Четыре замечательные точки треугольника. Исследовательский проект замечательные точки треугольника 4 замечательные точки пересечение медиан

Введение

Предметы окружающего нас мира обладают определенными свойствами, изучением которых занимаются различные науки.

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства, своими корнями уходит в далёкое прошлое.

В четвертой книге «Начал» Евклид решает задачу: «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке - центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке - центре описанного круга. В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает «прямой», «правильный»). Это предложение было, однако, известно Архимеду. Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника.

На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы «замечательными» или «особенными» точками треугольника. Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника» или «новой геометрии треугольника», одним из родоначальников которой стал Леонард Эйлер.

В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже «прямой Эйлера». В двадцатых годах XIX века французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середины отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности. Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на прямой Эйлера.

«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг - геометрия». Эти слова, сказанные великим французским архитектором Ле Корбюзье в начале XX века, очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека.

Нас заинтересовали так называемые «замечательные точки треугольника».

После прочтения литературы по данной теме, мы зафиксировали для себя определения и свойства замечательных точек треугольника. Но на этом наша работа не закончилась, и нам захотелось самим исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательных точек и линий треугольника, применение полученных знаний к решению задач. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор и изучение учебного материала из различных источников информации, литературы;

    Изучение основных свойств замечательных точек и линий треугольника;

    Обобщение этих свойств и доказательство необходимых теорем;

    Решение задач, связанных с замечательными точками треугольника.

Глава I . Замечательные точки и линии треугольника

1.1 Точка пересечения серединных перпендикуляров к сторонам треугольника

Серединный перпендикуляр – это прямая, проходящая через середину отрезка, перпендикулярно к нему. Нам уже известна теорема, характеризующая свойство серединного перпендикуляра: каждая точка серединного перпендикуляра к отрезку равноудалена от его концов и обратно, если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре.

Многоугольник называется вписанным в окружность, если все его вершины принадлежат окружности. Окружность при этом называется описанной около многоугольника.

Около всякого треугольника можно описать окружность. Ее центром является точкой пересечения серединных перпендикуляров к сторонам треугольника.

Пусть точка О – точка пересечения серединных перпендикуляров к сторонам треугольника АВ и ВС.

Вывод: таким образом, если точка О- точка пересечения серединных перпендикуляров к сторонам треугольника, то ОА=ОС=ОВ, т.е. точка О равноудалена от всех вершин треугольника АВС, значит, она является центром описанной окружности.

остроугольный

тупоугольный

прямоугольный

Следствия

sin γ = c/2R = с/sin γ =2R.

Аналогично доказывается а / sin α =2R, b/ sin β =2R.

Таким образом:

Это свойство называют теоремой синусов.

В математике часто бывает, что объекты, определенные совсем по- разному, оказываются совпадающими.

Пример. Пусть А1, В1, С1 – середины сторон ∆АВС ВС, АС, АВ соответственно. Показать, что окружности, описанные около треугольников АВ1С1, А1В1С, А1ВС1 пересекаются в одной точке. Причем эта точка центр описанной около ∆АВС окружности.

    Рассмотрим отрезок АО и построим на этом отрезке, как на диаметре, окружность. На эту окружность попадают точки С1и В1, т.к. являются вершинами прямых углов, опирающихся на АО. Точки А, С1, В1 лежат на окружности =эта окружность описана около ∆АВ1С1.

    Аналогично проведем отрезок ВО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около ∆ВС1 А1.

    Проведем отрезок СО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около

    Эти три окружности проходят через точку О - центр описанной около ∆АВС окружности.

Обобщение. Если на сторонах∆АВС АС, ВС, АС взять произвольные точки А 1 , В 1 , С 1 , то окружности описанные около треугольников АВ 1 С 1 , А 1 В 1 С, А 1 ВС 1 пересекаются в одной точке.

1.2 Точка пересечения биссектрис треугольника

Верно и обратное утверждение: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Полезно отметить половины одного угла одинаковыми буквами:

OAF=OAD= α, OBD=OBE= β, OCE=OCF= γ.

Пусть точка О- точка пересечения биссектрис углов А и В. По свойству точки, лежащей на биссектрисе угла А, OF=OD=r. По свойству точки, лежащей на биссектрисе угла В, OЕ=OD=r. Таким образом, OЕ=OD= OF=r= точка О равноудалена от всех сторон треугольника АВС, т.е. О- центр вписанной окружности. (Точка О – единственная).

