Классификация элементарных частиц. Элементарная частица

Открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: масса, спин, электрический заряд, время жизни , чётность, G-чётность, магнитный момент, барионный заряд, лептонный заряд, странность, изотопический спин, CP-чётность, зарядовая чётность.

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы

    ✪ CERN: Стандартная модель физики элементарных частиц

    ✪ Урок 473. Элементарные частицы. Позитрон. Нейтрино

    ✪ Кирпичики вселенной: Элементарные частицы из которых состоит мир. Лекция профессора Дэвида Тонга.

    ✪ Мир элементарных частиц (рассказывает академик Валерий Рубаков)

    Субтитры

Классификация

По времени жизни

  • Стабильные элементарные частицы - частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон , электрон , нейтрино , фотон , гравитон и их античастицы).
  • Нестабильные элементарные частицы - частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы - частицы с нулевой массой (фотон , глюон , гравитон и их античастицы).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • Адроны - частицы, участвующие во всех видах фундаментальных взаимодействий . Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны - адроны с целым спином , то есть являющиеся бозонами ;
    • барионы - адроны с полуцелым спином, то есть фермионы . К ним, в частности, относятся частицы, составляющие ядро атома , - протон и нейтрон .

Фундаментальные (бесструктурные) частицы

  • Лептоны - фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны , мюоны , тау-лептоны) и не наблюдалось для нейтрино . Известны 6 типов лептонов.
  • Кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон - частица, переносящая электромагнитное взаимодействие ;
    • восемь глюонов - частиц, переносящих сильное взаимодействие ;
    • три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие ;
    • гравитон - гипотетическая частица, переносящая гравитационное взаимодействие . Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц - калибровочных бозонов, кварков и лептонов - в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) (см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими - например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц - фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные  частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон , глюоны , W - и Z -бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью - например, такие, как гравитон (частица, переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них - кварки . Другие шесть - лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ - первичные, далее неразложимые частицы, из которых, как полагают, состоит вся материя. В современной физике термин «элементарные частицы» обычно употребляется для обозначения большой группы мельчайших частиц материи, не являющихся атомами (см. Атом) или атомными ядрами (см. Ядро атомное); исключение составляет ядро атома водорода - протон.

К 80-м годам 20 века науке было известно более 500 элементарных частиц, большинство которых является нестабильными. К элементарным частицам относятся протон (p), нейтрон (n), электрон (e), фотон (γ), пи-мезоны (π), мюоны (μ), тяжелые лептоны (τ + , τ -), нейтрино трех типов - электронные (V e), мюонные (V μ) и связанные с так называемым тяжелым дептоном (V τ), а также «странные» частицы (К-мезоны и гипероны), разнообразные резонансы, мезоны со скрытым очарованием, «очарованные» частицы, ипсилон-частицы (Υ), «красивые» частицы, промежуточные векторные бозоны и др. Появился самостоятельный раздел физики - физика элементарных частиц.

История физики элементарных частиц началась с 1897 года, когда Томсоном (J. J. Thomson) был открыт электрон (см. Электронное излучение); в 1911 году Милликен (R. Millikan) измерил величину его электрического заряда. Понятие «фотон» - квант света - было введено Планком (М. Planck) в 1900 году. Прямые экспериментальные доказательства существования фотона были получены Милликеном (1912-1915) и Комптоном (A. Н. Compton, 1922). В процессе изучения атомного ядра Э. Резерфорд открыл протон (см. Протонное излучение), а в 1932 году Чедвик (J. Chadwick) - нейтрон (см. Нейтронное излучение). В 1953 году было экспериментально доказано существование нейтрино, которое Паули (W. Pauli) предсказал еще в 1930 году.

Элементарные частицы делят на три группы. Первая представлена единственной элементарной частицей - фотоном, γ-квантом, или квантом электромагнитного излучения. Вторая группа - это лептоны (греческий leptos мелкий, легкий), участвующие, кроме электромагнитных, еще и в слабых взаимодействиях. Известно 6 лептонов: электрон и электронное нейтрино, мюон и мюонное нейтрино, тяжелый τ-лептон и соответствующий нейтрино. Третью - основную группу элементарных частиц составляют адроны (греческий hadros большой, сильный), которые участвуют во всех видах взаимодействий, в том числе и в сильных взаимодействиях (см. ниже). К адронам относятся частицы двух типов: барионы (греч. barys тяжелый) - часстицы с полуцелым спином и массой не меньше массы протона, и мезоны (греческий mesos средний) - частицы с нулевым или целым спином (см. Электронный парамагнитный резонанс). К барионам принадлежат протон и нейтрон, гипероны, часть резонансов и «очарованных» частиц и некоторые другие элементарные частицы. Единственным стабильным барионом является протон, остальные барионы нестабильны (нейтрон в свободном состоянии - нестабильная частица, однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Мезоны получили свое название потому, что массы первых открытых мезонов - пи-мезона и К-мезона - имели значения, промежуточные между массами протона и электрона. Позже были открыты мезоны, масса которых превышает массу протона. Адроны характеризуются также странностью (S) - нулевым, положительным или отрицательным квантовым числом. Адроны с нулевой странностью называют обычными, а с S ≠ 0 - странными. В 1964 г. Цвейг (G. Zweig) и Гелл-Манн (М. Gell-Mann) независимо друг от друга высказали предположение о кварковой структуре адронов. Результаты ряда экспериментов свидетельствуют о том, что кварки являются реальными материальными образованиями внутри адронов. Кварки обладают рядом необычных свойств, например дробным электрическим зарядом и др. В свободном состоянии кварков не наблюдали. Полагают, что все адроны образуются за счет различных сочетаний кварков.

