Arithmetic formula sequence. Application of the formula for the nth term of an arithmetic progression

Some people treat the word “progression” with caution, as a very complex term from the branches of higher mathematics. Meanwhile, the simplest arithmetic progression is the work of the taxi meter (where they still exist). And understanding the essence (and in mathematics there is nothing more important than “understanding the essence”) of an arithmetic sequence is not so difficult, having analyzed a few elementary concepts.

Mathematical number sequence

A numerical sequence is usually called a series of numbers, each of which has its own number.

a 1 is the first member of the sequence;

and 2 is the second term of the sequence;

and 7 is the seventh member of the sequence;

and n is the nth member of the sequence;

However, not any arbitrary set of numbers and numbers interests us. We will focus our attention on a numerical sequence in which the value of the nth term is related to its ordinal number by a relationship that can be clearly formulated mathematically. In other words: the numerical value of the nth number is some function of n.

a is the value of a member of a numerical sequence;

n is its serial number;

f(n) is a function, where the ordinal number in the numerical sequence n is the argument.

Definition

An arithmetic progression is usually called a numerical sequence in which each subsequent term is greater (less) than the previous one by the same number. The formula for the nth term of an arithmetic sequence is as follows:

a n - the value of the current member of the arithmetic progression;

a n+1 - formula of the next number;

d - difference (certain number).

It is easy to determine that if the difference is positive (d>0), then each subsequent member of the series under consideration will be greater than the previous one and such an arithmetic progression will be increasing.

In the graph below it is easy to see why the number sequence is called “increasing”.

In cases where the difference is negative (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Specified member value

Sometimes it is necessary to determine the value of any arbitrary term a n of an arithmetic progression. This can be done by sequentially calculating the values ​​of all members of the arithmetic progression, starting from the first to the desired one. However, this path is not always acceptable if, for example, it is necessary to find the value of the five thousandth or eight millionth term. Traditional calculations will take a lot of time. However, a specific arithmetic progression can be studied using certain formulas. There is also a formula for the nth term: the value of any term of an arithmetic progression can be determined as the sum of the first term of the progression with the difference of the progression, multiplied by the number of the desired term, reduced by one.

The formula is universal for increasing and decreasing progression.

An example of calculating the value of a given term

Let's solve the following problem of finding the value of the nth term of an arithmetic progression.

Condition: there is an arithmetic progression with parameters:

The first term of the sequence is 3;

The difference in the number series is 1.2.

Task: you need to find the value of 214 terms

Solution: to determine the value of a given term, we use the formula:

a(n) = a1 + d(n-1)

Substituting the data from the problem statement into the expression, we have:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

Answer: The 214th term of the sequence is equal to 258.6.

The advantages of this method of calculation are obvious - the entire solution takes no more than 2 lines.

Sum of a given number of terms

Very often, in a given arithmetic series, it is necessary to determine the sum of the values ​​of some of its segments. To do this, there is also no need to calculate the values ​​of each term and then add them up. This method is applicable if the number of terms whose sum needs to be found is small. In other cases, it is more convenient to use the following formula.

The sum of the terms of an arithmetic progression from 1 to n is equal to the sum of the first and nth terms, multiplied by the number of the term n and divided by two. If in the formula the value of the nth term is replaced by the expression from the previous paragraph of the article, we get:

Calculation example

For example, let’s solve a problem with the following conditions:

The first term of the sequence is zero;

The difference is 0.5.

The problem requires determining the sum of the terms of the series from 56 to 101.

Solution. Let's use the formula for determining the amount of progression:

s(n) = (2∙a1 + d∙(n-1))∙n/2

First, we determine the sum of the values ​​of 101 terms of the progression by substituting the given conditions of our problem into the formula:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2,525

Obviously, in order to find out the sum of the terms of the progression from the 56th to the 101st, it is necessary to subtract S 55 from S 101.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

Thus, the sum of the arithmetic progression for this example is:

s 101 - s 55 = 2,525 - 742.5 = 1,782.5

Example of practical application of arithmetic progression

At the end of the article, let's return to the example of an arithmetic sequence given in the first paragraph - a taximeter (taxi car meter). Let's consider this example.

Boarding a taxi (which includes 3 km of travel) costs 50 rubles. Each subsequent kilometer is paid at the rate of 22 rubles/km. Travel distance is 30 km. Calculate the cost of the trip.

1. Let’s discard the first 3 km, the price of which is included in the cost of landing.

30 - 3 = 27 km.

2. Further calculation is nothing more than parsing an arithmetic number series.

Member number - the number of kilometers traveled (minus the first three).