Вывод: таким образом, если точка О- точка пересечения биссектрис углов треугольника, то OЕ=OD= OF=r, т.е. точка О равноудалена от всех сторон треугольника АВС, значит, она является центром вписанной окружности. Точка О- пересечения биссектрис углов треугольника – замечательная точка треугольника.

Следствия:

Из равенства треугольников АОF и AOD (рисунок 1) по гипотенузе и острому углу, следует, что AF = AD . Из равенства треугольников OBD и OBE следует, что BD = BE , Из равенства треугольников COE и COF следует, что С F = CE . Таким образом, отрезки касательных, проведенных к окружности из одной точки равны.

AF=AD=z , BD=BE=y , СF=CE=x

а=х+у (1), b = х+ z (2), с= х+у (3).

    + (2) – (3), то получим: а+ b -с= x + y + x + z - z - y = а+ b -с= 2 x =

х= ( b + c - а)/2

Аналогично: (1) +(3) – (2), то получим: у = (а + с – b )/2.

Аналогично: (2) +(3) – (1), то получим: z = (а + b - c )/2.

Биссектриса угла треугольника разбивает противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.

1.3 Точка пересечения медиан треугольника (центроид)

Доказательство 1. Пусть A 1 , B 1 и C 1 -середины сторон BC, CA и AB треугольника ABC соответственно (рис.4).

Пусть G-точка пересечения двух медиан AA 1 и BB 1 . Докажем сначала, что AG:GA 1 = BG:GB 1 = 2.

Для этого возьмем середины P и Q отрезков AG и BG. По теореме о средней линии треугольника отрезки B 1 A 1 и PQ равны половине стороны AB и параллельны ей. Поэтому четырехугольник A 1 B 1 PQ-параллелограмм. Тогда точка G пересечения его диагоналей PA 1 и QB 1 делит каждую из них пополам. Следовательно, точки P и G делят медиану AA 1 на три равные части, а точки Q и G делят медиану BB 1 также на три равные части. Итак, точка G пересечения двух медиан треугольника делит каждую из них в отношении 2:1, считая от вершины.

Точку пересечения медиан треугольника называют центроидом или центром тяжести треугольника. Это название связано с тем, что именно в этой точке находиться центр тяжести однородной треугольной пластины.

1.4 Точка пересечения высот треугольника (ортоцентр)

1.5 Точка Торричелли

Путь дан треугольник ABC. Точкой Торричелли этого треугольника называется такая точка O, из которой стороны данного треугольника видны под углом 120°, т.е. углы AOB, AOC и BOC равны 120°.

Докажем, что в случае, если все углы треугольника меньше 120°, то точка Торричелли существует.

На стороне AB треугольника ABC построим равносторонний треугольник ABC" (рис. 6, а), и опишем около него окружность. Отрезок AB стягивает дугу этой окружности величиной 120°. Следовательно, точки этой дуги, отличные от A и B, обладают тем свойством, что отрезок AB виден из них под углом 120°. Аналогичным образом, на стороне AC треугольника ABC построим равносторонний треугольник ACB" (рис. 6, а), и опишем около него окружность. Точки соответствующей дуги, отличные A и C, обладают тем свойством, что отрезок AC виден из них под углом 120°. В случае, когда углы треугольника меньше 120°, эти дуги пересекаются в некоторой внутренней точке O. В этом случае ∟AOB = 120°, ∟AOC = 120°. Следовательно, и ∟BOC = 120°. Поэтому точка O является искомой.

В случае, когда один из углов треугольника, например ABC, равен 120°, точкой пересечения дуг окружностей будет точка B (рис. 6, б). В этом случае точки Торричелли не существует, так как нельзя говорить об углах, под которыми видны из этой точки стороны AB и BC.

В случае, когда один из углов треугольника, например ABC, больше 120° (рис. 6, в), соответствующие дуги окружностей не пересекаются, и точки Торричелли также не существует.

С точкой Торричелли связана задача Ферма (которую мы рассмотрим во главе II) нахождении точки, сумма расстояний от которой до трех данных точек наименьшая.

