Характеристики движения используемые в теоретической механике. Применение общего уравнения динамики к исследованию движения механической системы

Примеры решения задач по теоретической механике

Статика

Условия задач

Кинематика

Кинематика материальной точки

Условие задачи

Определение скорости и ускорения точки по заданным уравнениям ее движения .
По заданным уравнениям движения точки установить вид ее траектории и для момента времени t = 1 с найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Уравнения движения точки:
x = 12 sin(πt/6) , см;
y = 6 cos 2 (πt/6) , см.

Кинематический анализ плоского механизма

Условие задачи

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна E. Стержни между собой, с ползунами и неподвижными опорами соединены с помощью цилиндрических шарниров. Точка D расположена в середине стержня AB. Длины стержней равны, соответственно
l 1 = 0,4 м; l 2 = 1,2 м; l 3 = 1,6 м; l 4 = 0,6 м.

Взаимное расположение элементов механизма в конкретном варианте задачи определяется углами α, β, γ, φ, ϑ. Стержень 1 (стержень O 1 A) вращается вокруг неподвижной точки O 1 против хода часовой стрелки с постоянной угловой скоростью ω 1 .

Для заданного положения механизма необходимо определить:

  • линейные скорости V A , V B , V D и V E точек A, B, D, E;
  • угловые скорости ω 2 , ω 3 и ω 4 звеньев 2, 3 и 4;
  • линейное ускорение a B точки B;
  • угловое ускорение ε AB звена AB;
  • положения мгновенных центров скоростей C 2 и C 3 звеньев 2 и 3 механизма.

Определение абсолютной скорости и абсолютного ускорения точки

Условие задачи

В приведенной ниже схеме рассматривается движение точки M в желобе вращающегося тела. По заданным уравнениям переносного движения φ = φ(t) и относительного движения OM = OM(t) определить абсолютную скорость и абсолютное ускорение точки в заданный момент времени.

Скачать решение задачи >>>

Динамика

Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил

Условие задачи

Груз D массой m, получив в точке A начальную скорость V 0 , движется в изогнутой трубе ABC, расположенной в вертикальной плоскости. На участке AB, длина которого l, на груз действует постоянная сила T(ее направление показано на рисунке) и сила R сопротивления среды (модуль этой силы R = μV 2 , вектор R направлен противоположно скорости V груза).

Груз, закончив движение на участке AB, в точке B трубы, не изменяя значения модуля своей скорости, переходит на участок BC. На участке BC на груз действует переменная сила F, проекция F x которой на ось x задана.

Считая груз материальной точкой, найти закон его движения на участке BC, т.е. x = f(t), где x = BD. Трением груза о трубу пренебречь.


Скачать решение задачи >>>

Теорема об изменении кинетической энергии механической системы

Условие задачи

Механическая система состоит из грузов 1 и 2, цилиндрического катка 3, двухступенчатых шкивов 4 и 5. Тела системы соединены нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Каток (сплошной однородный цилиндр) катится по опорной плоскости без скольжения. Радиусы ступеней шкивов 4 и 5 равны соответственно R 4 = 0,3 м, r 4 = 0,1 м, R 5 = 0,2 м, r 5 = 0,1 м. Массу каждого шкива считать равномерно распределенной по его внешнему ободу. Опорные плоскости грузов 1 и 2 шероховатые, коэффициент трения скольжения для каждого груза f = 0.1.

Под действием силы F, модуль которой изменяется по закону F = F(s), где s - перемещение точки ее приложения, система приходит в движение из состояния покоя. При движении системы на шкив 5 действуют силы сопротивления, момент которых относительно оси вращения постоянный и равен M 5 .

Определить значение угловой скорости шкива 4 в тот момент времени, когда перемещение s точки приложения силы F станет равным s 1 = 1,2 м.

Скачать решение задачи >>>

Применение общего уравнения динамики к исследованию движения механической системы

Условие задачи

Для механической системы определить линейное ускорение a 1 . Считать, что у блоков и катков массы распределены по наружному радиусу. Тросы и ремни считать невесомыми и нерастяжимыми; проскальзывание отсутствует. Трением качения и трением скольжения пренебречь.