Вначале элементарные частицы исследовали при изучении радиоактивного распада (см. Радиоактивность) и космического излучения (см.). Однако начиная с 50-х годов 20 века исследования элементарных частиц производят на ускорителях заряженных частиц (см.), в которых ускоренные частицы бомбардируют мишень или сталкиваются с частицами, летящими навстречу. При этом частицы взаимодействуют между собой, в результате чего происходит их взаимопревращение. Именно таким образом было открыто большинство элементарных частиц.

Каждая элементарная частица наряду со спецификой присущих ей взаимодействий описывается набором дискретных значений определенных физических величин, выражаемых целыми или дробными числами (квантовыми числами). Общими характеристиками всех элементарных частиц являются масса (m), время жизни (т), спин (J) - собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого, электрический заряд (Ω) и магнитный момент (μ). Электрические заряды изученных элементарных частиц по абсолютной величине являются целыми кратными числами от заряда электрона (е≈1,6*10 -10 к). У известных элементарных частиц электрические заряды равны 0, ±1 и ±2.

Все элементарные частицы имеют соответствующие античастицы, масса и спин которых равны массе и спину частицы, а электрический заряд, магнитный момент и другие характеристики равны по абсолютной величине и противоположны по знаку. Например, античастицей электрона является позитрон - электрон с положительным электрическим зарядом. Элементарная частица, тождественная своей античастице, называется истинно нейтральной, например нейтрон и антинейтрон, нейтрино и антинейтрино и т. д. При взаимодействии античастиц друг с другом происходит их аннигиляция (см.).

При попадании элементарной частицы в материальную среду они взаимодействуют с ней. Различают сильное, электромагнитное, слабое и гравитационное взаимодействия. Сильное взаимодействие (сильнее электромагнитного) возникает между элементарными частицами, находящимися на расстоянии менее 10 -15 м (1 ферми). При расстояниях более 1,5 ферми сила взаимодействия между частицами близка к нулю. Именно сильные взаимодействия между элементарными частицами обеспечивают исключительную прочность атомных ядер, лежащую в основе стабильности вещества в земных условиях. Характерной особенностью сильного взаимодействия является его независимость от электрического заряда. К сильному взаимодействию способны адроны. Сильные взаимодействия обусловливают распад короткоживущих частиц (время жизни порядка 10 -23 - 10 -24 сек.), которые называют резонансами.

Электромагнитному взаимодействию подвержены все заряженные элементарные частицы, фотоны и нейтральные частицы, обладающие магнитным моментом (например, нейтроны). В основе электромагнитных взаимодействий лежит связь с электромагнитным полем. Силы электромагнитного взаимодействия примерно в 100 раз слабее сил сильного взаимодействия. Основная сфера действия электромагнитного взаимодействия - атомы и молекулы (см. Молекула). Такое взаимодействие определяет структуру твердых тел, характер хим. процессов. Оно не ограничивается расстоянием между элементарными частицами, поэтому размер атома примерно в 10 4 раз больше размера атомного ядра.

Слабые взаимодействия лежат в основе чрезвычайно медленно протекающих процессов с участием элементарных частиц. Например, нейтрино, обладающие слабым взаимодействием, могут беспрепятственно пронизывать толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц, время жизни которых находится в пределах 10 8 - 10 -10 сек. Элементарные частицы, рожденные при сильном взаимодействии (за время 10 -23 -10 -24 сек.), но распадающиеся медленно (10 -10 сек.), называют странными.

Гравитационные взаимодействия между элементарными частицами дают чрезвычайно малые эффекты из-за ничтожности масс частиц. Этот вид взаимодействия хорошо изучен на макрообъектах, имеющих большую массу.

Многообразие элементарных частиц с разными физическими характеристиками объясняет трудность их систематизации. Из всех элементарных частиц только фотоны, электроны, нейтрино, протоны и их античастицы фактически являются стабильными, так как обладают большим временем жизни. Эти частицы представляют собой конечные продукты самопроизвольного превращения других элементарных частиц. Рождение элементарных частиц может происходить в результате первых трех типов взаимодействий. Для сильно взаимодействующих частиц источником рождения являются реакции сильного взаимодействия. Лептоны, что наиболее вероятно, возникают при распадах других элементарных частиц либо рождаются парами (частица + античастица) под воздействием фотонов.