1.6 Окружность девяти точек

Действительно, A 3 B 2 – средняя линия треугольника AHC и, следовательно, A 3 B 2 || CC 1 . B 2 A 2 – средняя линия треугольника ABC и, следовательно, B 2 A 2 || AB. Так как CC 1 ┴ AB, то A 3 B 2 A 2 = 90°. Аналогично, A 3 C 2 A 2 = 90°. Поэтому точки A 2 , B 2 , C 2 , A 3 лежат на одной окружности с диаметром A 2 A 3 . Так как AA 1 ┴BC, то точка A 1 также принадлежит этой окружности. Таким образом, точки A 1 и A 3 лежат на окружности, описанной около треугольника A2B2C2. Аналогичным образом показывается, что точки B 1 и B 3 , C 1 и C 3 лежат на этой окружности. Значит, все девять точек лежат на одной окружности.

При этом центр окружности девяти точек лежит посередине между центром пересечения высот и центром описанной окружности. Действительно, пусть в треугольнике ABC (рис. 9), точка O – центр описанной окружности; G – точка пересечения медиан. H точка пересечения высот. Требуется доказать, что точки O, G, H лежат на одной прямой и центр окружности девяти точек N делит отрезок OH пополам.

Рассмотрим гомотетию с центром в точке G и коэффициентом -0,5. Вершины A, B, C треугольника ABC перейдут, соответственно в точки A 2 , B 2 , C 2 . Высоты треугольника ABC перейдут в высоты треугольника A 2 B 2 C 2 и, следовательно, точка H перейдет в точку O. Поэтому точки O, G, H будут лежать на одной прямой.

Покажем, что середина N отрезка OH является центром окружности девяти точек. Действительно, C 1 C 2 – хорда окружности девяти точек. Поэтому серединный перпендикуляр к этой хорде является диаметром и пересекает OH в середине N. Аналогично, серединный перпендикуляр к хорде B 1 B 2 является диаметром и пересекает OH в той же точке N. Значит N – центр окружности девяти точек. Что и требовалось доказать.

Действительно, пусть P – произвольная точка, лежащая на окружности, описанной около треугольника ABC; D, E, F – основания перпендикуляров, опущенных из точки P на стороны треугольника (рис. 10). Покажем, что точки D, E, F лежат на одной прямой.

Заметим, что в случае, если AP проходит через центр окружности, то точки D и E совпадают с вершинами B и C. В противном случае, один из углов ABP или ACP острый, а другой – тупой. Из этого следует, что точки D и E будут расположены по разные стороны от прямой BC и для того, чтобы доказать, что точки D, E и F лежат на одной прямой, достаточно проверить, что ∟CEF =∟BED.

Опишем окружность с диаметром CP. Так как ∟CFP = ∟CEP = 90°, то точки E и F лежат на этой окружности. Поэтому ∟CEF =∟CPF как вписанные углы, опирающиеся на одну дугу окружности. Далее, ∟CPF = 90°- ∟PCF = 90°- ∟DBP = ∟BPD. Опишем окружность с диаметром BP. Так как ∟BEP = ∟BDP = 90°, то точки F и D лежат на этой окружности. Поэтому ∟BPD =∟BED. Следовательно, окончательно получаем, что ∟CEF =∟BED. Значит точки D, E, F лежат на одной прямой.

Глава II Решение задач

Начнем с задач, относящихся к расположению биссектрис, медиан и высот треугольника. Их решение, с одной стороны, позволяет вспомнить пройденный ранее материал, а с другой стороны, развивает необходимые геометрические представления, подготавливает к решению более сложных задач.

Задача 1. По углам A и B треугольника ABC (∟A

Решение. Пусть CD – высота, CE – биссектриса, тогда

∟BCD = 90° - ∟B, ∟BCE = (180° - ∟A - ∟B):2.

Следовательно, ∟DCE =.

Решение. Пусть O – точка пересечения биссектрис треугольника ABC (рис. 1). Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB BC, то ∟A

Решение. Пусть O – точка пересечения высот треугольника ABC (рис. 2). Если AC ∟B. Окружность с диаметром BC пройдет через точки F и G. Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что CG

Доказательство. На сторонах AC и BC треугольника ABC, как на диаметрах, построим окружности. Точки A 1 , B 1 , C 1 принадлежат этим окружностям. Поэтому ∟B 1 C 1 C = ∟B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. ∟B 1 BC = ∟CAA 1 , как углы с взаимно перпендикулярными сторонами. ∟CAA 1 = ∟CC 1 A 1 , как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, ∟B 1 C 1 C = ∟CC 1 A 1 , т.е. CC 1 является биссектрисой угла B 1 C 1 A 1 . Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1 .

Рассмотренный треугольник, вершинами которого являются основания высот данного остроугольного треугольника, дает ответ на одну из классических экстремальных задач.