Скачать решение задачи >>>

Применение принципа Даламбера к определению реакций опор вращающегося тела

Условие задачи

Вертикальный вал AK, вращающийся равномерно с угловой скоростью ω = 10 с -1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке D.

К валу жестко прикреплены невесомый стержень 1 длиной l 1 = 0,3 м, на свободном конце которого расположен груз массой m 1 = 4 кг, и однородный стержень 2 длиной l 2 = 0,6 м, имеющий массу m 2 = 8 кг. Оба стержня лежат в одной вертикальной плоскости. Точки прикрепления стержней к валу, а также углы α и β указаны в таблице. Размеры AB=BD=DE=EK=b, где b = 0,4 м. Груз принять за материальную точку.

Пренебрегая массой вала, определить реакции подпятника и подшипника.

Во всей красе и элегантности. С ее помощью Ньютон когда-то вывел на основе трех эмпирических законов Кеплера свой закон всемирного тяготения. Предмет, в общем-то, не такой сложный, понять относительно легко. Но вот сдать - сложно, так как нередко преподы бывают до ужаса придирчивыми (как Павлова , например). При решении задач нужно уметь решать диффуры и вычислять интегралы.

Основные идеи

По сути, теормех в рамках этого курса представляет собой применение вариационного принципа для расчёта "движения" разных физических систем. Вариационное исчисление кратко рассматривается в курсе Интегральные уравнения и вариационное исчисление . Уравнения Лагранжа - это уравнения Эйлера, являющиеся решением задачи с закрепленными концами .

Одна задача обычно может решаться сразу 3 разными методами:

  • Метод Лагранжа (функция Лагранжа, уравнения Лагранжа)
  • Метод Гамильтона (функция Гамильтона, уравнения Гамильтона)
  • Метод Гамильтона-Якоби (уравнение Гамильтона-Якоби)

Важно выбрать самый простой из них для конкретной задачи.

Материалы

Первый семестр (зачет)

Основные формулы

Смотреть в большом размере!

Теория

Видеозаписи

Лекций В.Р. Халилова - Attention! записаны не все лекции

Второй семестр (экзамен)

Начать надо с того, что у разных групп экзамен проходит по-разному. Обычно экзаменационный билет состоит из 2-х теор.вопросов и 1-ой задачи. Вопросы обязательны для всех, а вот от задачи можно как избавиться (за прекрасную работу в семестре + написанные контрольные), так и отхватить лишнюю (и не одну). Здесь уже о правилах игры вам расскажут на семинарах. В группах Павловой и Пименова практикуется теормин, который является своеобразным допуском к экзамену. Отсюда следует, что этот теормин надо знать идеально.

Экзамен в группах Павловой проходит примерно так: Для начала билет с 2-мя вопросами термина. На написание есть немного времени, и ключ тут - абсолютно идеально его написать. Тогда Ольга Серафимовна к вам добреет и остальной экзамен проходит очень приятно. Далее билет с 2-мя вопросами по теории + n задач (в зависимости от вашей работы в семестре). Теорию в теории можно списать. Задачи решить. Много задач на экзамене - еще не конец, если вы их прекрасно умеете решать. Это можно превратить в преимущество - за каждый пункт экзамена вы получаете +, +-, -+ или -. Оценка выставляется "по общему впечатлению" => если в теории у вас не все идеально, но потом идет 3 + за задачи, то общее впечатление хорошее. А вот если вы были без задач на экзамене и теория не идеальная, то сгладить это уже нечем.

Теория

  • Юлия. Конспект лекций (2014, pdf) - оба семестра, 2-ой поток
  • Второй поток билеты часть 1 (конспекты лекций и часть для билетов) (pdf)
  • Второй поток билеты и оглавление ко всем этим частям (pdf)
  • Ответы на билеты 1 потока (2016, pdf) - в печатном виде, очень удобно
  • Распознанный теормин к экзамену для групп Пименова (2016, pdf) - оба семестра
  • Ответы на теормин для групп Пименова (2016, pdf) - аккуратные и вроде без ошибок

Задачи

  • Семинары Павловой 2-ой семестр (2015, pdf) - аккуратные, красиво и понятно написанные
  • Задачи, которые могут быть на экзамене (jpg) - когда-то в каком-то лохматом году были на 2-м потоке, также могут быть актуальны для групп В.Р. Халилова (похожие задачи он дает на кр)
  • Задачи к билетам (pdf) - для обоих потоков (на 2-м потоке эти задачи были в группах А.Б. Пименова)

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики.