The value of the member is the sum.

The first term in this problem will be equal to a 1 = 50 rubles.

Progression difference d = 22 r.

the number we are interested in is the value of the (27+1)th term of the arithmetic progression - the meter reading at the end of the 27th kilometer is 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Calendar data calculations for an arbitrarily long period are based on formulas describing certain numerical sequences. In astronomy, the length of the orbit is geometrically dependent on the distance of the celestial body to the star. In addition, various number series are successfully used in statistics and other applied areas of mathematics.

Another type of number sequence is geometric

Geometric progression is characterized by greater rates of change compared to arithmetic progression. It is no coincidence that in politics, sociology, and medicine, in order to show the high speed of spread of a particular phenomenon, for example, a disease during an epidemic, they often say that the process develops in geometric progression.

The Nth term of the geometric number series differs from the previous one in that it is multiplied by some constant number - the denominator, for example, the first term is 1, the denominator is correspondingly equal to 2, then:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - the value of the current term of the geometric progression;

b n+1 - formula of the next term of the geometric progression;

q is the denominator of the geometric progression (a constant number).

If the graph of an arithmetic progression is a straight line, then a geometric progression paints a slightly different picture:

As in the case of arithmetic, geometric progression has a formula for the value of an arbitrary term. Any nth term of a geometric progression is equal to the product of the first term and the denominator of the progression to the power of n reduced by one:

Example. We have a geometric progression with the first term equal to 3 and the denominator of the progression equal to 1.5. Let's find the 5th term of the progression

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1.5 4 = 15.1875

The sum of a given number of terms is also calculated using a special formula. The sum of the first n terms of a geometric progression is equal to the difference between the product of the nth term of the progression and its denominator and the first term of the progression, divided by the denominator reduced by one:

If b n is replaced using the formula discussed above, the value of the sum of the first n terms of the number series under consideration will take the form:

Example. The geometric progression starts with the first term equal to 1. The denominator is set to 3. Let's find the sum of the first eight terms.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

If for every natural number n match a real number a n , then they say that it is given number sequence :

a 1 , a 2 , a 3 , . . . , a n , . . . .

So, the number sequence is a function of the natural argument.

Number a 1 called first term of the sequence , number a 2 second term of the sequence , number a 3 third and so on. Number a n called nth member of the sequence , and a natural number nhis number .

From two adjacent members a n And a n +1 sequence member a n +1 called subsequent (relative to a n ), A a n previous (relative to a n +1 ).

To define a sequence, you need to specify a method that allows you to find a member of the sequence with any number.

Often the sequence is specified using nth term formulas , that is, a formula that allows you to determine a member of a sequence by its number.

For example,

a sequence of positive odd numbers can be given by the formula

a n= 2n- 1,

and the sequence of alternating 1 And -1 - formula

b n = (-1)n +1 .

The sequence can be determined recurrent formula, that is, a formula that expresses any member of the sequence, starting with some, through the previous (one or more) members.

For example,

If a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

If a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , then the first seven terms of the numerical sequence are established as follows:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sequences can be final And endless .

The sequence is called ultimate , if it has a finite number of members. The sequence is called endless , if it has infinitely many members.

For example,

sequence of two-digit natural numbers:

10, 11, 12, 13, . . . , 98, 99

final.

Sequence of prime numbers:

2, 3, 5, 7, 11, 13, . . .

endless.

The sequence is called increasing , if each of its members, starting from the second, is greater than the previous one.

The sequence is called decreasing , if each of its members, starting from the second, is less than the previous one.

For example,

2, 4, 6, 8, . . . , 2n, . . . — increasing sequence;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — decreasing sequence.

A sequence whose elements do not decrease as the number increases, or, conversely, do not increase, is called monotonous sequence .

Monotonic sequences, in particular, are increasing sequences and decreasing sequences.

Arithmetic progression

Arithmetic progression is a sequence in which each member, starting from the second, is equal to the previous one, to which the same number is added.

a 1 , a 2 , a 3 , . . . , a n, . . .

is an arithmetic progression if for any natural number n the condition is met:

a n +1 = a n + d,

Where d - a certain number.

Thus, the difference between the subsequent and previous terms of a given arithmetic progression is always constant:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Number d called difference of arithmetic progression.

To define an arithmetic progression, it is enough to indicate its first term and difference.

For example,

If a 1 = 3, d = 4 , then we find the first five terms of the sequence as follows:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

For an arithmetic progression with the first term a 1 and the difference d her n

a n = a 1 + (n- 1)d.

