Белки: Третичная структура белков. Локальное упорядочивание участка цепи

Л инейные полипептидные цепи индивидуальных белков за счёт взаимодействия функциональных групп аминокислот приобретают определённую пространственную трёхмерную структуру, называемую "конформация". Все молекулы индивидуальных белков (т.е. имеющих одинаковую первичную структуру) образуют в растворе одинаковую конформацию. Следовательно, вся информация, необходимая для формирования пространственных структур, находится в первичной структуре белков.

В белках различают 2 основных типа конформации полипептидных цепей: вторичную и третичную структуры.

2. Вторичная структура белков - пространственная структура, образующаяся в результате взаимодействия между функциональными группами пептидного остова.

При этом пептидные цепи могут приобретать регулярные структуры двух типов: α-спирали

β-структрура Под β-структурой понимают фигуру, подобную листу, сложенному «гармошкой». Фигура формируется за счет образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными группами.


Связи - водородные, они стабилизируют отдельные фрагменты макромолекул.

3. Третичная структура белков - трёхмерная пространственная структура, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи.

Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль
стабилизации третичной структуры белка принимают участие:

· ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

· ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

· водородные связи;

· гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

4. Четвертичной структурой называют взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной . Надмолекулярные белковые комплексы могут состоять из десятков молекул.


Роль.

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории - достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза – несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путём химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвёртых, химический синтез пептидов экономически выгоден. Большинство терапевтических препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путём синтеза в лабораторных условиях.

57. Классификация белков: простые и сложные, глобулярные и фибриллярные, мономерные и олигомерные. Функции белков в организме .

Классификация по типу строения

По общему типу строения белки можно разбить на три группы:

1. Фибриллярные белки - образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. К фибриллярным белкам относятся кератин и коллаген.

2. Глобулярные белки - водорастворимы, общая форма молекулы более или менее сферическая.

3. Мембранные белки - имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортёры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигнала.

Простые белки , Сложные белки

Помимо пептидных цепей, в состав многих белков входят и неаминокислотные группы, и по этому критерию белки делят на две большие группы - простые и сложные белки (протеиды). Простые белки состоят только из полипептидных цепей, сложные белки содержат также неаминокислотные, или простетические, группы.

Простые.

Среди глобулярных белков можно выделить:

1. альбумины - растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;

2. полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;

3. гистоны - низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;

4. протамины отличаются еще более высоким содержанием аргинина (до 85 %), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки - составная часть нуклеопротеинов;

5. проламины характеризуются высоким содержанием глутаминовой кислоты (30-45 %) и пролина (до 15 %), нерастворимы в воде, растворяются в 50-90 % этаноле;

6. глутелины содержат около 45 % глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.

Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины).

Сло́жные белки́

(протеиды , холопротеины ) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа. При гидролизе сложных белков, кроме аминокислот, освобождается небелковая часть или продукты её распада.

В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества.

В зависимости от химической природы простетических групп среди сложных белков выделяют следующие классы :

· Гликопротеиды, содержащие в качестве простетической группы ковалентно связанные углеводные остатки и их подкласс - протеогликаны, с мукополисахаридными простетическими группами. В образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины - гликопротеиды. В протеогликанах углеводная часть составляет ~95 %, они являются основным компонентом межклеточного матрикса.

· Липопротеиды, содержащие в качестве простетической части нековалентно связанные липиды. Липопротеиды, образованные белками-аполипопротеинами связывающимися с ними липидами и выполняют функцию транспорта липидов.

· Металлопротеиды, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеидов есть белки, выполняющие депонирующие и транспортные функции (например, железосодержащие ферритин и трансферрин) и ферменты (например, цинксодержащая карбоангидраза и различные супероксиддисмутазы, содержащие в качестве активных центров ионы меди, марганца, железа и других металлов)

· Нуклеопротеиды, содержащие нековалентно связанные ДНК или РНК, в частности, хроматин, из которого состоят хромосомы, является нуклеопротеидом .

· Фосфопротеиды, содержащие в качестве простетической группы ковалентно связанные остатки фосфорной кислоты. В образовании сложноэфирной связи с фосфатом участвуют гидроксильные группы серина или треонина, фосфопротеинами являются, в частности, казеин молока :

· Хромопротеиды - собирательное название сложных белков с окрашенными простетическими группами различной химической природы. К ним относится множество белков с металлсодержащейпорфириновой простетической группой, выполняющие разнообразные функции - гемопротеины (белки, содержащие в качестве простетической группы гем - гемоглобин, цитохромы и др.), хлорофиллы;флавопротеиды с флавиновой группой, и др.