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала. Подробнее об вы можете узнать из нашей статьи.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Теоретическая механика

Теорети́ческая меха́ника - наука об общих законах механического движения и взаимодействия материальных тел. Будучи по существу одним из разделов физики , теоретическая механика, вобрав в себя фундаментальную основу в виде аксиоматики , выделилась в самостоятельную науку и получила широкое развитие благодаря своим обширным и важным приложениям в естествознании и технике, одной из основ которой она является.

В физике

В физике под теоретической механикой подразумевается часть теоретической физики, изучающая математические методы классической механики, альтернативные прямому применению законов Ньютона (так называемая аналитическая механика). Сюда входят, в частности, методы, основанные на уравнениях Лагранжа , принципы наименьшего действия , уравнении Гамильтона-Якоби и др.

Следует подчеркнуть, что аналитическая механика может быть как нерелятивистской - тогда она пересекается с классической механикой , так и релятивистской. Принципы аналитической механики являются настолько общими, что её релятивизация не приводит к фундаментальным трудностям.

В технических науках

В технических науках под теоретической механикой подразумевается набор физико-математических методов, облегчающих расчёты механизмов, сооружений, летательных аппаратов и т. п. (так называемая прикладная механика или инженерная механика) . Практически всегда эти методы выводятся из законов классической механики - в основном, из законов Ньютона, хотя в некоторых технических задачах оказываются полезными некоторые из методов аналитической механики.

Теоретическая механика опирается на некоторое число законов, установленных в опытной механике, принимаемых за истины, не требующих доказательств - аксиомы . Эти аксиомы заменяют собой индуктивные истины опытной механики. Теоретическая механика имеет дедуктивный характер. Опираясь на аксиомы как на известный и проверенный практикой и экспериментом фундамент, теоретическая механика возводит свое здание при помощи строгих математических выводов.

Теоретическая механика как часть естествознания, использующая математические методы, имеет дело не с самими реальными материальными объектами, а с их моделями. Такими моделями, изучаемыми в теоретической механике, являются

  • материальные точки и системы материальных точек,
  • абсолютно твердые тела и системы твёрдых тел,
  • деформируемые сплошные среды .

Обычно в теоретической механике выделяют такие разделы, как

В теоретической механике широко применяются методы

  • векторного исчисления и дифференциальной геометрии ,

Теоретическая механика явилась основой для создания многих прикладных направлений, получивших большое развитие. Это механика жидкости и газа , механика деформируемого твердого тела, теория колебаний , динамика и прочность машин, гироскопия , теория управления , теория полета, навигация и др.

В высшем образовании

Теоретическая механика является одной из фундаментальных механических дисциплин на механико-математических факультетах университетов России. По этой дисциплине проводятся ежегодные всероссийские , национальные и региональные студенческие олимпиады, а также Международная олимпиада .

Примечания

Литература

См. также

  • Тренажер по теоретической механике - программированное пособие по теоретической механике.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теоретическая механика" в других словарях:

    теоретическая механика - общая механика Раздел механики, в котором излагаются основные законы и принципы этой науки и изучаются общие свойства движения механических систем. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… …

    См. МЕХАНИКА Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 …

    теоретическая механика - теоретическая механика; общая механика Раздел механики, в котором излагаются основные законы и принципы этой науки и изучаются общие свойства движения механических систем … Политехнический терминологический толковый словарь

    Сущ., кол во синонимов: 1 теормех (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    теоретическая механика - teorinė mechanika statusas T sritis fizika atitikmenys: angl. theoretical mechanics vok. theoretische Mechanik, f rus. теоретическая механика, f pranc. mécanique rationnelle, f … Fizikos terminų žodynas

    - (греч. mechanike, от mechane машина). Часть прикладной математики, наука о силе и сопротивлении в машинах; искусство применять силу к делу и строить машины. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МЕХАНИКА… … Словарь иностранных слов русского языка

    механика - Наука о механическом движении и механическом взаимодействии материальных тел. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая… … Справочник технического переводчика

    - (от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или … Физическая энциклопедия

    Теоретическая физика раздел физики, в котором в качестве основного способа познания природы используется создание математических моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является… … Википедия

    - (греч. μηχανική искусство построения машин) область физики, изучающая движение материальных тел и взаимодействие между ними. Движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.… … Википедия

1. Основные понятия теоретической механики.