Решение. Пусть ABC – данный остроугольный треугольник. На его сторонах требуется найти такие точки A 1 , B 1 , C 1 , для которых периметр треугольника A 1 B 1 C 1 был бы наименьшим (рис. 4).

Зафиксируем сначала точку C 1 и будем искать точки A 1 и B 1 , для которых периметр треугольника A 1 B 1 C 1 наименьший (при данном положении точки C 1).

Для этого рассмотрим точки D и E симметричные точке C 1 относительно прямых AC и BC. Тогда B 1 C 1 = B 1 D, A 1 C 1 = A 1 E и, следовательно, периметр треугольника A 1 B 1 C 1 будет равен длине ломаной DB 1 A 1 E. Ясно, что длина этой ломаной наименьшая, если точки B 1 , A 1 лежат на прямой DE.

Будем теперь менять положение точки C 1 , и искать такое положение, при котором периметр соответствующего треугольника A 1 B 1 C 1 наименьший.

Так как точка D симметрична C 1 относительно AC, то CD = CC 1 и ACD=ACC 1 . Аналогично, CE=CC 1 и BCE=BCC 1 . Следовательно, треугольник CDE равнобедренный. Его боковая сторона равна CC 1 . Основание DE равно периметру P треугольника A 1 B 1 C 1 . Угол DCE равен удвоенному углу ACB треугольника ABC и, значит, не зависит от положения точки C 1 .

В равнобедренном треугольнике с данным углом при вершине основание тем меньше, чем меньше боковая сторона. Поэтому наименьшее значение периметра P достигается в случае наименьшего значения CC 1 . Это значение принимается в случае, если CC 1 является высотой треугольника ABC. Таким образом, искомой точкой C 1 на стороне AB является основание высоты, проведенной из вершины C.

Заметим, что мы могли бы фиксировать сначала не точку C 1 , а точку A 1 или точку B 1 и получили бы, что A 1 и B 1 являются основаниями соответствующих высот треугольника ABC.

Из этого следует, что искомым треугольником, наименьшего периметра, вписанным в данный остроугольный треугольник ABC является треугольник, вершинами которого служат основания высот треугольника ABC.

Решение. Докажем, что в случае, если углы треугольника меньше 120°, то искомой точкой в задаче Штейнера является точка Торричелли.

Повернем треугольник ABC вокруг вершины C на угол 60°, рис. 7. Получим треугольник A’B’C. Возьмем произвольную точку O в треугольнике ABC . При повороте она перейдет в какую-то точку O’. Треугольник OO’C равносторонний, так как CO = CO’ и ∟OCO’ = 60°, следовательно, OC = OO’. Поэтому сумма длин OA + OB + OC будет равна длине ломаной AO + OO’ + O’B’. Ясно, что наименьшее значение длина этой ломаной принимает в случае, если точки A, O, O’, B’ лежат на одной прямой. Если O – точка Торричелли, то это так. Действительно, ∟AOC = 120°, ∟COO" = 60°. Следовательно, точки A, O, O’ лежат на одной прямой. Аналогично, ∟CO’O = 60°, ∟CO"B" = 120°. Следовательно, точки O, O’, B’ лежат на одной прямой. Значит, все точки A, O, O’, B’ лежат на одной прямой.

Заключение

Геометрия треугольника, наравне с другими разделами элементарной математики, дает возможность почувствовать красоту математики вообще и может стать для кого-то началом пути в «большую науку».

Геометрия - удивительная наука. Ее история насчитывает не одно тысячелетие, но каждая встреча с ней способна одарить и обогатить (как ученика, так и учителя) волнующей новизной маленького открытия, изумляющей радостью творчества. Действительно, любая задача элементарной геометрии является, по существу, теоремой, а ее решение – скромной (а иногда и огромной) математической победой.

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

В данной работе были рассмотрены свойства биссектрис, медиан, серединных перпендикуляров и высот треугольника, расширено число замечательных точек и линий треугольника, сформулированы и доказаны теоремы. Решен ряд задач на применение этих теорем.

Представленный материал может быть использован как на основных уроках, так и на факультативных занятиях, также при подготовке к централизованному тестированию и олимпиадам по математике.

Список литературы

    Берже М. Геометрия в двух томах – М: Мир, 1984.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Латотин Л.А., Чеботаравский Б.Д. Математика 9. – Минск: Народная асвета, 2014.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.

