кроме 20 стандартных аминокислот, встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными. Около 150 из них уже выделены. Эти аминокислоты образуются после завершения синтеза белка в рибосоме клеток путем посттрансляционной химической модификации.

Таблица №1 – Строение протеиногенных аминокислот

Строение аминокислоты Сокращен. название Название
1. Гли Глицин
2. Ала Аланин
3. Вал Валин
4. Лей Лейцин
5. Иле Изолейцин
6. Сер Серин
7. Тре Треонин
8. Цис Цистеин
9. Мет Метионин
10. Тир Тирозин
11. Фен Фенилаланин
12. Три Триптофан
Продолжение таблицы 1
13. Асп Аспарагиновая кислота
14. Асн Аспарагин
15. Глу Глутаминовая кислота
16. Глн Глутамин
17. Лиз Лизин
18. Гис Гистидин
19. Арг Аргинин
20. Про Пролин

Один из примеров особенно важной модификации – окисление двух-SН–групп цистеиновых остатков с образованием аминокислоты цистина, содержащей дисульфидную связь. Так же легко происходит и обратный переход.

Таким путем образуется одна из важнейших окислительно-восстановительных систем живых организмов. В больших количествах цистин содержится в белках злаковых – клейковине, в белках волос, рогов.

Другие примеры аминокислотной модификации - гидроксипролин и гидроксилизин, которые входят в состав коллагена-основного белка соединительной ткани животных.

В состав белка протромбина (белок свертывания крови) входит
g-карбоксиглутаминовая кислота, а в ферменте глутатионпероксидазе открыт селеноцистеин, в котором (S) сера заменена на (Se) селен.

Классификация аминокислот

Существует несколько видов классификаций аминокислот входящих в состав белка.

В основу первой классификации положено химическое строение радикалов аминокислот. Различают аминокислоты:

- алифатические – глицин, аланин, валин, лейцин, изолейцин, лизин;

- гидроксилсодержащие – серин, треонин;

- ароматические – фенилаланин, тирозин, триптофан;

- гетероциклические – пролин, гистидин;

Второй вид классификации основан на полярности R-групп аминокислот. Различают:

- неполярные (гидрофобные) аминокислоты, у которых в радикале есть неполярные связи между атомами С–С, С–Н, таких аминокислот восемь: глицин, аланин, валин, лейцин, изолейцин, фенилаланин, триптофан, пролин;

- полярные незаряженные (гидрофильные) аминокислоты, у которых в радикале есть полярные связи между атомами С–О, С–N, О–Н, S–H, таких аминокислот пять: серин, треонин, метионин, аспарагин, глутамин;

- полярные отрицательно заряженные аминокислоты, у которых в радикале есть группы, которые в водной среде при рН=7 несут отрицательный заряд, таких аминокислот четыре: тирозин, цистеин, аспарагиновая кислота, глутаминовая кислота;

- полярные положительно заряженные аминокислоты, у которых в радикале есть группы, которые в водной среде при рН=7 несут положительный заряд, таких аминокислот три: лизин, аргинин, гистидин.

Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

Таблица 2 – Классификация аминокислот на основе полярности

Аминокислоты Принятые однобуквенные обозначения и символы Изоэлектрическая точка, рI Среднее содержание в белках,%
Англ. символ Русск.
1. Неполярные R-группы
Глицин GLy G Гли 5,97 7,5
Аланин ALa A Ала 6,02 9,0
Валин VaL V Вал 5,97 6,9
Лейцин Leu L Лей 5,97 7,5
Изолейцин Lie I Иле 5,97 4,6
Пролин Pro P Про 6,10 4,6
Фенилаланин Phe F Фен 5,98 3,5
Триптофан Trp W Трп 5,88 1,1
2. Полярные, незаряженные R-группы
Серин Ser S Сер 5,68 7,1
Треонин Thr T Тре 6,53 6,0
Метионин Met M Мет 5,75 1,7
Аспарагин Asn N Асн 5,41 4,4
Глутамин GLn Q Глн 5,65 3,9
3. Отрицательно заряженные R-группы
Тирозин Tyr Y Тир 5,65 3,5
Цистеин Cys C Цис 5,02 2,8
Аспарагиновая к-та Asp D Асп 2,97 5,5
Глутаминовая к-та GLy E Глу 3,22 6,2
Продолжение таблицы 2
4. Положительно заряженные R-группы
Лизин Lys K Лиз 9,74 7,0
Аргинин Arg R Арг 10,76 4,7
Гистидин His N Гис 7,59 2,1