Потоки элементарных частиц формируют ионизирующие излучения (см.), вызывающие ионизацию нейтральных молекул среды. Биологический эффект элементарных частиц связывают с образованием в облученных тканях и жидкостях организма веществ с высокой химической активностью. К таким веществам относятся свободные радикалы (см. Радикалы свободные), перекиси (см.) и другие. Элементарные частицы могут оказывать и прямое действие на био-молекулы и надмолекулярные структуры, вызывать разрыв внутримолекулярных связей, деполимеризацию высокомолекулярных соединений и т. п. Определенное значение в характере действия элементарных частиц на организм могут иметь процессы миграции энергии и образования метастабильных соединений, возникающих в результате длительного сохранения состояния возбуждения в некоторых макромолекулярных субстратах. В клетках подавляется или извращается активность ферментных систем, изменяется структура клеточных мембран и поверхностных клеточных рецепторов, что приводит к повышению проницаемости мембран и изменению диффузионных процессов, сопровождающихся явлениями денатурации белков, дегидратации тканей, нарушением внутренней среды клетки. Поражаемость клеток в значительной степени зависит от интенсивности их митотического деления (см. Митоз) и обмена веществ: с повышением этой интенсивности радиопоражаемость тканей увеличивается (см. Радиочувствительность). На этом свойстве потоков элементарные частицы - ионизирующего облучения - основано их применение для лучевой терапии (см.), особенно при лечении злокачественных новообразований. Проникающая способность заряженных элементарных частиц в большой степени зависит от линейной передачи энергии (см.), то есть от средней энергии, поглощаемой средой в месте прохождения заряженной частицы, отнесенной к единице ее пути.

Повреждающее действие потока элементарных частиц особенно сказывается на стволовых клетках кроветворной ткани, эпителии яичек, тонкой кишки, кожи (см. Лучевая болезнь, Лучевые повреждения). В первую очередь поражаются системы, находящиеся во время облучения в состоянии активного органогенеза и дифференцировки (см. Критический орган).

Биологическое и терапевтическое действие элементарных частиц зависит от их вида и дозы излучения (см. Дозы ионизирующих излучений). Так, например, при воздействии рентгеновского излучения (см. Рентгенотерапия), гамма-излучения (см. Гамма-терапия) и протонного излучения (см. Протонная терапия) на все тело человека в дозе около 100 рад наблюдается временное изменение кроветворения; внешнее воздействие нейтронного излучения (см. Нейтронное излучение) ведет к образованию в организме различных радиоактивных веществ, например радионуклидов натрия, фосфора и др. При попадании в организм радионуклидов, являющихся источниками бета-частиц (электронов или позитронов) или гамма-квантов, происходит так называемое внутреннее облучение организма (см. Инкорпорирование радиоактивных веществ). Особенно опасны в этом отношении быстро резорбирующиеся радионуклиды с равномерным распределением в организме, напр. тритий (3H) и полоний-210.

Радионуклиды, являющиеся источниками элементарных частиц и участвующие в обмене веществ, используют в радиоизотопной диагностике (см.).

Библиогр.: Ахиезер А. И. и Рекало М. П. Биография элементарных частиц, Киев, 1983, библиогр.; Боголюбов Н. Н. и Широков Д. В. Квантовые поля, М., 1980; Борн М. Атомная физика, пер. с англ., М., 1965; Джонс X. Физика радиологии, пер. с англ.. М., 1965; Кронгауз А. Н., Ляпидевский В. К. и Фролова А. В. Физические основы клинической дозиметрии, М., 1969; Лучевая терапия с помощью излучений высокой энергии, под ред. И. Беккера и Г. Шуберта, пер. с нем., М., 1964; Тюбиана М. и др. Физические основы лучевой терапии и радиобиологии, пер. с франц., М., 1969; Шпольский Э. В. Атомная физика, т. 1, М., 1984; Янг Ч. Элементарные частицы, пер. с англ.. М., 1963.

Р. В. Ставнцкий.

Слово атом означает «неделимый». Оно было введено греческими философами для обозначения мельчайших частиц, из которых, согласно их представлению, состоит материя.

Физики и химики девятнадцатого века приняли этот термин для обозначения самых мелких известных им частиц. Хотя мы уже давно в состоянии «расщепить» атомы и неделимое перестало быть неделимым, тем не менее термин этот сохранился. Согласно нынешнему нашему представлению, атом состоит из мельчайших частиц, называемых нами элементарными частицами . Существуют также и другие элементарные частицы, не являющиеся фактически составной частью атомов. Обычно их получают при помощи мощных циклотронов, синхротронов и других ускорителей частиц, специально сконструированных для изучения этих частиц. Они также возникают при прохождении космических лучей через атмосферу. Эти элементарные частицы распадаются спустя несколько миллионных долей секунды, а часто за еще более короткий промежуток времени после своего появления. В результате распада они либо видоизменяются, превращаясь в другие элементарные частицы, либо выделяют энергию в форме излучения.

Изучение элементарных частиц сосредоточивается на все возрастающем числе недолго живущих элементарных частицах. Хотя эта проблема имеет огромное значение, в частности, потому, что связана с самыми фундаментальными законами физики, тем не менее исследование частиц в настоящее время проводится почти в отрыве от других отраслей физики. По этой причине мы ограничимся рассмотрением лишь тех частиц, которые являются постоянными компонентами наиболее распространенных материалов, а также некоторых частиц, очень близко к ним примыкающих. Первой из элементарных частиц, открытых в конце девятнадцатого века, был электрон, ставший затем исключительно полезным слугой. В радиолампах поток электронов движется в вакууме; и именно посредством регулировки этого потока усиливаются входящие радиосигналы и превращаются в звук или шум. В телевизоре электронный луч служит в качестве пера, которое мгновенно и точно копирует на экране приемника то, что видит камера передатчика. В обоих этих случаях электроны движутся в вакууме так, чтобы по возможности ничто не мешало их движению. Еще одним полезным свойством является их способность, проходя через газ, заставлять его светиться. Таким образом, давая возможность электронам проходить через стеклянную трубку, наполненную газом под определенным давлением, мы используем это явление для получения неонового света, применяемого ночью для освещения крупных городов. А вот еще одна встреча с электронами: блеснула молния, и мириады электронов, пробиваясь через толщу воздуха, создают раскатистый звук грома.