For example,

find the thirtieth term of the arithmetic progression

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

then obviously

a n=
a n-1 + a n+1
2

Each member of an arithmetic progression, starting from the second, is equal to the arithmetic mean of the preceding and subsequent members.

the numbers a, b and c are successive terms of some arithmetic progression if and only if one of them is equal to the arithmetic mean of the other two.

For example,

a n = 2n- 7 , is an arithmetic progression.

Let's use the above statement. We have:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Hence,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Note that n The th term of an arithmetic progression can be found not only through a 1 , but also any previous a k

a n = a k + (n- k)d.

For example,

For a 5 can be written down

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

then obviously

a n=
a n-k +a n+k
2

any member of an arithmetic progression, starting from the second, is equal to half the sum of the equally spaced members of this arithmetic progression.

In addition, for any arithmetic progression the following equality holds:

a m + a n = a k + a l,

m + n = k + l.

For example,

in arithmetic progression

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, because

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

first n terms of an arithmetic progression is equal to the product of half the sum of the extreme terms and the number of terms:

From here, in particular, it follows that if you need to sum the terms

a k, a k +1 , . . . , a n,

then the previous formula retains its structure:

For example,

in arithmetic progression 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

If an arithmetic progression is given, then the quantities a 1 , a n, d, n AndS n connected by two formulas:

Therefore, if the values ​​of three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

An arithmetic progression is a monotonic sequence. In this case:

  • If d > 0 , then it is increasing;
  • If d < 0 , then it is decreasing;
  • If d = 0 , then the sequence will be stationary.

Geometric progression

Geometric progression is a sequence in which each member, starting from the second, is equal to the previous one multiplied by the same number.

b 1 , b 2 , b 3 , . . . , b n, . . .

is a geometric progression if for any natural number n the condition is met:

b n +1 = b n · q,

Where q ≠ 0 - a certain number.

Thus, the ratio of the subsequent term of a given geometric progression to the previous one is a constant number:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Number q called denominator of geometric progression.

To define a geometric progression, it is enough to indicate its first term and denominator.

For example,

If b 1 = 1, q = -3 , then we find the first five terms of the sequence as follows:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 and denominator q her n The th term can be found using the formula:

b n = b 1 · qn -1 .

For example,

find the seventh term of the geometric progression 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

then obviously

b n 2 = b n -1 · b n +1 ,

each member of the geometric progression, starting from the second, is equal to the geometric mean (proportional) of the preceding and subsequent members.

Since the converse is also true, the following statement holds:

the numbers a, b and c are successive terms of some geometric progression if and only if the square of one of them is equal to the product of the other two, that is, one of the numbers is the geometric mean of the other two.

For example,

Let us prove that the sequence given by the formula b n= -3 2 n , is a geometric progression. Let's use the above statement. We have:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Hence,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

which proves the desired statement.

Note that n The th term of a geometric progression can be found not only through b 1 , but also any previous member b k , for which it is enough to use the formula

b n = b k · qn - k.

For example,

For b 5 can be written down

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

then obviously

b n 2 = b n - k· b n + k

the square of any term of a geometric progression, starting from the second, is equal to the product of the terms of this progression equidistant from it.

In addition, for any geometric progression the equality is true:

b m· b n= b k· b l,

m+ n= k+ l.

For example,

in geometric progression

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , because

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

first n members of a geometric progression with denominator q 0 calculated by the formula:

And when q = 1 - according to the formula

S n= nb 1

Note that if you need to sum the terms

b k, b k +1 , . . . , b n,

then the formula is used:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

For example,

in geometric progression 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

If a geometric progression is given, then the quantities b 1 , b n, q, n And S n connected by two formulas:

Therefore, if the values ​​of any three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

For a geometric progression with the first term b 1 and denominator q the following take place properties of monotonicity :

  • progression is increasing if one of the following conditions is met:

b 1 > 0 And q> 1;

b 1 < 0 And 0 < q< 1;

  • The progression is decreasing if one of the following conditions is met:

b 1 > 0 And 0 < q< 1;

b 1 < 0 And q> 1.

If q< 0 , then the geometric progression is alternating: its terms with odd numbers have the same sign as its first term, and terms with even numbers have the opposite sign. It is clear that an alternating geometric progression is not monotonic.

Product of the first n members of a geometric progression can be calculated using the formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

For example,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Infinitely decreasing geometric progression

Infinitely decreasing geometric progression called an infinite geometric progression whose denominator modulus is less 1 , that is

|q| < 1 .

Note that an infinitely decreasing geometric progression may not be a decreasing sequence. It fits the occasion

1 < q< 0 .