Третий вид классификации основан на количестве аминных и карбоксильных групп аминокислот. Они делятся на моноаминамонокарбоновые, содержащие по одной карбоксильной и амино- группе; моноаминодикарбоновые (две карбоксильные и одна амино-группа); диаминомонокарбоновые (две амино- и одна карбоксильная группа).

Четвертый вид классификации основан на способности аминокислот синтезироваться в организме человека и животных. Все аминокислоты делятся на заменимые, незаменимые и частично незаменимые.

Незаменимые аминокислоты не могут синтезироваться в организме человека и животных, они обязательно должны поступать вместе с пищей. Абсолютно незаменимых аминокислот восемь: валин, лейцин, изолейцин, треонин, триптофан, метионин, лизин, фенилаланин.

Частично незаменимые - синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин.

Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.

Общие свойства аминокислот

Оптические свойства

В молекулах всех природных аминокислот (за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L - и D -стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).

Число возможных стереоизомеров N=2 n , где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров.

В качестве стандарта при определении L и D -конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида.

Расположение в проекционной формуле Фишера NH 2 -группы слева соответствуют L -конфигурации, а справа – D -конфигурации.

Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения.

В составе белков обнаруживаются только L -изомеры аминокислот.
D -формы аминокислот в природе встречаются редко и обнаружены лишь в составе белков клеточной стенки (гликопротеинов) некоторых бактерий и в пептидных антибиотиках (грамицидин, актиномицин и т.д.). L -формы хорошо усваиваются растениями и животными и легко включаются в обменные процессы. D- формы не ассимилируются этими организмами, а иногда даже ингибируют процессы обмена. Это объясняется тем, что ферментативные системы организмов специфически приспособлены к L формам аминокислот.

L и D формы аминокислот оказывают различное физиологическое воздействие на организм человека – различаются по вкусу: D- изомеры сладкие, L -формы горькие или безвкусные.

Лекция №3

Тема: «Аминокислоты – строение, классификация, свойства, биологическая роль»

Аминокислоты – азотосодержащие органические соединения, в молекулах которых содержатся аминогруппа –NH2 и карбоксильная группа -СООН

Простейшим представителем является аминоэтановая кислота H2N - CH2 - COOH

Классификация аминокислот

Существует 3 основные классификации аминокислот:

Физико-химическая – основана на различиях в физико-химических свойствах аминокислот


  • Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы, где равномерно распределена электронная плотность и нет никаких зарядов и полюсов. В их составе могут присутствовать и электроотрицательные элементы, но все они находятся в углеводородном окружении .

  • Гидрофильные незаряженные (полярные) аминокислоты . Радикалы таких аминокислот содержат в своем составе полярные группировки: -ОН, - SH, -CONH2

  • Отрицательно заряженные аминокислоты . Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд.

  • Положительно заряженные аминокислоты : аргинин, лизин и гистидин. Имеют дополнительную NH 2 -группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.
Биологическая классификация по возможности синтеза в организме человека

  • Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.
Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.

Частично незаменимые : аргинин, гистидин.


  • Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.
Химическая классификация - в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

Потребность в аминокислотах снижается: При врожденных нарушениях, связанных с усваиваемостью аминокислот. В этом случае , некоторые белковые вещества могут стать причиной аллергических реакций организма, включая появление проблем в работе желудочно-кишечного тракта, зуд и тошноту.
Усваиваемость аминокислот

Скорость и полнота усвоения аминокислот зависит от типа продуктов, их содержащих. Хорошо усваиваются организмом аминокислоты, содержащиеся в белке яиц, обезжиренном твороге, нежирном мясе и рыбе.