Однако в земных условиях имеется сравнительно небольшое число электронов, могущих свободно двигаться, как это мы видели в предыдущих примерах. Большинство из них надежно связаны в атомах. Поскольку ядро атома заряжено положительно, оно притягивает к себе отрицательно заряженные электроны, заставляя их удерживаться на орбитах, находящихся сравнительно близко от ядра. Атом обычно состоит из ядра и некоторого числа электронов. Если электрон покидает атом, его, как правило, немедленно замещает другой электрон, который атомное ядро с большой силой притягивает к себе из своего ближайшего окружения.

Как же выглядит этот замечательный электрон? Никто его не видел и никогда не увидит; и тем не менее мы знаем его свойства настолько хорошо, что можем предсказать со всеми подробностями, как он будет вести себя в самых различных ситуациях. Мы знаем его массу (его «вес») и его электрический заряд. Мы знаем, что чаще всего он ведет себя так, как будто бы перед нами очень мелкая частица , в других же случаях он обнаруживает свойства волны . Исключительно абстрактная, но в то же самое время очень точная теория электрона была предложена в законченном виде несколько десятилетий тому назад английским физиком Дираком. Эта теория дает нам возможность определить, при каких обстоятельствах электрон будет, больше сходен с частицей, а при каких будет преобладать его волновой характер. Такая двойственная природа - частица и волна - затрудняет возможность дать четкую картину электрона; следовательно, теория, учитывающая обе эти концепции и тем не менее дающая законченное описание электрона, должна быть очень абстрактной. Но было бы неразумным ограничивать описание такого замечательного явления, как электрон, столь земными образами, как горошины и волны.

Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как электрон, за исключением лишь того, что заряжена она положительно, а не отрицательно. И действительно, такой двойник электрона был обнаружен и назван позитроном . Он входит в состав космических лучей, а также возникает в результате распада некоторых радиоактивных веществ. В земных условиях жизнь позитрона коротка. Как только он оказывается по соседству с электроном, а случается это во всех веществах, электрон и позитрон «истребляют» друг друга; положительный электрический заряд позитрона нейтрализует отрицательный заряд электрона. Поскольку согласно теории относительности масса является формой энергии и поскольку энергия «неразрушима», энергия, представленная объединенными массами электрона и позитрона, должна быть каким-то образом сохранена. Эту задачу выполняет фотон (квант света), или обычно два фотона, которые излучаются в результате этого рокового столкновения; их энергия равна суммарной энергии электрона и позитрона.

Мы знаем также, что происходит и обратный процесс, Фотон может при определенных условиях, например, пролетая поблизости от ядра атома, сотворить «из ничего» электрон и позитрон. Для такого сотворения он должен обладать энергией, по меньшей мере равной энергии, соответствующей суммарной массе электрона и позитрона.

Стало быть, элементарные частицы не являются вечными или постоянными. И электроны и позитроны могут появляться и исчезать; однако энергия и результирующие электрические заряды сохраняются.

Исключая электрон, элементарной частицей, известной нам гораздо раньше любой другой частицы, является не позитрон, встречающийся сравнительно редко, а протон - ядро атома водорода. Как и позитрон, заряжен он положительно, но масса его примерно в две тысячи раз превосходит массу позитрона или электрона. Подобно этим частицам, протон иногда проявляем волновые свойства, однако лишь в исключительно особых условиях. То, что его волновая природа менее ярко выражена, фактически является прямым следствием обладания им гораздо большей массой. Волновая природа, характерная для всей материи, не приобретает для нас важного значения до тех пор, пока мы не начинаем работать с исключительно легкими частицами, такими, как электроны.

Протон - очень распространенная частица, Атом водорода состоит из протона, являющегося его ядром, и электрона, вращающегося вокруг него по орбите. Протон входит также в состав всех других атомных ядер.

Физики-теоретики предсказывали, что у протона, подобно электрону, имеется античастица. Открытие отрицательного протона или антипротона , обладающего теми же самыми свойствами, что и протон, но заряженного отрицательно, подтвердило это предсказание. Столкновение антипротона с протоном «истребляет» их обоих так же, как и в случае столкновения электрона и позитрона.

Другая элементарная частица, нейтрон , обладает почти такой же массой, как и протон, но электрически нейтральна (без электрического заряда вообще). Ее открытие в тридцатых годах нашего века - примерно одновременно с открытием позитрона - явилось исключительно важным для ядерной физики. Нейтрон входит в состав всех атомных ядер (за исключением, разумеется, обычного ядра атома водорода, который является просто свободным протоном); разрушаясь, атомное ядро выделяет один (или более) нейтрон. Взрыв атомной бомбы происходит благодаря нейтронам, высвобождающимся из ядер урана или плутония.