With such a denominator, the sequence is alternating. For example,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

The sum of an infinitely decreasing geometric progression name the number to which the sum of the first ones approaches without limit n members of a progression with an unlimited increase in the number n . This number is always finite and is expressed by the formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

For example,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relationship between arithmetic and geometric progressions

Arithmetic and geometric progressions are closely related. Let's look at just two examples.

a 1 , a 2 , a 3 , . . . d , That

b a 1 , b a 2 , b a 3 , . . . b d .

For example,

1, 3, 5, . . . - arithmetic progression with difference 2 And

7 1 , 7 3 , 7 5 , . . . - geometric progression with denominator 7 2 .

b 1 , b 2 , b 3 , . . . - geometric progression with denominator q , That

log a b 1, log a b 2, log a b 3, . . . - arithmetic progression with difference log aq .

For example,

2, 12, 72, . . . - geometric progression with denominator 6 And

lg 2, lg 12, lg 72, . . . - arithmetic progression with difference lg 6 .

The concept of a number sequence implies that each natural number corresponds to some real value. Such a series of numbers can be either arbitrary or have certain properties - a progression. In the latter case, each subsequent element (member) of the sequence can be calculated using the previous one.

An arithmetic progression is a sequence of numerical values ​​in which its neighboring members differ from each other by the same number (all elements of the series, starting from the 2nd, have a similar property). This number - the difference between the previous and subsequent terms - is constant and is called the progression difference.

Progression difference: definition

Consider a sequence consisting of j values ​​A = a(1), a(2), a(3), a(4) ... a(j), j belongs to the set of natural numbers N. An arithmetic progression, according to its definition, is a sequence , in which a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. The value d is the desired difference of this progression.

d = a(j) – a(j-1).

Highlight:

  • An increasing progression, in which case d > 0. Example: 4, 8, 12, 16, 20, ...
  • Decreasing progression, then d< 0. Пример: 18, 13, 8, 3, -2, …

Difference progression and its arbitrary elements

If 2 arbitrary terms of the progression are known (i-th, k-th), then the difference for a given sequence can be determined based on the relationship:

a(i) = a(k) + (i – k)*d, which means d = (a(i) – a(k))/(i-k).

Difference of progression and its first term

This expression will help determine an unknown value only in cases where the number of the sequence element is known.

Progression difference and its sum

The sum of a progression is the sum of its terms. To calculate the total value of its first j elements, use the appropriate formula:

S(j) =((a(1) + a(j))/2)*j, but since a(j) = a(1) + d(j – 1), then S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.


For example, the sequence \(2\); \(5\); \(8\); \(11\); \(14\)... is an arithmetic progression, because each subsequent element differs from the previous one by three (can be obtained from the previous one by adding three):

In this progression, the difference \(d\) is positive (equal to \(3\)), and therefore each next term is greater than the previous one. Such progressions are called increasing.

However, \(d\) can also be a negative number. For example, in arithmetic progression \(16\); \(10\); \(4\); \(-2\); \(-8\)... the progression difference \(d\) is equal to minus six.

And in this case, each next element will be smaller than the previous one. These progressions are called decreasing.

Arithmetic progression notation

Progression is indicated by a small Latin letter.

Numbers that form a progression are called members(or elements).

They are denoted by the same letter as an arithmetic progression, but with a numerical index equal to the number of the element in order.

For example, the arithmetic progression \(a_n = \left\( 2; 5; 8; 11; 14...\right\)\) consists of the elements \(a_1=2\); \(a_2=5\); \(a_3=8\) and so on.

In other words, for the progression \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Solving arithmetic progression problems

In principle, the information presented above is already enough to solve almost any arithmetic progression problem (including those offered at the OGE).

Example (OGE). The arithmetic progression is specified by the conditions \(b_1=7; d=4\). Find \(b_5\).
Solution:

Answer: \(b_5=23\)

Example (OGE). The first three terms of an arithmetic progression are given: \(62; 49; 36…\) Find the value of the first negative term of this progression..
Solution:

We are given the first elements of the sequence and know that it is an arithmetic progression. That is, each element differs from its neighbor by the same number. Let's find out which one by subtracting the previous one from the next element: \(d=49-62=-13\).

Now we can restore our progression to the (first negative) element we need.

Ready. You can write an answer.

Answer: \(-3\)

Example (OGE). Given several consecutive elements of an arithmetic progression: \(…5; x; 10; 12.5...\) Find the value of the element designated by the letter \(x\).
Solution:


To find \(x\), we need to know how much the next element differs from the previous one, in other words, the progression difference. Let's find it from two known neighboring elements: \(d=12.5-10=2.5\).