    Сильченков Илья

    материалы к уроку, презентация с анимацией

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Средней линией треугольника называется отрезок, соединяющий середины двух его сторон и равна половине этой стороны. Так же по теореме средняя линия треугольника параллельна одной из его сторон и равна половине это стороны.

    Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой

    Замечательных точки треугольника

    Замечательные точки треугольника Точка пересечения медиан (центроид треугольника) ; Точка пересечения биссектрис, центр вписанной окружности; Точка пересечения серединных перпендикуляров; Точка пересечения высот (ортоцентр); Прямая Эйлера и окружность девяти точек; Точки Жергонна и Нагеля; Точка Ферма-Торричелли;

    Точка пересечения медиан

    Медиана треугольника- отрезок, соединяющий вершину любого угла треугольника с серединой противоположной стороны.

    I. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

    Доказательство:

    A B C A 1 C 1 B 1 1 2 3 4 0 1. Обозначим буквой О точку пересечения двух медиан АА 1 и В В1 треугольника АВС и проведём среднюю линию А 1 В 1 этого треугольника. 2.Отрезок А 1 В 1 параллелен стороне АВ и 1/2 АВ = А 1 В 1 т. е. АВ = 2А1В1 (по теореме о средней линии треугольника), поэтому 1= 4 и 3= 2 (т.к. они внутренние накрест лежащие углы при параллельных прямых AB и A 1 B 1 и секущей BB 1 для 1, 4 и AA 1 для 3, 2 3.Следовательно, треугольники АОВ и А 1 ОВ 1 подобны по двум углам, и, значит их стороны пропорциональны, т. е. равны отношения сторон АО и А 1 О, ВО и В 1 О, АВ и А 1 В 1 . Но АВ = 2А 1 В 1 , поэтому АО=2А 1 О и ВО=2В 1 О. Таким образом, точка О пересечения медиан ВВ 1 и АА 1 делит каждую из них в отношении 2:1 , считая от вершины. Теорема доказана. Аналогично можно доказать и про другие две медианы

    Центр масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан- центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид треугольника, то пластинка будет находиться в равновесии. Также точка пересечения медиан является центром вписанной окружности его серединного треугольника. Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадёт именно в эту точку.

    Точка пересечения биссектрис

    Биссектриса треугольника - отрезок биссектрисы угла, соединяющий вершину одного из углов треугольника с точкой лежащей на противоположной стороне.

    Биссектрисы треугольника пересекаются в одной точке, равноудаленной от его сторон.

    Доказательство:

    С А В А 1 В 1 С 1 0 1. Обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС. 3.Воспользуемся тем, что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон и обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. Тогда ОК=OL и ОК=ОМ. А значит ОМ=OL , т. е. точка О равноудалена от сторон треугольника АВС и, значит, лежит на биссектрисе СС1 угла C . 4.Следовательво, все три биссектрисы треугольника АВС пересекаются в точке О. K L M Теорема доказана. 2.проведём из этой точки перпендикуляры ОК, OL и ОМ соответственно к прямым АВ, ВС и СА.

    Точка пересечения серединных перпендикуляров

    Серединный перпендикуляр- прямая, проходящая через середину данного отрезка и перпендикулярная к нему.

    Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, равноудаленной от вершин треугольника.

    Доказательство:

    В С A m n 1. Обозначим буквой О точку пересечения серединных перпендикуляров т и п к сторонам АВ и ВС треугольника АВС. O 2. Воспользовавшись теоремой о том, что каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка и обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему, получим, что ОВ=ОА и ОВ=ОС. 3. Поэтому ОА=ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре к этому отрезку. 4. Следовательно, все три серединных перпендикуляра m, n и p к сторонам треугольника АВС пересекаются в точке О. Теорема доказана. р

    Точка пересечения высот (или их продолжений)

    Высота треугольника- перпендикуляр, проведенный из вершины любого угла треугольника к прямой, содержащей противоположную сторону.

    Высоты треугольника или их продолжения пересекаются в одной точке, которая может лежать в треугольнике, а может находиться за его пределами.

    Доказательство:

    Докажем, что прямые АА 1 , ВВ 1 и СС 1 пересекаются в одной точке. В A C C2 C1 A1 A2 В 1 В 2 1. Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . 2. Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ=А 2 С и АВ=СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С=СВ 2 . Аналогично С 2 А=АВ 2 и С 2 В=ВА 2 . Кроме того, как следует из построения, СС 1 перпендикулярен А 2 В 2 , АА 1 перпендикулярен В 2 С 2 и ВВ 1 перпендикулярен А 2 С 2 (из следствия по теореме параллельных прямых и секущей) . Таким об p азом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, они пересекаются в одной точке. Теорема доказана.