2. Cтруктура курса теоретической механики.

1. Механика (в широком смысле) - это наука о движении материальных тел в пространстве и времени. Она объединяет ряд дисциплин, объектами исследования которых являются твердые, жидкие и газообразные тела. Теоретическая механика , Теория упругости , Сопротивление материалов, Гидромеханика , Газовая динамика и Аэродинамика - вот далеко не полный перечень различных разделов механики.

Как видно из их названий, они отличаются друг от друга прежде всего объектами исследования. Изучением движения самых простых из них - твердых тел - занимается теоретическая механика. Простота изучаемых в теоретической механике объектов позволяет выявить наиболее общие законы движения, справедливые для всех материальных тел независимо от их конкретных физических свойств. Поэтому теоретическую механику можно рассматривать как основу общей механики.

2. Курс теоретической механики состоит из трех разделов : статики , кинематики и динамики .

В статике рассматривается общее учение о силах и выводятся условия равновесия для твердых тел.

В кинематике излагаются математические способы задания движения тел и выводятся формулы, определяющие основные характеристики этого движения (скорость, ускорение и т.п.).

В динамике по заданному движению определяют силы, вызывающие это движение и, наоборот, по заданным силам определяют как движется тело.

Материальной точкой называют геометрическую точку, обладающая массой.

Cистемой материальных точек называется такая их совокупность, в которой положение и движение каждой точки зависит от положения и движения всех остальных точек данной системы. Часто систему материальных точек называют механической системой . Частным случаем механической системы является абсолютно твердое тело.

Абсолютно твердым называется тело, у которого расстояние между любыми двумя точками всегда остается неизменным (т.е. это абсолютно прочное и недеформируемое тело).

Свободным называют твердое тело, движение которого не ограничено другими телами.

Несвободным называют тело, движение которого, так или иначе, ограничено другими телами. Последние в механике называются связями .

Силой называют меру механического действия одного тела на другое. Поскольку взаимодействие тел определяется не только своей интенсивностью, но и направлением - сила является величиной векторной и на чертежах изображается направленным отрезком (вектором). За единицу силы в системе СИ принят ньютон (Н) . Обозначают силы заглавными буквами латинского алфавита (А, Ы, З, Й...). Численные значения (или модули векторных величин) будем обозначать теми же буквами, но без верхних стрелок (F, S, P, Q ...).


Линией действия силы называется прямая, вдоль которой направлен вектор силы.

Системой сил называется любая конечная совокупность сил, действующих на механическую систему. Принято делить системы сил на плоские (все силы действуют в одной плоскости) и пространственные . Каждая из них, в свою очередь, может быть или произвольной или параллельной (линии действия всех сил параллельны) или системой сходящихся сил (линии действия всех сил пересекаются в одной точке).

Две системы сил называются эквивалентными , если их действия на механическую систему одинаково (т.е. замена одной системы сил на другую не изменяет характера движения механической системы).

Если некоторая система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил. Отметим, что далеко не всякая система сил имеет равнодействующую. Сила, равная равнодействующей по величине, противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

Система сил, под действием которой свободное твердое тело находится в покое или движется равномерно и прямолинейно, называется уравновешенной или эквивалентной нулю.

Внутренними силами называют силы взаимодействия между материальными точками одной механической системы.

Внешние силы - это силы взаимодействия точек данной механической системы с материальными точками другой системы.

Сила, приложенная к телу в какой-либо одной его точке, называется сосредоточенной .

Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными (по объему и по поверхности соответственно).

Приведенный выше перечень основных понятий не является исчерпывающим. Остальные, не менее важные понятия будут вводиться и уточняться в процессе изложения материала курса.



Понравилась статья? Поделитесь с друзьями!