And now we can easily find what we are looking for: \(x=5+2.5=7.5\).


Ready. You can write an answer.

Answer: \(7,5\).

Example (OGE). The arithmetic progression is defined by the following conditions: \(a_1=-11\); \(a_(n+1)=a_n+5\) Find the sum of the first six terms of this progression.
Solution:

We need to find the sum of the first six terms of the progression. But we do not know their meanings; we are given only the first element. Therefore, we first calculate the values ​​​​one by one, using what is given to us:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
And having calculated the six elements we need, we find their sum.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

The required amount has been found.

Answer: \(S_6=9\).

Example (OGE). In arithmetic progression \(a_(12)=23\); \(a_(16)=51\). Find the difference of this progression.
Solution:

Answer: \(d=7\).

Important formulas for arithmetic progression

As you can see, many problems on arithmetic progression can be solved simply by understanding the main thing - that an arithmetic progression is a chain of numbers, and each subsequent element in this chain is obtained by adding the same number to the previous one (the difference of the progression).

However, sometimes there are situations when deciding “head-on” is very inconvenient. For example, imagine that in the very first example we need to find not the fifth element \(b_5\), but the three hundred and eighty-sixth \(b_(386)\). Should we add four \(385\) times? Or imagine that in the penultimate example you need to find the sum of the first seventy-three elements. You'll be tired of counting...

Therefore, in such cases they do not solve things “head-on”, but use special formulas derived for arithmetic progression. And the main ones are the formula for the nth term of the progression and the formula for the sum of \(n\) first terms.

Formula of the \(n\)th term: \(a_n=a_1+(n-1)d\), where \(a_1\) is the first term of the progression;
\(n\) – number of the required element;
\(a_n\) – term of the progression with number \(n\).


This formula allows us to quickly find even the three-hundredth or the millionth element, knowing only the first and the difference of the progression.

Example. The arithmetic progression is specified by the conditions: \(b_1=-159\); \(d=8.2\). Find \(b_(246)\).
Solution:

Answer: \(b_(246)=1850\).

Formula for the sum of the first n terms: \(S_n=\frac(a_1+a_n)(2) \cdot n\), where



\(a_n\) – the last summed term;


Example (OGE). The arithmetic progression is specified by the conditions \(a_n=3.4n-0.6\). Find the sum of the first \(25\) terms of this progression.
Solution:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

To calculate the sum of the first twenty-five terms, we need to know the value of the first and twenty-fifth terms.
Our progression is given by the formula of the nth term depending on its number (for more details, see). Let's calculate the first element by substituting one for \(n\).

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

Now let's find the twenty-fifth term by substituting twenty-five instead of \(n\).

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

Well, now we can easily calculate the required amount.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

The answer is ready.

Answer: \(S_(25)=1090\).

For the sum \(n\) of the first terms, you can get another formula: you just need to \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) instead of \(a_n\) substitute the formula for it \(a_n=a_1+(n-1)d\). We get:

Formula for the sum of the first n terms: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), where

\(S_n\) – the required sum of \(n\) first elements;
\(a_1\) – the first summed term;
\(d\) – progression difference;
\(n\) – number of elements in total.

Example. Find the sum of the first \(33\)-ex terms of the arithmetic progression: \(17\); \(15.5\); \(14\)…
Solution:

Answer: \(S_(33)=-231\).

More complex arithmetic progression problems

Now you have all the information you need to solve almost any arithmetic progression problem. Let’s finish the topic by considering problems in which you not only need to apply formulas, but also think a little (in mathematics this can be useful ☺)

Example (OGE). Find the sum of all negative terms of the progression: \(-19.3\); \(-19\); \(-18.7\)…
Solution:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

The task is very similar to the previous one. We begin to solve the same thing: first we find \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Now I would like to substitute \(d\) into the formula for the sum... and here a small nuance emerges - we do not know \(n\). In other words, we don’t know how many terms will need to be added. How to find out? Let's think. We will stop adding elements when we reach the first positive element. That is, you need to find out the number of this element. How? Let's write down the formula for calculating any element of an arithmetic progression: \(a_n=a_1+(n-1)d\) for our case.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

We need \(a_n\) to become greater than zero. Let's find out at what \(n\) this will happen.

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

We divide both sides of the inequality by \(0.3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

We transfer minus one, not forgetting to change the signs

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Let's calculate...

\(n>65,333…\)

...and it turns out that the first positive element will have the number \(66\). Accordingly, the last negative one has \(n=65\). Just in case, let's check this.