1. Структурная функция

2. Защитная функция

3. Регуляторная функция

4. Сигнальная функция

5. Транспортная функция

6. Запасная (резервная) функция

7. Рецепторная функция

8. Моторная (двигательная) функция

О том, что такое белки, сейчас знает практически каждый из школьных уроков биологии. Они выполняют множество функций в клетке живого существа.

Что такое белки?

Это сложные органические соединения. Они состоят из аминокислот, которых всего существует 20, однако, соединив их в разной последовательности, можно получить миллионы разнообразных химических веществ.

Структура белков

Когда мы уже знаем, что такое белки, можно подробнее рассмотреть их строение. Существует первичная, вторичная, третичная и четвертичная структура такого рода веществ.

Первичная структура

Это цепь, в которой аминокислоты соединены в нужном порядке. Это чередование и определяет вид белка. Для каждого вещества данного класса оно индивидуально. От первичной структуры во многом зависят также физические и химические свойства того или иного белка.

Вторичная структура

Это пространственная форма, которую принимает полипептидная цепь за счет образования водородных связей между карбоксильными группами и имино-группами. Существует два наиболее распространенных ее типа: альфа-спираль и бета-структура, имеющая лентообразный вид. Первая формируется вследствие возникновения связей между молекулами одной и той же полипептидной цепи, вторая — между двумя или более расположенными параллельно цепями. Однако также возможно возникновение бета-структуры и в пределах одного полимера — в том случае, когда определенные его фрагменты повернуты на 180 градусов.

Третичная структура

Это чередование и расположение относительно друг друга в пространстве участков альфа-спирали, простых полипептидных цепей и бета-структур.

Четвертичная структура

Ее также существует два вида: глобулярная и фибриллярная. Такая структура формируется за счет электростатических взаимодействий и водородных связей. Глобулярная имеет форму небольшого клубка, а фибриллярная — нити. Примерами белков с четвертичной структурой первого типа могут служить альбумин, инсулин, иммуноглобулин и т. д.; фибриллярных — фиброин, кератин, коллаген и другие. Есть и еще более сложные по строению белки, к примеру, миозин, содержащийся в мышечных тканях, он имеет стержень фибриллярной формы, на котором расположены две глобулярные головки.

Химический состав белков

Аминокислотный состав белков может быть представлен двадцатью аминокислотами, которые комбинируются в различном порядке и количестве.

Это глицин, аланин, валин, лейцин, изолейцин, серин, треонин, цистеин, метионин, лизин, аргинин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, фенилаланин, тирозин, триптофан, гистидин и пролин. Среди них есть незаменимые, то есть те, которые организм человека не в состоянии вырабатывать самостоятельно. Таких аминокислот насчитывается 8 для взрослых и еще 2 для детей: лейцин, изолейцин, валин, метионин, лизин, триптофан, фенилаланин, треонин, а также гистидин и аргинин.

Примеры белков с разной структурой

Ярким представителем глобулярных белков является альбумин. Его третичная структура состоит из альфа-спиралей, которые соединяются одиночными полипептидными цепочками.

Первичная же образуется такими аминокислотами, как аспаргиновая кислота, аланин, цистеин и глицин. Данный белок находится в плазме крови и выполняет функцию транспорта определенных веществ. Из фибриллярных можно выделить фиброин и коллаген. Третичная структура первого представляет собой вещество из бета-структур, которые соединены одиночными полипептидными цепочками. Сама цепь представляет собой чередование аланина, глицина, цистеина и серина. Данное химическое соединение является основным компонентом паутины и шелка, а также перьев птиц.

Что такое денатурация?

Это процесс разрушения сперва четвертичной, затем третичной и вторичной структур белка. Белок, с которым это случилось, уже не может выполнять свои функции и теряет основные физические и химические свойства. Такой процесс происходит в основном из-за воздействия высоких температур или агрессивных химических веществ. К примеру, при температуре выше сорока градусов Цельсия начинает денатурировать гемоглобин, переносящий кислород по крови организмов. Вот почему для человека опасно столь сильное повышение температуры.