Быстро усваиваются также аминокислоты при правильном сочетании продуктов: молоко сочетается с гречневой кашей и белым хлебом, всевозможные мучные изделия с мясом и творогом .
Полезные свойства аминокислот, их влияние на организм

Каждая аминокислота оказывает на организм свое воздействие. Так метионин особенно важен для улучшения жирового обмена в организме, используется как профилактика атеросклероза, при циррозе и жировой дистрофии печени.

При определенных нервно-психических заболеваниях используется глутамин, аминомасляные кислоты. Глутаминовая кислота также применяется в кулинарии как вкусовая добавка. Цистеин показан при глазных заболеваниях.

Три главные аминокислоты – триптофан, лизин и метионин, особенно необходимы нашему организму. Триптофан используется для ускорения роста и развития организма, также он поддерживает азотистое равновесие в организме.

Лизин обеспечивает нормальный рост организма, участвует в процессах кровеобразования .

Основные источники лизина и метионина – творог, говядина, некоторые виды рыбы (треска, судак, сельдь). Триптофан встречается в оптимальных количествах в субпродуктах, телятине и дичи.инфаркта.

Аминокислоты для здоровья, энергичности и красоты

Для успешного наращивания мышечной массы в бодибилдинге нередко используются аминокислотные комплексы, состоящие из лейцина изолейцина и валина.

Для сохранения энергичности во время тренировок спортсмены в качестве добавок к питанию используют метионин, глицин и аргинин, или продукты, их содержащие.

Для любого человека, ведущего активный здоровый образ жизни, необходимы специальные продукты питания, которые содержат ряд необходимых аминокислот для поддержания отличной физической формы, быстрого восстановления сил, сжигания лишних жиров или наращивания мышечной массы.

Аминокислоты (АК) - органические молекулы, которые состоят из основной аминогруппы (-NH 2), кислотной карбоксильной группы (-СООН), и органической R радикала (или боковой цепи), которая является уникальной для каждой АК

Структура аминокислот

Функции аминокислот в организме

Примеры биологических свойств АК. Хотя в природе встречается более 200 различных АК только около одной десятой из них включаются в белки, другие выполняют иные биологические функции:

  • Они строительные блоки белков и пептидов
  • Предшественники многих биологически важных молекул, производных АК. Например, тирозин является предшественником гормона тироксина и пигмента кожи меланина, тирозин также предшественник соединения ДОФА (диокси-фенилаланина). Это нейромедиатор передачи импульсов в нервной системе. Триптофан является предшественником витамина В3 - никотиновой кислоты
  • Источники серы - серосодержащие АК.
  • АК участвуют во многих метаболических путях, таких как глюконеогенез - синтез глюкозы в организме, синтез жирных кислот и др.

В зависимости от положения аминогруппы относительно карбоксильной группы АК могут быть альфа, α-, бета, β- и гамма,γ.

Альфа - аминогруппа присоединена к углероду, примыкающему к карбоксильной группе:

Бета - аминогруппа находятся на 2-м углероде от карбоксильной группы

Гамма - аминогруппа на 3-м углерое от карбоксильной группы

В состав белков в ходят только альфа-АК

Общие свойства альфа-АК белков

1 - Оптическая активность - свойство аминокислот

Все АК, за исключекнием глицина, проявляют оптическую активность, т.к. содержат по крайней мере один асимметричный атом углерода (хиральный атом).

Что представляет собой асимметричный атом углерода? Это атом углерода, к которому присоединены четыре различных химических заместителя. Почему глицина не проявляет оптическую активность? В его радикале только три разных заместителя, т.е. альфа-углерод не асимметричный.