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

So we need to add the first \(65\) elements.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

The answer is ready.

Answer: \(S_(65)=-630.5\).

Example (OGE). The arithmetic progression is specified by the conditions: \(a_1=-33\); \(a_(n+1)=a_n+4\). Find the sum from the \(26\)th to the \(42\) element inclusive.
Solution:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

In this problem you also need to find the sum of elements, but starting not from the first, but from the \(26\)th. For such a case we do not have a formula. How to decide?
It’s easy - to get the sum from the \(26\)th to the \(42\)th, you must first find the sum from the \(1\)th to the \(42\)th, and then subtract from it the sum from first to \(25\)th (see picture).


For our progression \(a_1=-33\), and the difference \(d=4\) (after all, it is the four that we add to the previous element to find the next one). Knowing this, we find the sum of the first \(42\)-y elements.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Now the sum of the first \(25\) elements.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

And finally, we calculate the answer.

\(S=S_(42)-S_(25)=2058-375=1683\)

Answer: \(S=1683\).

For arithmetic progression, there are several more formulas that we did not consider in this article due to their low practical usefulness. However, you can easily find them.

Entry level

Arithmetic progression. Detailed theory with examples (2019)

Number sequence

So, let's sit down and start writing some numbers. For example:
You can write any numbers, and there can be as many of them as you like (in our case, there are them). No matter how many numbers we write, we can always say which one is first, which one is second, and so on until the last, that is, we can number them. This is an example of a number sequence:

Number sequence
For example, for our sequence:

The assigned number is specific to only one number in the sequence. In other words, there are no three second numbers in the sequence. The second number (like the th number) is always the same.
The number with number is called the th term of the sequence.

We usually call the entire sequence by some letter (for example,), and each member of this sequence is the same letter with an index equal to the number of this member: .

In our case:

Let's say we have a number sequence in which the difference between adjacent numbers is the same and equal.
For example:

etc.
This number sequence is called an arithmetic progression.
The term "progression" was introduced by the Roman author Boethius back in the 6th century and was understood in a broader sense as an infinite numerical sequence. The name "arithmetic" was transferred from the theory of continuous proportions, which was studied by the ancient Greeks.

This is a number sequence, each member of which is equal to the previous one added to the same number. This number is called the difference of an arithmetic progression and is designated.

Try to determine which number sequences are an arithmetic progression and which are not:

a)
b)
c)
d)

Got it? Let's compare our answers:
Is arithmetic progression - b, c.
Is not arithmetic progression - a, d.

Let's return to the given progression () and try to find the value of its th term. Exists two way to find it.

1. Method

We can add the progression number to the previous value until we reach the th term of the progression. It’s good that we don’t have much to summarize - only three values:

So, the th term of the described arithmetic progression is equal to.

2. Method

What if we needed to find the value of the th term of the progression? The summation would take us more than one hour, and it is not a fact that we would not make mistakes when adding numbers.
Of course, mathematicians have come up with a way in which it is not necessary to add the difference of an arithmetic progression to the previous value. Take a closer look at the drawn picture... Surely you have already noticed a certain pattern, namely:

For example, let’s see what the value of the th term of this arithmetic progression consists of:


In other words:

Try to find the value of a member of a given arithmetic progression yourself in this way.

Did you calculate? Compare your notes with the answer:

Please note that you got exactly the same number as in the previous method, when we sequentially added the terms of the arithmetic progression to the previous value.
Let’s try to “depersonalize” this formula - let’s put it in general form and get:

Arithmetic progression equation.

Arithmetic progressions can be increasing or decreasing.

Increasing- progressions in which each subsequent value of the terms is greater than the previous one.
For example:

Descending- progressions in which each subsequent value of the terms is less than the previous one.
For example:

The derived formula is used in the calculation of terms in both increasing and decreasing terms of an arithmetic progression.
Let's check this in practice.
We are given an arithmetic progression consisting of the following numbers: Let's check what the th number of this arithmetic progression will be if we use our formula to calculate it:


Since then:

Thus, we are convinced that the formula operates in both decreasing and increasing arithmetic progression.
Try to find the th and th terms of this arithmetic progression yourself.

Let's compare the results:

Arithmetic progression property

Let's complicate the problem - we will derive the property of arithmetic progression.
Let's say we are given the following condition:
- arithmetic progression, find the value.
Easy, you say and start counting according to the formula you already know:

Let, ah, then:

Absolutely true. It turns out that we first find, then add it to the first number and get what we are looking for. If the progression is represented by small values, then there is nothing complicated about it, but what if we are given numbers in the condition? Agree, there is a possibility of making a mistake in the calculations.
Now think about whether it is possible to solve this problem in one step using any formula? Of course yes, and that’s what we’ll try to bring out now.