    Цели:
    - обобщить знания учащихся потеме «Четыре замечательные точки треугольника», продолжить работу по формированию навыков построения высоты, медианы, биссектрисы треугольника;

    Познакомить учащихся с новыми понятиями вписанной окружности в треугольник и описанной около него;

    Развивать навыкиисследования;
    - воспитывать настойчивость, точность, организованностьучащихся.
    Задача: расширить познавательный интерес к предметугеометрия.
    Оборудование: доска, чертёжные инструменты, цветные карандаши, модель треугольника на альбомном листе; компьютер, мультимедийный проектор, экран.

    Ход урока

    1. Организационный момент (1 минута)
    Учитель: На этом уроке каждый из вас почувствует себя в роли инженера-исследователя, после окончания практической работы вы сможете оценить себя. Чтобы работа была успешна, надо очень точно и организовано выполнять все действия с моделью в ходе урока. Желаю успеха.
    2.
    Учитель: начертите в тетради неразвёрнутый угол
    В. Какие вы знаете способы построения биссектрисы угла?

    Определение биссектрисы угла. Два ученика выполняют на доскепостроение биссектрисы угла (по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устнодоказывают утверждения:
    1. Каким свойством обладают точки биссектрисы угла?
    2. Что можно сказать о точках, лежащих внутри угла иравноудалённых от сторон угла?
    Учитель: начертите в тетрадиостроугольный треугольник АВС и любым из способов, постройте биссектрисы угла А и угла С, точка их

    пересечения - точка О. Какую гипотезу можете выдвинуть о луче ВО? Докажите, что луч ВО - биссектриса треугольника АВС. Сформулируйте вывод о расположении всех биссектрис треугольника.
    3. Работа с моделью треугольника (5-7 минут).
    1 вариант - остроугольный треугольник;
    2 вариант - прямоугольный треугольник;
    3 вариант - тупоугольный треугольник.
    Учитель: на модели треугольника постройте две биссектрисы, обведите их жёлтым цветом. Обозначьте точку пересечения

    биссектрис точкой К.Смотреть слайд № 1.
    4. Подготовка к основному этапу урока (10-13 минут).
    Учитель: начертите в тетради отрезок АВ. С помощью каких инструментов можно построить серединный перпендикуляр к отрезку? Определение серединного перпендикуляра. Два ученика выполняют на доскепостроение серединного перпендикуляра

    (по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устно доказывают утверждения:
    1. Каким свойством обладают точки серединногоперпендикуляра к отрезку?
    2. Что можно сказать о точках равноудалённых от концовотрезка АВ?Учитель: начертите в тетрадипрямоугольный треугольник АВС и постройте серединные перпендикуляры к двум любым сторонам треугольника АВС.

    Обозначьте точку пересечения О. Проведите перпендикуляр к третьей стороне через точку О. Что вы заметили? Докажите, что это серединный перпендикуляр к отрезку.
    5. Работа смоделью треугольника (5 минут).Учитель: на модели треугольникапостройте серединные перпендикуляры к двум сторонам треугольника и обведите их зелёным цветом. Обозначьте точку пересечения серединных перпендикуляров точкой О. Смотреть слайд № 2.

    6. Подготовка к основному этапуурока (5-7 минут).Учитель: начертите тупоугольныйтреугольник АВС и постройте две высоты. Обозначьте их точку пересечения О.
    1. Что можно сказать о третьей высоте (третья высота,если её продолжить за основание, будет проходить через точку О)?

    2. Как доказать, что все высоты пересекаются в однойточке?
    3. Какую новую фигуру образуют эти высоты и чем они в нейявляются?
    7. Работа с моделью треугольника (5 минут).
    Учитель: на модели треугольника постройте три высоты и обведите их синим цветом. Обозначьте точку пересечения высот точкой Н. Смотреть слайд № 3.

    Урок второй

    8. Подготовка к основному этапу урока (10-12 минут).
    Учитель: начертите остроугольный треугольник АВС и постройте все его медианы. Обозначьте их точку пересечения О. Какимсвойством обладают медианы треугольника?

    9. Работа с моделью треугольника (5минут).
    Учитель: на модели треугольника постройте три медианы и обведите их коричневым цветом.