Что означает оптическая активности? Это означает, что АК в растворе может присутствовать в двух изомерах. Правовращающий изомер (+), который обладает способностью вращать плоскость поляризацованного света вправо. Левовращающий изомер (-), который обладает способностью вращать плоскость поляризации света влево. Оба изомера могут вращать плоскость поляризации света на одну ту же величину, но в противоположном направлении.

2 - Кислотно-основные свойства

В результате их способности к ионизации можно записать следующее равновесие этой реакции:

R-СООН<-------> R-C00 - + H +

R- NH 2 <--------->R-NH 3 +

Поскольку эти реакции обратимы это означает, что они могут действовать как кислоты (прямая реакция) или как основания (обратная реакция), что объясняет амфотерные свойства аминокислот.

Цвиттер ион - свойство АК

Все нейтральные аминокислоты при физиологическом значении рН (около 7,4) присутствуют как цвиттерионы - карбоксильная группа непротонированная и аминогруппа протонированная (рис.2). В растворах более основных, чем изоэлектрическая точка аминокислоты (ИЭТ), аминогруппа -NH3 + в АК жертвует протон. В растворе более кислом, чем ИЭТ АК, карбоксильная группа -СОО - в АК принимает протон. Таким образом, АК иногда ведет себя как кислота, в другие время как основание в зависимости от рН раствора.

Полярность как общее свойство аминокислот

При физиологическом рН АК присутствуют как цвиттер ионы.Положительный заряд несет альфа -аминогруппа, а отрицательный карбоновая. Таким образом, создаётся два противоволожных заряда с обеих концов молекулы АК, молекула имеет полярные свойства.

Наличие изоэлектрической точки (ИЭТ) - свойство амингокислот

Значение рН, при котором чистый электрический заряд аминокислоты равен нулю, и, следовательно, она не может перемещаться в электрическом поле называется ИЭТ.

Способность поглощать в ультрафиолете - свойство ароматических аминокислот

Фенилаланин, гистидин, тирозин и триптофан поглощают при 280 нм. На рис. оторажены значения молярного коэффициента экстинкции (ε) этих АК. В видимой части спектра аминокислоты не поглощают, следовательно, они бесцветны.

АК могут присутствовать в двух вариантах изомеров: L-изомера и D-изомера, которые являются зеркальными отражениями, и отличаются расположением химических групп вокруг атома α-углерода.

Все аминокислоты в белках в L-конфигурации, L-аминокиcлоты.

Физические свойства аминокислоты

Аминокислоты в основном водорастворимые, что объясняется их полярностью и наличием заряженных групп. Они растворимы в полярных и не растворяется в неполярных растворителях.

АК имеют высокую температуру плавления, что отражает наличие сильных связей, поддерживающих их кристаллическую решетку.

Общие свойства АК является общим для всех АК и во многих случаях определяются альфа-аминогруппой и альфа- карбоксильной группой. АК обладают и специфическими свойствами, которые диктуются уникальной боковой цепью.

Аминокислоты – это органические соединения, в молекуле которых одновременно присутствуют основная аминогруппа (NH2) и кислая карбоксильная группа (СООН). К настоящему времени описано около 200 природных аминокислот, выделенных из животного и растительного материала. Все природные амино-кислоты делят на две группы: п р о т е и н о г е н н ы е, или белко-вые (обнаружены только в белках) и н е п р о т е и н о г е н н ы е, или небелковые (в белках не обнаружены). 1. Протеиногенные аминокислоты. Аминокислоты, обнаруженные в белках, можно классифицировать по разным признакам. По строению боковой цепи (R-группы) различают алифатические, ароматические и гетероциклические аминокислоты, по числу аминных и кар-боксильных групп - моноаминомонокарбоновые (одна NH2-группа и одна СООН-группа), диаминомонокарбоновые (две NH2 -группы и одна СООН-группа), моноаминодикарбоновые (одна NH2 -группа и две СООН-группы), по положению изо-электрической точки - нейтральные, основные и кислые. Аминокислоты, содержащие в радикалах ОН - группы, называют гидроксиаминокислотами, а содержащие серу - серосодержащими кислотами. По способности к синтезу в животном организме биохимики делят аминокислоты на заменимые и незаменимые. Аминокислоты, содержащие NH-группы вместо NH2 - групп, называют иминокислотами.