Функции белков

Узнав о том, что такое белки, можно обратить внимание на роль этих веществ в жизни клетки и всего организма в целом. Они выполняют девять основных функций. Первая — пластическая. Они являются компонентами многих структур живого организма и служат в качестве строительного материала для клетки. Вторая — транспортная. Белки способны переносить вещества, примером веществ данного назначения являются альбумин, гемоглобин, а также разнообразные белки-транспортеры, находящиеся на плазматической мембране клетки, каждый из которых пропускает только определенное вещество в цитоплазму из окружающей среды. Третья функция — защитная. Ее выполняют иммуноглобулины, которые являются частью иммунной системы, и коллаген, являющийся основным компонентом кожного покрова. Также белки в организме человека и других организмов выполняют регуляторную функцию, так как существует некоторое количество гормонов, представленных такого рода веществами, к примеру, как инсулин. Еще одна роль, выполняемая этими химическими соединениями, — сигнальная. Данные вещества передают электрические импульсы из клетки в клетку. Шестая функция — двигательная. Яркими представителями белков, выполняющих ее, являются актин и миозин, которые способны сокращаться (они находятся в мышцах). Такие вещества могут также служить запасными, однако в таких целях они используются довольно редко, в основном это белки, которые есть в молоке. Они выполняют еще и каталитическую функцию — в природе есть ферменты белковой природы. И последняя функция— рецепторная. Существует группа белков, которые частично денатурируют под воздействием того или иного фактора, давая таким образом сигнал всей клетке, которая передает его дальше.

Белки, или протеины, в живых организмах образуются в основном из 20 важнейших природных ос-аминокислот в ре­зультате реакции поликонденсации в присутствии ферментов. Молекулярные массы белков варьируют в очень широких пределах: от 10 000 до 1 000 000 и выше.

Остов белковой цепи построен из аминокислотных фрагмен­тов, соединенных пептидной связью, и окружен разнообразными по химической природе заместителями. Пептидная связь в бел­ках устойчива при 37°С в нейтральной среде, но в кислой или щелочной среде может гидролизоваться. В организме гидролиз белка осуществляется под действием ферментов пептидаз и стро­го контролируется.

В природных белках широко варьируются длина и состав це­пи, что позволяет их молекулам даже в растворе принимать многообразные конформации.

Конформации макромолекулы белка в растворе представ­ляют собой различные ее пространственные формы, воз­никающие в результате поворотов отдельных молекуляр­ных фрагментов вокруг ординарных связей и стабили­зирующиеся за счет межмолекулярных связей между отдельными группами данной макромолекулы или молеку­лами веществ, находящимися в окружающем растворе.

Взаимные переходы конформации в основном осуществляют­ся без разрыва ковалентных связей в макромолекуле белка. При описании состава и конформации белка используют понятия пер­вичная, вторичная, третичная и четвертичная структуры.

Первичная структура специфична для индивидуального бел­ка и определяется составом и последовательностью аминокислот­ных остатков его цепи. При написании полных формул белков указывают порядок следования друг за другом аминокислотных остатков с помощью их трехбуквенных обозначений, начиная с N-конца цепи. Представление о первичной структуре миоглоби-на человека, содержащего в молекуле всего 153 аминокислот­ных остатка, дает следующая сокращенная запись:

Строго линейное расположение полипептидной цепи энергети­чески не выгодно, так как оно практически исключает взаимодей­ствия между различными радикалами аминокислотных остатков. В результате именно таких взаимодействий возникают дополни­тельные связи, которые стабилизируют ту или иную конформацию белковой цепи в пространстве. Это происходит за счет следующих взаимодействий: ион-ионного взаимодействия; водородной связи; гидратации полярных групп; дисульфидной связи; взаимодейст­вий Вандер-Ваальса между неполярными заместителями; гидро­фобных взаимодействий, в результате которых выталкиваются молекулы воды из зоны взаимодействия неполярных заместителей между собой, а также донорно-акцепторной связи между ионом комплексообразователя и лигандными группами белка (рис. 21.3).

Вторичная структура белка характеризует форму полипеп­тидной цепи, которая может быть спиралевидной (а-структура), складчатой (B-структура) или неупорядоченной (рис. 21.4). Основ­ную роль в формировании и поддержании вторичной структуры

Рис. 21.3. Типы взаимодействий между заместителями аминокислотных остатков белковой молекулы и водной средой


Рис. 21.4. Вторичная структура белков: а - а-структура (спиралевидная), б - Р-структура (складчатая) играют водородные связи, возникающие между группами хребта полипептидной цепи.

Пространственное расположение а-структуры можно предста­вить, вообразив, что полипептидная цепь обвивает цилиндр, а ее боковые радикалы направлены наружу. Витки спирали скрепле­ны между собой за счет водородных связей между пептидными группами, расположенными на соседних витках спирали. И хо­тя энергия этих связей невелика, большое их число приводит к значительному энергетическому эффекту, в результате чего a-структура достаточно устойчива и жестка.

Складчатая (3-структура формируется из большого числа па­раллельных вытянутых полипептидных цепей, связанных мно­жеством водородных связей между собой. Боковые радикалы R располагаются выше и ниже плоскости, проведенной через об­разовавшийся складчатый лист.

Неупорядоченная структура отдельных фрагментов белка ха­рактеризуется отсутствием пространственной упорядоченности в их расположении.