Let us denote the required term of the arithmetic progression as, the formula for finding it is known to us - this is the same formula we derived at the beginning:
, Then:

  • the previous term of the progression is:
  • the next term of the progression is:

Let's sum up the previous and subsequent terms of the progression:

It turns out that the sum of the previous and subsequent terms of the progression is the double value of the progression term located between them. In other words, to find the value of a progression term with known previous and successive values, you need to add them and divide by.

That's right, we got the same number. Let's secure the material. Calculate the value for the progression yourself, it’s not at all difficult.

Well done! You know almost everything about progression! It remains to find out only one formula, which, according to legend, was easily deduced for himself by one of the greatest mathematicians of all time, the “king of mathematicians” - Karl Gauss...

When Carl Gauss was 9 years old, a teacher, busy checking the work of students in other classes, assigned the following task in class: “Calculate the sum of all natural numbers from to (according to other sources to) inclusive.” Imagine the teacher’s surprise when one of his students (this was Karl Gauss) a minute later gave the correct answer to the task, while most of the daredevil’s classmates, after long calculations, received the wrong result...

Young Carl Gauss noticed a certain pattern that you can easily notice too.
Let's say we have an arithmetic progression consisting of -th terms: We need to find the sum of these terms of the arithmetic progression. Of course, we can manually sum all the values, but what if the task requires finding the sum of its terms, as Gauss was looking for?

Let us depict the progression given to us. Take a close look at the highlighted numbers and try to perform various mathematical operations with them.


Have you tried it? What did you notice? Right! Their sums are equal


Now tell me, how many such pairs are there in total in the progression given to us? Of course, exactly half of all numbers, that is.
Based on the fact that the sum of two terms of an arithmetic progression is equal, and similar pairs are equal, we obtain that the total sum is equal to:
.
Thus, the formula for the sum of the first terms of any arithmetic progression will be:

In some problems we do not know the th term, but we know the difference of the progression. Try to substitute the formula of the th term into the sum formula.
What did you get?

Well done! Now let's return to the problem that was asked to Carl Gauss: calculate on your own what the sum of the numbers starting from the th is equal to and the sum of the numbers starting from the th.

How much did you get?
Gauss found that the sum of the terms is equal, and the sum of the terms. Is that what you decided?

In fact, the formula for the sum of terms of an arithmetic progression was proven by the ancient Greek scientist Diophantus back in the 3rd century, and throughout this time, witty people made full use of the properties of an arithmetic progression.
For example, imagine Ancient Egypt and the largest construction project of that time - the construction of a pyramid... The picture shows one side of it.

Where is the progression here, you say? Look carefully and find a pattern in the number of sand blocks in each row of the pyramid wall.


Why not an arithmetic progression? Calculate how many blocks are needed to build one wall if block bricks are placed at the base. I hope you won’t count while moving your finger across the monitor, you remember the last formula and everything we said about arithmetic progression?

In this case, the progression looks like this: .
Arithmetic progression difference.
The number of terms of an arithmetic progression.
Let's substitute our data into the last formulas (calculate the number of blocks in 2 ways).

Method 1.

Method 2.

And now you can calculate on the monitor: compare the obtained values ​​with the number of blocks that are in our pyramid. Got it? Well done, you have mastered the sum of the nth terms of an arithmetic progression.
Of course, you can’t build a pyramid from blocks at the base, but from? Try to calculate how many sand bricks are needed to build a wall with this condition.
Did you manage?
The correct answer is blocks:

Training

Tasks:

  1. Masha is getting in shape for summer. Every day she increases the number of squats by. How many times will Masha do squats in a week if she did squats at the first training session?
  2. What is the sum of all odd numbers contained in.
  3. When storing logs, loggers stack them in such a way that each top layer contains one log less than the previous one. How many logs are in one masonry, if the foundation of the masonry is logs?

Answers:

  1. Let us define the parameters of the arithmetic progression. In this case
    (weeks = days).

    Answer: In two weeks, Masha should do squats once a day.

  2. First odd number, last number.
    Arithmetic progression difference.
    The number of odd numbers in is half, however, let’s check this fact using the formula for finding the th term of an arithmetic progression:

    Numbers do contain odd numbers.
    Let's substitute the available data into the formula:

    Answer: The sum of all odd numbers contained in is equal.