    Обозначьте точку пересечения медиан точкой Т.Смотретьслайд № 4.
    10. Проверка правильности построения (10-15 минут).
    1. Что можно сказать о точке К? / ТочкаК-точка пересечения биссектрис, она равноудалена от всех сторон треугольника/
    2. Покажите на модели расстояние от точки К долюбой стороны треугольника. Какую фигуру вы начертили? Как расположен этот

    отрезок к стороне? Выделите жирно простым карандашом. (Смотреть слайд № 5).
    3. Чем является точка, равноудалённаяот трёх точек плоскости, не лежащих на одной прямой? Постройте жёлтым карандашом окружность с центром К и радиусом, равным выделенному простым карандашом расстоянию. (Смотреть слайд № 6).
    4. Что вы заметили? Как расположена этаокружность относительно треугольника? Вы вписали окружность в треугольник. Как можно назвать такую окружность?

    Учитель даёт определение вписанной окружности в треугольник.
    5. Что можно сказать о точке О? \ТочкаО -точка пересечения серединных перпендикуляров и она равноудалена от всех вершин треугольника \. Какую фигуру можно построить, связав точки А,В,С и О?
    6. Постройте зелёным цветомокружность(О; ОА). (Смотреть слайд № 7).
    7. Что вы заметили? Как расположена этаокружность относительно треугольника? Как можно назвать такую окружность? Как в таком случае можно назвать треугольник?

    Учитель даёт определение описанной окружности около треугольника.
    8. Приложите к точкам О,Н и Т линейку ипроведите красным цветом прямую через эти точки. Эта прямая называется прямой

    Эйлера.(Смотреть слайд № 8).
    9. Сравните ОТ и ТН. Проверьте ОТ:ТН=1: 2. (Смотреть слайд № 9).
    10. а) Найдитемедианы треугольника (коричневым цветом). Отметьте чернилами основания медиан.

    Где находятся эти три точки?
    б) Найдитевысоты треугольника (синим цветом). Отметьте чернилами основания высот. Сколько этих точек? \ 1 вариант-3; 2 вариант-2; 3 вариант-3\.в) Измерьтерасстояния от вершин до точки пересечения высот. Назовите эти расстояния (АН,

    ВН, СН). Найдите середины этих отрезков и выделите чернилами. Сколько таких

    точек? \1 вариант-3; 2 вариант-2; 3 вариант-3\.
    11. Посчитайте, сколько получилосьточек, отмеченных чернилами? \ 1 вариант - 9; 2 вариант-5; 3 вариант-9\. Обозначьте

    точки D 1 , D 2 ,…, D 9 . (Смотреть слайд № 10).Через этиточки можно построить окружность Эйлера. Центр окружности точка Е находится в середине отрезка ОН. Строим красным цветом окружность (Е; ЕD 1). Эта окружность, как и прямая,названа именем великого учёного. (Смотреть слайд № 11).
    11. Презентация об Эйлере (5 минут).
    12. Итог (3 минуты).Оценка:«5»- если получились точно жёлтая, зелёная и краснаяокружности и прямая Эйлера. «4»-если неточно получились окружности на 2-3мм. «3»- если неточно получились окружности на 5-7мм.

    Урок геометрии в 8-м классе разработан на основе модели позиционного обучения.

    Цели урока:

    • Изучение теоретического материала по теме «Четыре замечательные точки треугольника»;
    • Развитие мышления, логики, речи, воображения обучающихся, умения анализировать и оценивать работу;
    • Развитие умения групповой работы;
    • Воспитание чувства ответственности за качество и результат выполняемой работы.

    Оборудование:

    • карточки с названиями групп;
    • карточки с заданиями для каждой группы;
    • бумага формата А-4 для записи результатов работы групп;
    • эпиграф, записанный на доске.

    Ход урока

    1. Организационный момент.

    2. Определение целей и темы урока.

    Исторически геометрия началась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения – никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

    Кто не слышал о Бермудском треугольнике, в котором бесследно исчезают корабли и самолёты? А ведь сам треугольник таит в себе немало интересного и загадочного.

    Центральное место треугольника занимают так называемые замечательные точки.

    Думаю, что в конце урока вы сможете сказать: почему точки называются замечательными и являются ли они такими.

    Какова тема нашего урока? «Четыре замечательные точки треугольника». Эпиграфом к уроку могут служить слова К. Вейерштрасса: «Математик, который не является отчасти поэтом, никогда не достигнет совершенства в математике» (эпиграф написан на доске).