Какая вторичная структура белка реализуется - зависит от его аминокислотного состава, т. е. от первичной структуры. Для большинства природных белков характерно сосуществование в од­ной молекуле фрагментов с а-, р- и неупорядоченной структурой.

Невысокая прочность водородных связей позволяет сравни­тельно легко трансформировать вторичную структуру под внеш­ним воздействием: изменением температуры, состава или рН среды - или под механическим воздействием. В результате транс­формации вторичной структуры белка меняются его нативные, т. е. первичные от природы, свойства, а следовательно, его био­логические и физиологические функции.

Третичная структура белка определяет общее расположение его полипептидной цепи в пространстве. Полагают, что в фор­мировании и стабилизации третичной структуры белковой молекулы решающая роль принадлежит взаимодействию боковых заместителей аминокислот, которые сближаются в пространстве за счет изгибов полипептидной цепи. Виды этих взаимодейст­вий были показаны на рис. 21.3.

Третичная структура белковой молекулы возникает совершен­но автоматически в результате самоорганизации полипептидной цепи в соответствии с ее первичной и вторичной структурами, а также с составом окружающего раствора. Движущей силой, свер­тывающей полипептидную цепь белка в строго определенное трехмерное образование, является взаимодействие аминокислотных радикалов между собой и с молекулами окружающего рас­твора. При этом в водных растворах гидрофобные заместители вталкиваются внутрь белковой молекулы, образуя там сухие зо­ны ("жирные капли"), а гидрофильные - ориентируются в сто­рону водной среды. В некоторый момент достигается энергетиче­ски выгодная конформация молекулы для водной среды, и такая конформация белковой молекулы стабилизируется. При этом энтропия полипептидной цепи уменьшается, а энтропия системы в целом (полипептидная цепь + водная среда) остается постоян­ной или возрастает. Таким образом, с позиции II закона термо­динамики стабилизацию третичной структуры белка в водной среде обеспечивает стремление водного окружения молекулы белка перейти в состояние с максимальной энтропией. Пред­ставление о третичной структуре молекул белков миоглобина и лизоцима дает рис. 21.5. На рисунке заштрихованный диск в молекуле миоглобина - это гем, содержащий порфириновый лиганд и комплексообразователь катион Fe 2+ . В молекуле лизо­цима показаны S-S дисульфидные мостики, участвующие в стабилизации третичной структуры этого белка.

Рис. 21.5. Третичные структуры: миоглобина (а) и лизоцима (б)

Третичная структура белка, по сравнению с его вторичной структурой, еще более чувствительна к внешним воздействиям. Поэтому действие слабых окислителей, смена растворителей, из­менения ионной силы, рН среды и температуры нарушают третич­ную структуру белков, а следовательно, и их нативные свойства.

Четвертичная структура. Крупные молекулы белка с моле­кулярной массой более 60 000 обычно представляют собой агрега­ты, которые состоят из нескольких полипептидных цепей со срав­нительно небольшой молекулярной массой. При этом каждая цепь, сохраняя характерную для нее первичную, вторичную и третич­ную структуру, выступает в роли субъединицы этого агрегата, имеющего более высокий уровень пространственной организа­ции - четвертичную структуру. Такая молекулаагрегат пред­ставляет единое целое и выполняет биологическую функцию, не свойственную отдельно взятым субъединицам. Например, молеку­ла гемоглобина состоит из 4 субъединиц и для нее характерна значительно большая лабильность комплекса с кислородом, чем для отдельных ее субъединиц, что проявляется в свойствах миоглобина (разд. 10.4). Четвертичная структура белка закрепляется в основном за счет водородных связей и вандерваальсовых взаи­модействий, а иногда и дисульфидных связей между объединяе­мыми полипептидными цепями. Молекулярная масса белков с четвертичной структурой может достигать нескольких десятков миллионов. Четвертичная структура белков чувствительна к внеш­ним воздействиям и может ими нарушаться.

Форма белковых молекул. По форме молекулы нативные белки, т. е. проявляющие запрограммированные природой био­логические свойства, делят на фибриллярные и глобулярные. Молекулы фибриллярных белков обычно имеют B-структуру и волокнистое строение; они не растворяются в воде, так как на их поверхности много гидрофобных радикалов. Фибриллярными белками являются фиброны белка; кератин волос, кожи, ногтей; коллаген сухожилий и костной ткани; миозин мышечной ткани.

Глобулярные белки имеют цилиндрическую или сфериче­скую форму и размер 10 -9 -10 -7 м. Они обычно растворяются в воде, так как на их поверхности в основном находятся поляр­ные группы. Растворяясь в воде, глобулярные белки образуют лиофильные коллоидные растворы (разд. 27.3). Примеры гло­булярных белков: альбумин (яичный белок), миоглобин, почти все ферменты.