Поскольку протоны и нейтроны вместе образуют атомные ядра, и те и другие называются нуклонами, Спустя некоторое время свободный нейтрон превращается в протон и электрон.

Нам знакома еще одна частица, называемая антинейтроном , которая, подобно нейтрону, электрически нейтральна. Она обладает многими свойствами нейтрона, однако одно из коренных отличий заключается в том, что антинейтрон распадается на антипротон и электрон. Сталкиваясь, нейтрон и антинейтрон уничтожают друг друга,

Фотон , или световой квант, исключительно интересная элементарная частица. Желая почитать книгу, мы включаем электрическую лампочку. Так вот, включенная лампочка генерирует огромное количество фотонов, которые устремляются к книге, так же как и во все другие уголки комнаты, со скоростью света. Некоторые из них, ударяясь о стены, тут же погибают, другие вновь и вновь ударяются и отскакивают от стенок других предметов, однако спустя менее чем одну миллионную долю секунды с момента появления все они погибают, за исключением лишь немногих, которым удается вырваться через окно и ускользнуть в пространство. Энергия, необходимая для генерирования фотонов, поставляется электронами, протекающими через включенную лампочку; погибая, фотоны отдают эту энергию книге или другому предмету, нагревая его, или глазу, вызывая стимуляцию зрительных нервов.

Энергия фотона, а следовательно, и его масса не -остаются неизменными: существуют очень легкие фотоны наряду с очень тяжелыми. Фотоны, дающие обычный свет, очень легки, их масса составляет всего лишь несколько миллионных долей массы электрона. Другие фотоны обладают массой примерно такой же, как масса электрона, и даже гораздо большей. Примерами тяжелых фотонов являются рентгеновские и гамма-лучи.

Вот общее правило: чем легче элементарная частица, тем выразительнее ее волновая природа. Самые тяжелые элементарные частицы - протоны - выявляют сравнительно слабые волновые характеристики; несколько сильнее они у электронов; самые сильные - у фотонов. В самом деле, волновая природа света была открыта намного раньше, чем его корпускулярные характеристики. Мы знали, что свет есть не что иное, как движение электромагнитных волн, с тех пор как Максвелл Продемонстрировал это на протяжении второй половины прошлого века, но именно Планк и Эйнштейн на заре двадцатого века открыли, что свет имеет и корпускулярные характеристики, что он иногда излучается в виде отдельных «квантов», или, другими словами, в виде потока фотонов. Не приходится отрицать, что трудно объединить и слить воедино в нашем сознании эти две явно несхожие концепции природы света; но мы можем сказать, что подобно «двойственной природе» электрона наше представление о таком неуловимом явлении, каковым является свет, должно быть очень абстрактным. И только когда мы хотим выразить наше представление в грубых образах, мы должны иногда уподоблять свет потоку частиц, фотонов, или же волновому движению электромагнитной природы.

Существует зависимость между корпускулярной природой явления и его «волновыми» свойствами. Чем тяжелее частица, тем короче соответствующая ей длина волны; чем длиннее длина волны, тем легче соответствующая частица. Рентгеновские лучи, состоящие из очень тяжелых фотонов, имеют соответственно очень короткую длину волны. Красный свет, характеризующийся большей длиной волны по сравнению с синим светом, состоит из фотонов более легких по сравнению с фотонами, несущими синий свет. Самые длинные электромагнитные волны из всех существующих - радиоволны - состоят из мельчайших фотонов. Эти волны ни малейшим образом не проявляют свойств частиц, их волновая природа является целиком преобладающей характеристикой.

И наконец, самой мелкой из всех малых элементарных частиц является нейтрино . Оно лишено электрического заряда, и если у него и есть какая-либо масса, то она близка к нулю. С некоторым преувеличением мы можем сказать, что нейтрино просто лишено свойств.

Наше познание элементарных частиц является современной границей физики. Атом был открыт в девятнадцатом веке, и ученые того времени обнаружили все возрастающее число различных видов атомов; подобным же образом сегодня мы находим все больше и больше элементарных частиц. И хотя было доказано, что атомы состоят из элементарных частиц, мы не можем ожидать, что по аналогии будет, найдено, что- элементарные частицы состоят из еще более мелких частиц. Проблема, стоящая перед нами сегодня, совсем иная, и нет ни малейших признаков, указывающих на то, что мы сможем расщепить элементарные частицы. Скорее следует надеяться на то, что будет показана, что все элементарные частицы являются проявлением одного еще более фундаментального явления. И если это оказалось бы возможным установить, мы бы сумели понять все свойства элементарных частиц; смогли бы подсчитать их массы и способы их взаимодействия. Было сделано много попыток подойти к разрешению этой проблемы, являющейся одной из самых важных проблем физики.

Отчетливого определения понятия «элементарная частица» не существует; обычно указывается только некоторый набор значений физических величин, характеризующих эти частицы, и их некоторые весьма важные отличительные свойства. Элементарные частицы имеют:

1) электрический заряд

2) собственный момент импульса или спин

3) магнитный момент

4) собственную массу - «массу покоя»

В дальнейшем могут обнаружиться другие величины, характеризующие частицы, поэтому этот список основных свойств элементарных частиц не следует полагать законченным.