    Посмотрите на формулировку темы урока, на эпиграф и попробуйте определить цели вашей работы на уроке. В конце урока мы проверим, насколько вы их выполнили.

    3. Самостоятельная работа обучающихся.

    Подготовка к самостоятельной работе

    Для работы на уроке вы должны выбрать себе одну из шести групп: «Теоретики», «Творчество», «Логики-конструкторы», «Практики», «Историки», «Эксперты».

    Инструктаж

    Каждая группа получает карточки с заданиями. Если задание непонятно, учитель дополнительно делает пояснения.

    «Теоретики»

    Задание: дайте определение основным понятиям, необходимым при изучении темы «Четыре замечательные точки треугольника» (высота треугольника, медиана треугольника, биссектриса треугольника, серединный перпендикуляр, вписанная окружность, описанная окружность), можно воспользоваться учебником; напишите основные понятия на листе бумаги.

    «Историки»

    биссектрисы центре вписанного круга перпендикуляры центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром медиан центром тяжести

    В 20-х годах XIX в. французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середин отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности.

    Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на «прямой Эйлера».

    Задание: проанализируйте статью и заполните таблицу, отражающую изученный материал.

    Название точки

    Что пересекается

    «Творчество»

    Задание: придумать синквэйн(ы) по теме «Четыре замечательные точки треугольника» (например, треугольник, точка, медиана и др.)

    Правило написания синквэйна:

    В первой строчке тема называется одним словом (обычно существительным).

    Вторая строчка – это описание темы в двух словах (2 прилагательных).

    Третья строчка – это описание действия в рамках этой темы тремя словами (глаголы, деепричастия).

    Четвёртая строчка – это фраза из 4 слов, показывающая отношение к теме.

    Проследняя строчка – это синоним (метафора) из одного слова, который повторяет суть темы.

    «Логики-конструкторы»

    Медианой треугольника называется отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы.

    Биссектрисой называется отрезок биссектрисы любого угла от вершины до пересечения с противоположной стороной. Любой треугольник имеет три биссектрисы.

    Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону или на её продолжение. Любой треугольник имеет три высоты.

    Серединный перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. Любой треугольник имеет три серединных перпендикуляра.

    Задание: Используя треугольные листы бумаги, построить сгибанием точки пересечения медиан, высот, биссектрис, серединных перпендикуляров. Объяснить это всему классу.

    «Практики»

    В четвёртой книге «Начал» Евклид решает задачу «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга . Из решения другой задачи Евклида вытекает, что перпендикуляры , восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает прямой, правильный). Это предложение было, однако, известно Архимеду, Паппу, Проклу. Четвёртой особенной точкой треугольника является точка пересечения медиан . Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, начиная с XVIII в. Они были названы «замечательными» или «особенными точками треугольника».

    Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника», или «новой геометрии треугольника», одним из родоначальников которой был Леонард Эйлер.

    Задание: проанализируйте предложенный материал и придумайте схему, отражающую смысловые связи между единицами, поясните её, нарисуйте на листе бумаги, оформите на доске.

    Замечательные точки треугольника

    1.____________ 2.___________ 3.______________ 4.____________

    Чертёж 1 Чертёж 2 Чертёж 3 Чертёж 4

    ____________ ___________ ______________ ____________

    (пояснение)

    «Эксперты»

    Задание: составьте таблицу, в которой вы оцените работу каждой группы, выберите параметры, по которым вы будете оценивать работу групп, определите баллы.

    Параметры могут быть такими: участие каждого обучающегося в работе своей группы, участие в защите, интересное изложение материала, представлена наглядность и т.д.

    В своём выступлении вы должны отметить позитивные и негативные моменты в деятельности каждой группы.

    4. Выступление групп. (по 2-3 минуты)

    Результаты работы вывешиваются на доске

    5. Подведение итогов урока.

    Посмотрите на цели, сформулированные вами в начале урока. Всё ли удалось вам выполнить?

    Согласны ли вы с эпиграфом, который был выбран к сегодняшнему уроку?

    6. Задание на дом.

    1) Добейтесь того, чтобы треугольник, который опирается на остриё иглы в определённой точке, находился в равновесии, используя материал сегодняшнего урока.

    2) Начертите в различных треугольниках все 4 замечательные точки.



Понравилась статья? Поделитесь с друзьями!