Жидкокристаллическое состояние. Молекулы белков - дос­таточно крупные образования и имеют фиксированную простран­ственную структуру, которая может быть анизотропна в целом, или могут быть анизотропны отдельные фрагменты пептидной цепи. Поэтому для многих белков характерно жидкокристалли­ческое состояние в определенном температурном интервале (термотропное жидкокристаллическое состояние) или образование одного или нескольких лиотропных жидкокристаллических со стояний с участием водной среды при определенной концентра­ции веществ в растворе. Образование жидкокристаллического состояния или переходы из одного жидкокристаллического со­стояния в другое, сопровождаемые изменением ориентации от­дельных фрагментов молекулы белка или изменением в согласо­ванности движения в системе, не требуют больших энергетиче­ских затрат, но могут привести к изменению его биологических функций. Например, повлиять на сократительную функцию мио­зина мышечных волокон, ферментативную активность, транспорт­ную функцию белков или их защитные свойства относительно коллоидных систем. Так, при определенных условиях молекулы гемоглобина переходят в жидкокристаллическое состояние. Это приводит к ряду патологических нарушений, проявляющихся в потере эластичности эритроцитами. В результате они закупори­вают капилляры, и транспорт кислорода нарушается. Образование камней в моче- или желчевыводящих системах связано с измене­нием не только концентрации, но и состояния защитных белков в этих системах. Способность белков и их растворов переходить в жидкокристаллическое состояние до последнего времени в био­логии, биохимии и медицине практически не рассматривалась, несмотря на чрезвычайную важность этих свойств с позиции жизнедеятельности любых живых систем.

Денатурация. Пространственная структура белков, как уже указывалось, может нарушаться под влиянием ряда факторов: повышение температуры, изменение рН и ионной силы среды, облучение УФ и рентгеновскими лучами, присутствие веществ, способных дегидратировать молекулу белка (этанол, ацетон, мо­чевина) или вступать во взаимодействие с его заместителями (окислители, восстановители, формальдегид, фенол) и даже при сильном механическом перемешивании растворов.

Денатурацией называется разрушение природной (нативной) конформации макромолекулы белка под внешним воздействием.

При денатурации разрушаются четвертичная, третичная и вто­ричная структуры, а первичная структура белка сохраняется. Поэтому денатурация может иметь обратимый (денатурация -ренатурация) и необратимый характер в зависимости от приро­ды белка и интенсивности внешнего воздействия. Необратимая денатурация обычно происходит при тепловом воздействии (на­пример, свертывание яичного альбумина при варке яиц). У денатурированных глобулярных белков уменьшается сродство к воде, так как на поверхности молекул оказывается много гидрофобных радикалов. Поэтому снижается их растворимость, появляются хлопья или осадок. Главное, при денатурации ут­рачивается биологическая активность и глобулярных, и фибриллярных белков, что наблюдается при многих способах их выделения (разд. 11.3). Во избежание денатурации белка и для сохранения его нативной конформации в процессе выделния все операции проводят в мягких условиях при температуре не выше 5°С, избегая резких воздействий химических реагентов.

Поверхностные свойства белков. Молекулы белков содержат разные ос-аминокислоты, имеющие и гидрофобные радикалы на основе алифатических и ароматических углеводородов, и гидро­фильные радикалы, включая пептидную группировку. Эти ради­калы распределены по всей цепи, и поэтому большинство бел­ков является поверхностно-активными веществами (разд. 26.6). Характерная особенность белковых ПАВ - наличие в их молеку­лах фрагментов с резко различным гидрофильно-липофильным балансом, что делает их эффективными стабилизаторами для лиофобных дисперсных систем, эмульгаторами жиров и холесте­рина и активными компонентами биологических мембран.

Благодаря поверхностно-активным свойствам некоторые белки образуют лиофильные мицеллы (разд. 27.3) с липидами (включая холестерин и его эфиры), называемые липопротеинами. В липопротеинах между молекулами белков и липидов нет ковалентных связей, а есть только межмолекулярные взаи­модействия. Внешняя поверхность липопротеиновой мицеллы состоит из гидрофильных фрагментов белков и молекул фосфо-липидов, а ее внутренняя часть (ядро) представляет собой гид­рофобную среду, в которой растворены жиры, холестерин и его эфиры (рис. 21.6). Наличие в липопротеинах внешней гидро­фильной оболочки делает эти богатые липидами мицеллы "рас­творимыми" в воде и хорошо приспособленными для транспор­та жиров из тонкого кишечника в жировые депо и в различные ткани. Диаметр липопротеиновых мицелл составляет от 7 до 1000 нм.