Однако не все элементарные частицы (список их приводится ниже) обладают полным комплектом указанных выше свойств, Некоторые из них имеют только электрический заряд и массу, но не имеют спина (заряженные пионы и каоны); другие частицы имеют массу, спин и магнитный момент, но не имеют электрического заряда (нейтрон, лямбда-гиперон); третьи - имеют только массу (нейтральные пионы и каоны) или только спин (фотоны, нейтрино). Обязательным для элементарных частиц является наличие хотя бы одного из перечисленных выше свойств. Заметим, что важнейшие частицы вещества - прогоны и электроны - характеризуются полным комплектом этих свойств. Необходимо подчеркнуть: электрический заряд и спин являются фундаментальными свойствами частиц вещества, т. е. их численные значения сохраняются постоянными во всех условиях.

ЧАСТИЦЫ И АНТИЧАСТИЦЫ

У каждой элементарной частицы имеется ее противоположность - «античастица». Масса, спин и магнитный момент частицы и античастицы одинаковы, но если частица имеет электрический заряд, то ее античастица имеет заряд противоположного знака. У протона, позитрона и антинейтрона магнитные моменты и спины имеют одинаковые, а у электрона, нейтрона и антипротона - протироположные ориентации.

Взаимодействие частицы со своей античастицей существенно отличается от взаимодействия с другими частицами. Это отличие выражается в том, что частица и ее античастица способны к аннигиляции, т. е. к процессу, в результате которого они исчезают, а вместо них появляются другие частицы. Так, например, в результате аннигиляции электрона и позитрона появляются фотоны, протона и антипротона-пионы и т. д.

ВРЕМЯ ЖИЗНИ

Стабильность не является обязательным признаком элементарных частиц. Стабильными являются только электрон, протон, нейтрино и их античастицы, а также фотоны. Остальные частицы превращаются в стабильные либо непосредственно, как это происходит, например, у нейтрона, или через цепочку последовательных превращений; например, нестабильный отрицательный пион сначала превращается в мюон и нейтрино, а затем мюон превращается в электрон и другое нейтрино:

Символами обозначены «мюонные» нейтрино и антинейтрино, которые отличаются от «электронных» нейтрино и антинейтрино.

Нестабильность частиц оценивается по продолжительности времени их существования от момента «рождения» до момента распада; оба эти момента времени отмечаются по трекам частиц в измерительных установках. При наличии большого числа наблюдений за частицами данного «сорта» вычисляется либо «среднее время жизни» либо полупериод распада Допустим, что в некоторый момент времени число распадающихся частиц равно а в момент это число сделалось равным Полагая, что распад частиц подчиняется вероятностному закону

можно вычислить среднее время жизни (в течение которого число частиц убывает в раз) и период полураспада

(в течение которого это число уменьшается в два раза).

Интересно отметить, что:

1) все незаряженные частицы, кроме нейтрино и фотона, нестабильны (нейтрино и фотоны выделяются среди других элементарных частиц тем, что не имеют собственной массы покоя);

2) из заряженных частиц только электрон и протон (и их античастицы) являются стабильными.

Приведем список важнейших частиц (их число продолжает увеличиваться и в настоящее время) с указанием обозначений и основных

свойств; электрический заряд обычно указывается в элементарных единицах масса - в единицах массы электрона спин - в единицах

(см. скан)

КЛАССИФИКАЦИЯ ЧАСТИЦ

Изучение элементарных частиц показало, что группировка их по значениям основных свойств (заряд, масса, спин) недостаточна. Оказалось необходимым разделить эти частицы на существенно различные «семейства»:

1) фотоны, 2) лептоны, 3) мезоны, 4) барионы

и ввести новые характеристики частиц, которые показали бы принадлежность данной частицы к одному из этих семейств. Эти характеристики получили условное название «зарядов» или «чисел». Различают три сорта зарядов:

1) лептонно-электронный заряд ;

2) лептонно-мюонный заряд

3) барионный заряд

Этим зарядам придаются числовые значения: и -1 (знак плюс имеют частицы, минус - античастицы; фотоны и мезоны имеют нулевые заряды).

Элементарные частицы подчиняются следующим двум правилам:

каждая элементарная частица принадлежит только одному семейству и характеризуется только одним из указанных выше зарядов (чисел).

Например:

Однако одному семейству элементарных частиц может принадлежать некоторое множество различных частиц; например, к группе барионов относятся протон, нейтрон и большое число гиперонов. Приведем разделение элементарных частиц на семейства:

лептоны «электронные»: К ним относятся электрон позитрон электронное нейтрино и электронное антинейтрино

лептоны «мюонные»: К ним относятся мюоны с отрицательным и положительным электрическим зарядом и мюонные нейтрино и антинейтрино К ним относятся протон, нейтрон, гипероны и все их античастицы.

Существование или отсутствие электрического заряда не связано с принадлежностью к какому-нибудь из перечисленных семейств. Замечено, что все частицы, спин которых равен 1/2, обязательно имеют один из указанных выше зарядов. Фотоны (имеющие спин, равный единице), мезоны - пионы и каоны (спин которых равен нулю) не имеют ни лептонных, ни барионных зарядов.

Во всех физических явлениях, в которых участвуют элементарные частицы - в процессах распада; рождения, аннигиляции и взаимных превращений, - соблюдается второе правило:

алгебраические суммы чисел для каждого вида заряда в отдельности всегда сохраняются постоянными.