По полярности R-групп, т.е. способности R-групп к взаимодей-ствию с водой при соответствующих внутриклеточных условиях рН (рН вблизи 7,0) , аминокислоты делят на четыре группы: с не-полярными или гидрофобными R-группами, полярными, но не заряженными R-группами, отрицательно заряженными R-группами и положительно заряженными R-группами. Рассмотрим строение аминокислот этих групп. Растения и некоторые микроорганизмы могут синтезировать все аминокислоты, нужные им для построения клеточных белков. Животный организм способен синтезировать только около половины аминокислот, необходимых ему для построения белков своего тела. Эти аминокислоты получили название з а м е н и м ы е. Остальные десять протеиногенных аминокислот животные организмы синтезировать не могут и должны получать их с пищей. Эти аминокислоты называют н е з а м е н и м ы м и или о б я з а т е л ь н ы м и. К ним принадлежат: валин, изолейцин, метионин, лейцин, лизин, треонин, триптофан, фенилаланин, аргинин и гистидин. Отсутствие или недостаток в пище каких-либо незаменимых аминокислот приводит к угрожающим жизни явлениям (задержка роста, расстройство биосинтеза белков, возникновение заболеваний и т.п.).


  • Аминокислоты , обнаруженные в белках, можно классифицировать по разным признакам. По строению боковой цепи (R-группы) различают алифатические...


  • Аминокислоты и их свойства. Молекулы белков состоят из более мелких молекул аминокислот . В природе обнаружено свыше 170 различных аминокислот ...


  • Источники и пути использования аминокислот в клетках.
    Аминокислоты определяют биологическую специфичность белков и их пищевую ценность.


  • Классификация аминокислот . 1. По способности радикалов к взаимодействию с Н 2О: - неполярные (гидрофобные) - плохо растворимые


  • Аминокислоты - мономеры белков, органические карбоновые кислоты, у которых как минимум один из атомов водорода углеводородной цепи замещён на аминогруппу.


  • Наибольшее значение в питании представляют незаменимые аминокислоты , которые не могут синтезироваться в организме и поступают только извне – с продуктами питания.


  • В составе белка обычно имеются как кислые, так и щелочные аминокислоты , так что белковая молекула имеет и положительные, и отрицательные заряды.

БИОХИМИЯ КАК НАУКА. ЭТАПЫ РАЗВИТИЯ БИОХИМИИ. МЕТОДЫ БИОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

Биологическая химия – это фундаментальная биомедицинская наука, которая изучает химический состав живых организмов и химические превращения биомолекул.

Изучение в курсе биохимии молекулярной организации клетки, механизмов регуляции биохимических реакций, которые лежат в основе физиологических функций организма человека в норме и патологии, имеет огромное значение для разработки способов и методов фармакологической коррекции нарушенных метаболических процессов.

Оновные теоретические вопросы, позволяющие выполнить целевые виды деятельности:

1. Предмет и задачи биологической химии

1.1. Место биохимии среди других медико-биологических дисциплин.

1.2. Объекты изучения и задачи биохимии

2. Основные этапы развития биологической химии как науки

3. Разделы биохимии:

4. Современные направления развития биохимии

4.1. Достижения и перспективы развития биохимии, теоретической и молекулярной биологии, биотехнологии, генной инженерии и их значение для диагностики и лечения основных заболеваний человека – сердечно-сосудистых, онкологических, инфекционных и других.

4.2. Роль биохимии в выяснении молекулярно-генетических механизмов патогенеза заболеваний, выяснения значения наследственных и экологических факторов в возникновении патологических состояний и их влияния на продолжительность жизни населения.