  3. Let's remember the problem about pyramids. For our case, a , since each top layer is reduced by one log, then in total there are a bunch of layers, that is.
    Let's substitute the data into the formula:

    Answer: There are logs in the masonry.

Let's sum it up

  1. - a number sequence in which the difference between adjacent numbers is the same and equal. It can be increasing or decreasing.
  2. Finding formula The th term of an arithmetic progression is written by the formula - , where is the number of numbers in the progression.
  3. Property of members of an arithmetic progression- - where is the number of numbers in progression.
  4. The sum of the terms of an arithmetic progression can be found in two ways:

    , where is the number of values.

ARITHMETIC PROGRESSION. MIDDLE LEVEL

Number sequence

Let's sit down and start writing some numbers. For example:

You can write any numbers, and there can be as many of them as you like. But we can always say which one is first, which one is second, and so on, that is, we can number them. This is an example of a number sequence.

Number sequence is a set of numbers, each of which can be assigned a unique number.

In other words, each number can be associated with a certain natural number, and a unique one. And we will not assign this number to any other number from this set.

The number with number is called the th member of the sequence.

We usually call the entire sequence by some letter (for example,), and each member of this sequence is the same letter with an index equal to the number of this member: .

It is very convenient if the th term of the sequence can be specified by some formula. For example, the formula

sets the sequence:

And the formula is the following sequence:

For example, an arithmetic progression is a sequence (the first term here is equal, and the difference is). Or (, difference).

nth term formula

We call a formula recurrent in which, in order to find out the th term, you need to know the previous or several previous ones:

To find, for example, the th term of the progression using this formula, we will have to calculate the previous nine. For example, let it. Then:

Well, is it clear now what the formula is?

In each line we add to, multiplied by some number. Which one? Very simple: this is the number of the current member minus:

Much more convenient now, right? We check:

Decide for yourself:

In an arithmetic progression, find the formula for the nth term and find the hundredth term.

Solution:

The first term is equal. What is the difference? Here's what:

(This is why it is called difference because it is equal to the difference of successive terms of the progression).

So, the formula:

Then the hundredth term is equal to:

What is the sum of all natural numbers from to?

According to legend, the great mathematician Carl Gauss, as a 9-year-old boy, calculated this amount in a few minutes. He noticed that the sum of the first and last numbers is equal, the sum of the second and penultimate is the same, the sum of the third and 3rd from the end is the same, and so on. How many such pairs are there in total? That's right, exactly half the number of all numbers, that is. So,

The general formula for the sum of the first terms of any arithmetic progression will be:

Example:
Find the sum of all two-digit multiples.

Solution:

The first such number is this. Each subsequent number is obtained by adding to the previous number. Thus, the numbers we are interested in form an arithmetic progression with the first term and the difference.

Formula of the th term for this progression:

How many terms are there in the progression if they all have to be two-digit?

Very easy: .

The last term of the progression will be equal. Then the sum:

Answer: .

Now decide for yourself:

  1. Every day the athlete runs more meters than the previous day. How many total kilometers will he run in a week, if on the first day he ran km m?
  2. A cyclist travels more kilometers every day than the previous day. On the first day he traveled km. How many days does he need to travel to cover a kilometer? How many kilometers will he travel during the last day of his journey?
  3. The price of a refrigerator in a store decreases by the same amount every year. Determine how much the price of a refrigerator decreased each year if, put up for sale for rubles, six years later it was sold for rubles.

Answers:

  1. The most important thing here is to recognize the arithmetic progression and determine its parameters. In this case, (weeks = days). You need to determine the sum of the first terms of this progression:
    .
    Answer:
  2. Here it is given: , must be found.
    Obviously, you need to use the same sum formula as in the previous problem:
    .
    Substitute the values:

    The root obviously doesn't fit, so the answer is.
    Let's calculate the path traveled over the last day using the formula of the th term:
    (km).
    Answer:

  3. Given: . Find: .
    It couldn't be simpler:
    (rub).
    Answer:

ARITHMETIC PROGRESSION. BRIEFLY ABOUT THE MAIN THINGS

This is a number sequence in which the difference between adjacent numbers is the same and equal.

Arithmetic progression can be increasing () and decreasing ().

For example:

Formula for finding the nth term of an arithmetic progression

is written by the formula, where is the number of numbers in progression.

Property of members of an arithmetic progression

It allows you to easily find a term of a progression if its neighboring terms are known - where is the number of numbers in the progression.

Sum of terms of an arithmetic progression

There are two ways to find the amount:

Where is the number of values.

Where is the number of values.



Did you like the article? Share with your friends!