Это правило эквивалентно трем законам сохранения:

Эти законы означают также, что взаимные превращения между частицами, принадлежащими различным семействам, запрещены.

Для некоторых частиц - каонов и гиперонов - оказалось необходимым дополнительно ввести еще одну характеристику, названную странностью и обозначаемую через Каоны имеют лямбда- и сигма-гипероны - кси-гипероны - (верхний знак у частиц, нижний - у античастиц). В процессах, в которых наблюдается появление (рождение) частиц, обладающих странностью, соблюдается следующее правило:

Закон сохранения странности. Это означает, что появление одной странной частицы должно обязательно сопровождаться появлением еще одной или нескольких странных античастиц, с тем чтобы алгебраическая сумма чисел до и после

процесса рождения оставалась постоянной. Замечено также, что при распаде странных частиц закон сохранения странности не соблюдается, т. е. этот закон действует только в процессах рождения странных частиц. Таким образом, для странных частиц процессы рождения и распада необратимы. Например, лямбда-гиперон (странность равна распадается на протон и отрицательный пион:

В этой реакции закон сохранения странности не соблюдается, так как полученные после реакции протон и пион имеют странности, равные нулю. Однако в обратной реакции, при столкновении отрицательного пиона с протоном, одиночный лямбда-гиперон не появляется; реакция идет с образованием двух частиц, имеющих странности противоположных знаков:

Следовательно, в реакции рождения лямбда-гиперона закон сохранения странности соблюдается: до и после реакции алгебраическая сумма «странных» чисел равна нулю. Известна только одна реакция распада, в которой выполняется постоянство суммы странных чисел, - это распад нейтрального сигма-гиперона на лямбда-гиперон и фотон:

Другой особенностью странных частиц является резкое различие между продолжительностью процессов рождения (порядка ) и средним временем их существования (около ); для других (не странных) частиц эти времена имеют один порядок.

Заметим, что необходимость введения лептонных и барионных чисел или зарядов и существование указанных выше законов сохранения заставляют предполагать, что эти заряды выражают качественное различие между частицами различных сортов, а также и между частицами и античастицами. То обстоятельство, что частицам и античастицам необходимо приписать заряды противоположных знаков, указывает на невозможность взаимных превращений между ними.

Дальнейшее проникновение в глубины микромира связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой элементарной частицы в конце XIX в. был открыт электрон, а затем в первые десятилетия XX в. – фотон, протон, позитрон и нейтрон.

После второй мировой войны, благодаря использованию современной экспериментальной техники, и прежде всего мощным ускорителям, в которых создаются условия высоких энергий и громадных скоростей, было установлено существование большого числа элементарных частиц – свыше 300. Среди них имеются как экспериментально обнаруженные, так и теоретически вычисленные, включая резонансы, кварки и виртуальные частицы.

Термин элементарная частица первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина “элементарный” применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но, тем не менее, исторически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частицопределяют по отношению к массе покоя электрона.Существуют элементарные частицы, не имеющие массы покоя, –фотоны . Остальные частицы по этому признаку делятся налептоны – легкие частицы (электрон и нейтрино);мезоны – средние частицы с массой в пределах от одной до тысячи масс электрона;барионы – тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Приблизительно в 1963–1964 гг. была высказана гипотеза о существованиикварков – частиц с дробным электрическим зарядом. Экспериментального подтверждения эта гипотеза пока не нашла.

По времени жизни частицы делятся настабильные инестабильные . Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильныечастицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около 10 –10 –10 -24 с, после чего распадаются. Элементарные частицы со средним временем жизни 10 –23 –10 –22 с называют резонансами . Вследствие краткого времени жизни они распадаются еще до того, как успеют покинуть атом или атомное ядро. Резонансные состояния вычислены теоретически, зафиксировать их в реальных экспериментах не удается.

Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими аналогов в классической физике: понятием спина . Спиномназывается собственный момент импульса частицы, не связанный с ее перемещением. Спин характеризуетсяспиновым квантовым числом s , которое может принимать целые (±1) или полуцелые (±1/2) значения. Частицы с целым спином –бозоны , с полуцелым –фермионы . Электрон относится к фермионам. Согласно принципу Паули в атоме не может быть более одного электрона с одним и тем же набором квантовых чиселn ,m ,l ,s . Электроны, которым соответствует волновые функции с одинаковым числомn, очень близки по энергиям и образуют в атоме электронную оболочку. Различия в числеlопределяют “подоболочку”, остальные квантовые числа определяют ее заполнение, о чем было сказано выше.

В характеристике элементарных частиц существует еще одно важное представление взаимодействия . Как отмечалось ранее, известно четыре вида взаимодействий между элементарными частицами:гравитационное , слабое , электромагнитное и сильное (ядерное).

Все частицы, имеющие массу покоя (m 0), участвуют в гравитационном взаимодействии, заряженные – и в электромагнитном. Лептоны участвуют еще и слабом взаимодействии. Адроны участвуют во всех четырех фундаментальных взаимодействиях.

Согласно квантовой теории поля, все взаимодействия осуществляются благодаря обмену виртуальными частицами , то есть частицами, о существовании которых можно судить лишь опосредовано, по некоторым их проявлениям через какие-то вторичные эффекты (реальные частицы можно непосредственно зафиксировать с помощью приборов).