5. Биохимические лабораторные исследования

5.1. Цель биохимических исследований

5.2. Критерии оценки использованного метода лабораторных исследований

5.3. Материал для диагностических исследований, принципы забора материала

5.4. Ошибки, имеющие место во время проведения лабораторных исследований

Граф логическая структура

Основные термины и их значение:

Статическая биохимия (связь с биоорганической химией, молекулярной биологией) исследует химический состав организмов.

Динамическая биохимия изучает превращение химических соединений и взаимосвязанных с ними превращений энергии в процессе жизнедеятельности.

Функциональная биохимия выясняет связи между строением химических соединений и процессами их видоизменения, с одной стороны, и функцией субклеточных частиц специализированных клеток, тканей или органов, включающих в свой состав упомянутые вещества, с другой.

Медицинская биохимия (биохимия человека).

Клиническая биохимия как раздел медицинской биохимии

Биоэнергетика – раздел динамической биохимии, который изучает закономерности освобождения, аккумуляции и использования энергии в биологических системах.

Молекулярная генетика – раздел биохимии, раскрывающий закономерности сохранения и реализации генетической информации путем изучения структуры и функционирования информационных молекул – ДНК и РНК.

Электрофорез – физико-химический метод анализа, применяемый в биохимии для разделения белковых фракций.

ОБЩИЕ ЗАКОНОМЕРНОСТИ МЕТАБОЛИЗМА. МЕТАБОЛИЗМ УГЛЕВОДОВ, ЛИПИДОВ, БЕЛКОВ И ЕГО РЕГУЛЯЦИЯ

ВВЕДЕНИЕ

Обмен веществ представляет собой сложную систему химических реакций, связанных между собой через пластические компоненты, энергетическое обеспечение и общие регуляторы. Целями этих реакций является извлечение энергии и синтез биологических макромолекул, структура которых отвечает индивидуальной генетической программе организма.

Биохимическая схема обмена веществ включает цепи, каскады и циклы химических преобразований, составляющих в совокупности метаболические пути. Для того чтобы эти метаболические пути функционировали согласованно и удовлетворяли потребностям индивидуальных клеток, органов или организма в целом, они должны подвергаться строгой регуляции. Для регуляции метаболизма эволюционно сформировались различные механизмы, которые влияют на инструменты метаболизма, то есть на каталитическую активность ферментов.

Для нормального метаболизма характерны адаптационные изменения в период голодания, при физической нагрузке, беременности и лактации. Нарушения метаболизма возникают, например, при неполноценности питания, нехватке витаминов, дефиците тех или иных ферментов или при дисбалансе гормонов. Поэтому знания общих закономерностей обмена веществ в норме необходимо будущему врачу для понимания причин многих заболеваний.

В основе возникновения и развития большинства патологических процессов лежат биохимические изменения. Главным образом это относится к изменению обмена веществ основных биологических макромалекул: белков, углеводов и липидов. Понимание процессов обмена веществ включает знание структуры и функций макромолекул, а также особенностей их переваривания, всасывания, транспорта и непосредственно тех химических преобразований, которые происходят с данными веществами в живом организме. При этом важно рассматривать каждый метаболический процесс не изолированн о, как искусственную схему, а учитывать особенности его протекания в различных тканях и органах, возможности его регуляции и, безусловно, его взаимосвязь с другими метаболическими путями.

Целью изучения модуля «Общие закономерности метаболизма. Метаболизм углеводов, липидов, белков и его регуляция» является: уметь интерпретировать общие закономерности обмена веществ, а также особенности метаболизма углеводов, липидов и белков в норме и при патологии для последующего использования этих данных в клинике внутренних болезней.