В зависимости от плотности, размеров мицелл и соотношения в них белка и липидов липопротеины подразделяют на 4 класса (табл. 21.2).



Рис. 21.6. Мицелла липопротеина

Роль хиломикронов и липопротеинов очень низкой плотно­сти заключается в транспорте жиров и их гидролизе под дейст­вием липопротеинлипазы. По мере расщепления жиров происходит превращение:

Р-Липопротеины в основном транспортируют холестерин в клет­ки, а а-липопротеины выводят из клеток избыток холестерина.

При изучении липопротеинового состава сыворотки крови ус­тановлено, что чем больше отношение B-липопротеины/а-липо-протеины, тем больше опасность обильных отложений холесте­рина на внутренней поверхности кровеносных сосудов, т. е. атеросклероза. Атеросклероз способствует развитию инсульта или инфаркта миокарда за счет ограничения кровотока через суженные сосуды мозга или сердца.

Поверхностные свойства белков, характеризующие их спо­собность к межмолекулярным взаимодействиям, лежат в основе взаимодействия фермента с субстратом (разд. 5.6), антитела с антигеном и объясняют различные взаимодействия, называе­мые в биологии специфической комплементарностью (теория "ключа и замка"). Во всех этих случаях имеет место строгое соответствие между поверхностной структурой и свойствами взаи­модействующих частиц, которые обеспечивают высокую эффективность различных видов межмолекулярных взаимодейст­вий между ними (рис. 21.3). В биологии это часто упрощенно отражают, используя графическое соответствие форм и разме­ров взаимодействующих частиц (рис. 21.7).

Информационные свойства белков. Молекулы белков и отдель­ные их фрагменты рассматриваются как носители биологической

Рис. 21.7. Графическая интерпретация соответствия межмолекуляр­ных взаимодействий между белковыми частицами, описываемых специфической комплементарностью или теорией "ключа и замка"

информации, в которой роль букв алфавита играют 20 амино­кислотных остатков. В основе считывания этой информации на­ходятся различные виды межмолекулярных взаимодействий и стремление системы использовать их эффективно. Например, в ферментах вблизи активного центра часть белковой молекулы содержит определенные аминокислотные остатки, заместители которых сориентированы в пространстве так, чтобы происходило узнавание строго определенного субстрата, с которым реагирует данный фермент. Аналогично протекает взаимодействие анти­тело - антиген или происходит синтез в организме соответст­вующего антитела на появившийся антиген. Информационные свойства белков лежат в основе иммунитета, представляющего собой целостную систему биологических механизмов самозащиты организма, в основе которых лежат информационные процессы распознавания "свой" и "чужой". "Аминокислотный язык", содержащий 20 единиц, является одним из наиболее оптималь­ных и надежных способов кодирования важной информации для жизнедеятельности живых систем, включающей сведения о форме отдельных органов и организма в целом.

Кислотно-основные свойства. Белки, как и а-аминокислоты (разд. 8.2), являются полиамфолитами, проявляя кислотные свой­ства за счет неионизованных карбоксильных групп -СООН, аммо­нийных групп тиольных групп -SH, а также n-гидрокси-

фенильных групп Основные свойства белки проявляют за счет групп - СОО-, аминогрупп - NH 2 , а также замес­тителей имидазола -C 3 H 3 N 2 и гуанидина -(CH 5 N 3) + . В водных растворах в зависимости от рН среды белки могут находиться при рН = рI белка в молекулярной, т. е. нейтральной форме, имеющей биполярно-ионное строение, при рН < рI белка появля­ется катионная форма, и при рН > рI белка появляется анион­ная форма, в основном за счет ионизации заместителей (-RH).

В сильнокислой среде происходит протонирование ионизо­ванной карбоксильной группы белка, а в сильнощелочной сре­де - депротонирование концевой аммонийной группы. Однако в биологических средах, для которых не характерны такие край­ние значения рН, подобных превращений с белковыми молеку­лами не происходит. Кислотно-основные превращения в моле­кулах белков, естественно, сопровождаются изменением их конформации, а следовательно, биологические и физиологические функции катиона или аниона белков будут отличаться не толь­ко друг от друга, но и от функций их молекул.

В зависимости от аминокислотного состава белки подразде­ляются на "нейтральные" (рI = 5,0 - 7,0), "кислотные" (рI < 4,0) и "основные", или "щелочные" (рI > 7,5) (табл. 21.3). В кислотных белках повышенное содержание аспарагиновой или глутаминовой кислот, а в "основных" - аргинина, лизина или гистидина. На основе белков в организме действуют белковые буферные сис­темы (разд. 8.4).

Различие в кислотно-основных свойствах белков лежит в осно­ве разделения и анализа белковых смесей методами электрофореза и ионообменной хроматографии. В постоянном электрическом по­ле белки обладают электрофоретической подвижностью, причем направление их движения к катоду или аноду зависит от значения рН раствора и рI белка. При рН < рI белок частично находится в форме катиона и перемещается к катоду. При рН > рI белок пере­мещается к аноду, поскольку частично находится в форме аниона. При рН = рI белок полностью находится в молекулярной форме и под действием электрического поля не перемещается. Электрофо-ретическая подвижность иона белка зависит от его размера и заряда, а также от рН раствора. Подвижность иона будет тем больше, чем больше разница между рН раствора и рI белка. Анализ белка с помощью электрофореза широко применяется в клинической биохимии для диагностики заболеваний.

Комплексообразующие свойства. Белки - активные полидентатные лиганды (разд. 10.1), особенно содержащие мягкие функциональные группы: тиольную, имидазольную, гуанидиновую, аминогруппу:

Вследствие наличия в молекулах белков различных функцио­нальных групп они образуют комплексные соединения разной устойчивости в зависимости от поляризуемости иона комплексо-образователя. С малополяризуемыми (жесткими) катионами К + и Na + белки образуют малоустойчивые комплексы, которые в ор­ганизме выполняют роль ионофоров для катионов или активато­ров белков как субстратов для тех или иных биохимических процессов. С менее жесткими катионами Mg 2+ или Са 2+ белки образуют достаточно прочные комплексы. С катионами d-металлов: железа, меди, марганца, цинка, кобальта, молибдена ("ме­таллы жизни"), достаточно поляризуемыми, т. е. мягкими, бел­ки образуют прочные комплексы. Однако особенно прочные ком­плексы они образуют с катионами металлов-токсикантов: свинца, кадмия, ртути и другими, проявляющими высокую поляризуе­мость, т. е. очень мягкими. Прочные комплексы белков с катио­нами металлов часто называют металлопротеинами.

Множество ферментов представляют собой хелатные ком­плексы белка с катионом какого -либо "металла жизни". При этом именно катион комплексообразователя под влиянием белкалиганда является активным центром фермента, а фрагмент белко­вой молекулы вблизи этого центра обычно выполняет роль опо-знавателя и активатора субстрата. Белковый компонент метал-лофермента часто называют апоферментом.

Все белки при обработке солями меди в щелочной среде об­разуют хелатный комплекс фиолетового цвета, что является ка­чественной реакцией на белки, которая называется биуретовой реакцией:

Эта реакция происходит путем депротонирования пептид­ных групп белка, чему способствуют щелочная среда и наличие в ней иона комплексообразователя.

Электрофильно-нуклеофильные реакции. К этим реакциям прежде всего относится гидролиз белков - основной путь их катаболизма (распада) в организме. При гидролизе белка реагент -молекула воды - выступает и как нуклеофил за счет ОН", и как электрофил за счет Н + . Нуклеофильная частица ОН" атакует электрофильный центр пептидной связи, т. е. углеродный атом карбонильной группы, а нуклеофильный центр этой связи - атом азота - атакуется электрофилом - протоном. В результате атаки молекулами воды пептидные связи в белках разрываются, и об­разуются вначале осаминокислоты и пептиды, а конечными продуктами являются ос-аминокислоты.

Гидролитический распад белков протекает в любой клетке организма, точнее, в ее липосомах, где сосредоточены гидроли­тические ферменты. Гидролиз белков может быть частичным (до пептидов) и полным (до аминокислот). Частичный гидролиз ускоряется протеиназами, которые способствуют образованию пептидов. Полученные пептиды гидролизуются до аминокислот при участии пептидаз. В организме гидролиз белков осуществляется в основном целым набором ферментов, каждый из кото­рых расщепляет ту пептидную связь, которая образована опреде­ленными аминокислотами. Так, карбоксипептидаза специфиче­ски отщепляет от белков С-концевую аминокислоту, трипсин гидролизует пептидную связь между аминокислотами с непо­лярным (гидрофобным) заместителем. Химотрипсин расщепля­ет пептидную связь, образованную фенилал анином, тирозином, триптофаном с другими аминокислотами. В организме пищевые белки расщепляются полностью, поскольку для жизнедеятель­ности используются в основном свободные ос-аминокислоты.

В лабораторных условиях белки гидролизуются как в кислой, так и в щелочной среде. Однако щелочной гидролиз практически не используется из-за неустойчивости многих осаминокислот в этих условиях. Обычно полный гидролиз проводят при нагревании белка до 110°С в запаянной ампуле с 20 % НС1 в течение 24 ч. В этих условиях гидролиз белка протекает до конца, но образующийся триптофан при этом полностью разлагается. По­этому предпочтение отдают ферментативному гидролизу.