Общие закономерности метаболизма. Метаболизм углеводов, липидов, белков и его регуляция» включает следующие содержательные модули:

1. Метаболизм белков и его регуляция. Энзимопатии аминокислотного обмена

2. Роль ферментов и витаминов в обмене веществ

3. Метаболизм липидов и его регуляция

4. Обмен веществ и энергии

5. Метаболизм углеводов и его регуляция

АМИНОКИСЛОТЫ. ПЕПТИДЫ. БЕЛКИ

Введение

Аминокислоты рассматриваются как производные карбоновых кислот, в которых положение аминогруппы относительно карбоксильной принято указывать буквами: , что равносильно цифрам 2, 3, 4 и т. д. соответственно. Буквы греческого алфавита не употребляется в заместительной номенклатуре ИЮПАК.

В природных объектах обнаружено около 300 разных аминокислот, но наиболее важными, постоянно встречающимися во всех пептидах и белках, являются 20 α –аминокислот (см. табл 1). Они кодируются генетическим кодом, и их принято называть протеиногенными (иногда каноническими).

Строение. Классификация и номенклатура. Стероизомерия

α -Аминокислоты - гетерофункциональные соединения, молекулы которых содержат аминогруппу и карбоксильную группу у одного и того же атома углерода.

Для нормального роста детского организма необходимо обязательное поступление еще двух -аминокислот, хотя у взрослых они синтезируются в достаточных количествах. Эти аминокислоты называют частично заменимыми. Для синтеза тирозина и цистеина нужны незаменимые -аминокислоты, поэтому эти две кислоты называют условно заменимыми. Тирозин синтезируется в организме путем гидроксилирования фенилаланина, а для получения цистеина необходим метионин.

α -Аминокислоты необходимы для биосинтеза не только пептидов и белков, но и фосфолипидов, нуклеиновых оснований, порфириновых соединений, а также для выполнения таких специфических задач, как перенос аминогруппы, метильной группы, гуанидиновой группировки и др.

Основным источником α -аминокислот для человека и животных являются белки пищевых продуктов. В зависимости от содержания незаменимых аминокислот белки разделяют на полноценные и неполноценные . Например, белки молочных, рыбных, мясных продуктов, некоторых морепродуктов (мясо кальмара, краба), яиц, а также некоторые белки растительного происхождения (сои, гороха, фасоли) являются полноценными, так как они содержат все незаменимые аминокислоты в необходимых пропорциях. В основных группах пищевых продуктов среди незаменимых аминокислот преобладают лейцин и лизин, их содержание колеблется от 7,0 до 11% от общего содержания α -аминокислот (см. табл.). Относительно небольшое содержание в продуктах характерно для триптофана (не более 2%) и метионина (от 1.5 до 3.5%).

Таблица 2 Содержание белка в некоторых пищевых продуктах

Смеси -аминокислот являются препаратами для парентерального питания (минуя желудочно-кишечный тракт) больных с тяжелыми патологическими осложнениями.

Номенклатура

Названия -аминокислот могут быть построены по заместительной номенклатуре, но практически всегда используются только их тривиальные названия, принятые номенклатурой ИЮПАК. Тривиальные названия -аминокислот, как правило, связаны с источниками выделения. Простейшую аминокислоту, выделенную впервые из гидролизата желатины и имеющую сладкий вкус, назвали гликокол (от греч..glykys - сладкий и kolla - клей, т. е. «сладкий из клея»), позднее она получила название глицин.

В названиях алифатических аминокислот по заместительной номенклатуре аминогруппа обозначается префиксом амино- , а карбоксильная группа как старшая - суффиксом -овая кислота. В названиях ароматических аминокислот в качестве родоначальной структуры используется бензойная кислота.

Стереоизомерия

Во всех (кроме глицина - ахиральна) природных -аминокислотах -углеродный атом асимметрический, причем у большинства этих соединений (кроме изолейцина и треонина) имеется только один хиральный центр. Поэтому они существуют в виде двух оптических изомеров (L- и D-энантиомеров) Почти все природные -аминокислоты имеют L-форму , а D-аминокислоты, как правило, не усваиваются живыми организмами. Интересно, что большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда - горькие или безвкусные.



Понравилась статья? Поделитесь с друзьями!