Белки организма, содержащие аспарагиновую и глутамино-вую кислоты, могут выступать акцептором аммиака, который как нуклеофил реагирует по свободным карбоксильным группам заместителя, т. е. происходит реакция амидирования белков:

Реакция амидирования - эндэргоническая, поэтому в орга­низме она сопряжена с реакцией гидролиза АТФ.


С целью стерилизации объектов (полного освобождения от микроорганизмов) их обрабатывают формальдегидом. Формаль­дегид как активный электрофил реагирует по свободным ами­ногруппам белков, образуя их метилольные производные:

В результате этой реакции белок теряет свои нативные свой­ства, так как происходит его необратимая денатурация.

Активные электрофильные реагенты (ЕХ): 2,4-динитрофтор-бензол, фенилизотиоцианат или дансилхлорид - используются для установления первичной структуры белков или пептидов. Они в присутствии оснований реагируют по N-концевой амино­кислоте аниона белка и способствуют ее отщеплению в виде со­ответствующего производного Е-NH-CRH-СООН, легко иден­тифицируемого или хроматографически, или спектрально:

Оставшаяся часть белка при этом не разрушается, а операции по отщеплению следующей аминокислоты можно повторять. Эти реакции лежат в основе работы автоматического анализатора первичной структуры белков. Обычно анализируемый белок вначале подвергают частичному гидролизу с получением нескольких пептидов. Полученные пептиды разделяют, очищают, и в каждом определяется последовательность аминокислот, а затем составляется первичная структура анализируемого белка.

Окислительно-восстановительные свойства. Белки относи­тельно устойчивы к мягкому окислению, за исключением со­держащих аминокислоту цистеин, так как тиольная группа по­следней легко окисляется в дисульфидную группу, причем про­цесс может носить обратимый характер:

В результате этих превращений происходит изменение конформации белка и его нативных свойств. Поэтому серосодержа­щие белки чувствительны к свободнорадикальному окислению или восстановлению, что происходит при воздействии на организм радиации или токсичных форм кислорода (разд. 9.3.9).

Тиол-дисульфидные превращения белка кератина лежат в основе химической завивки волос, так как цистеин и цистин входят в его состав. Сначала волосы обрабатывают восстанови­телем, чтобы разрушить связи -S-S- цистина и превратить в тиольные группы цистеина. Затем волосы укладывают в локо­ны (завивают) и обрабатывают окислителем. При этом образу­ются дисульфидные связи цистина, которые помогают волосам сохранить их новую форму.

При более жестком окислении тиольная группа белков окис­ляется в сульфогруппу практически необратимо:

Жесткое окисление белков до СО2, H2O и аммонийных солей используется организмом для устранения ненужных белков и по­полнения своих энергетических ресурсов (16,5 - 17,2 кДж/г).

В организме белки, содержащие остатки лизина, пролина, фе-нилаланина и триптофана, подвергаются ферментативному гидроксилированию (монооксигеназное окисление) при участии ки­слорода и восстановленной формы кофермента:

В результате реакции гидроксилирования усиливаются гид­рофильные свойства белка и его способность к образованию водо­родных связей. Это имеет место у тропоколлагена, у которого три цепи объединяются в устойчивую суперспираль за счет водород­ных связей, в образовании которых участвуют и гидроксипролиновые остатки.

Подобная реакция происходит в молекуле тропоколлагена, что приводит к еще более прочной "сшивке" его пептидных цепей.

Окислительное дезаминирование белков под действием нингидрина, сопровождаемое образованием синего окрашивания, -характерная качественная реакция на белки - нингидриновая реакция (см. разд. 21.2.4).

Для обнаружения белков, содержащих ароматические и гете­роциклические аминокислоты, используется ксантопротеиновая реакция, которая при действии концентрированной азотной ки­слоты сопровождается появлением желтого окрашивания, пере­ходящего при добавлении щелочи или аммиака в оранжевое:

Именно в результате ксантопротеиновой реакции наблюда­ется желтое окрашивание кожи при попадании на нее концен­трированной азотной кислоты.

Таким образом, для белков характерны: определенная конформация, жидкокристаллическое состояние, поверхностно-активные и информационные свойства, а также все четыре вида химиче­ских реакций: кислотно-основные, комплексообразующие, электрофильно-нуклеофильные и окислительно-восстановительные, лежащие в основе жизнедеятельности любых живых систем. Совокупность всех этих свойств объясняет уникальность белков для всего живого мира.




Понравилась статья? Поделитесь с друзьями!