Оказывается, что все известные четыре типа взаимодействий – гравитационное, электромагнитное, сильное и слабое – имеют калибровочную природу и описываются калибровочными симметриями. То есть все взаимодействия как бы сделаны “из одной болванки”. Это вселяет надежду, что можно будет найти “единственный ключ ко всем известным замкам” и описать эволюцию Вселенной из состояния, представленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодействий, между всевозможными частицами вещества и квантами полей еще не проявлены.

Существует огромное число способов классификации элементарных частиц. Так, например, частицы разделяют на фермионы (Ферми-частицы) – частицы вещества и бозоны (Бозе-частицы) – кванты полей.

Согласно другому подходу, частицы разделяют на 4 класса: фотоны, лептоны, мезоны, барионы.

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным, слабым, гравитационным взаимодействиями.

Лептоны получили свое название от греческого слова l eptos – легкий. К их числу относятся частицы, не обладающие сильным взаимодействием мюоны (μ – , μ +), электроны (е – , е +),электронные нейтрино (v e – ,v e +) и мюонные нейтрино (v – m ,v + m). Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами. Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (то есть мюоны и электроны), обладают также электромагнитным взаимодействием.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежитр -мезоны, или пионы (π + , π – , π 0),К -мезоны, или каоны (К + , К – , К 0), иэта -мезоны (η). МассаК -мезонов составляет ~970mе (494 МэВ для заряженных и 498 МэВ для нейтральныхК -мезонов). Время жизниК -мезонов имеет величину порядка 10 –8 с. Они распадаются с образованиемя -мезонов и лептонов или только лептонов. Массаэта -мезонов равна 549 МэВ (1074mе), время жизни – порядка 10 –19 с.Эта -мезоны распадаются с образованием π-мезонов и γ-фотонов. В отличие от лептонов, мезоны обладают не только слабым (и, если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами.

Класс барионов объединяет в себе нуклоны (p,n) и нестабильные частицы с массой больше массы нуклонов, получившие название гиперонов. Все барионы обладают сильным взаимодействием и, следовательно, активно взаимодействуют с атомными ядрами. Спин всех барионов равен ½, так что барионы являются фермионами. За исключением протона, все барионы нестабильны. При распаде барионов, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявленийзакона сохранения барионного заряда .

Кроме перечисленных выше частиц обнаружено большое число сильно взаимодействующих короткоживущих частиц, которые получили название резонансов . Эти частицы представляют собой резонансные состояния, образованные двумя или большим числом элементарных частиц. Время жизни резонансов составляет всего лишь ~ 10 –23 –10 –22 с.

Элементарные частицы, а также сложные микрочастицы удается наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Частицы и античастицы . В 1928 г. английскому физику П. Дираку удалось найти релятивистское квантово-механическое уравнение для электрона, из которого вытекает ряд замечательных следствий. Прежде всего, из этого уравнения естественным образом, без каких-либо дополнительных предположений, получаются спин и числовое значение собственного магнитного момента электрона. Таким образом, выяснилось, что спин представляет собой величину одновременно и квантовую, и релятивистскую. Но этим не исчерпывается значение уравнения Дирака. Оно позволило также предсказать существование античастицы электрона –позитрона . Из уравнения Дирака получаются для полной энергии свободного электрона не только положительные, но и отрицательные значения. Исследования уравнения показывают, что при заданном импульсе частицы существуют решения уравнения, соответствующие энергиям:.

Между наибольшей отрицательной энергией (–m е с 2) и наименьшей положительной энергией (+m e c 2) имеется интервал значений энергии, которые не могут реализоваться. Ширина этого интервала равна 2m е с 2 . Следовательно, получаются две области собственных значений энергии: одна начинается с + m e с 2 и простирается до +∞, другая начинается с –m е с 2 и простирается до –∞.

Частица с отрицательной энергией должна обладать очень странными свойствами. Переходя в состояния со все меньшей энергией (то есть с увеличивающейся по модулю отрицательной энергией), она могла бы выделять энергию, скажем, в виде излучения, причем, поскольку |Е | ничем не ограничен, частица с отрицательной энергией могла бы излучать бесконечно большое количество энергии. К аналогичному выводу можно прийти следующим путем: из соотношенияЕ =m е с 2 вытекает, что у частицы с отрицательной энергией масса будет также отрицательна. Под действием тормозящей силы частица с отрицательной массой должна не замедляться, а ускоряться, совершая над источником тормозящей силы бесконечно большое количество работы. Ввиду этих трудностей следовало, казалось бы, признать, что состояние с отрицательной энергией нужно исключить из рассмотрения как приводящее к абсурдным результатам. Это, однако, противоречило бы некоторым общим принципам квантовой механики. Поэтому Дирак выбрал другой путь. Он предложил, что переходы электронов в состояния с отрицательной энергией обычно не наблюдаются по той причине, что все имеющиеся уровни с отрицательной энергией уже заняты электронами.

Согласно Дираку, вакуум есть такое состояние, в котором все уровни отрицательной энергии заселены электронами, а уровни с положительной энергией свободны. Поскольку заняты все без исключения уровни, лежащие ниже запрещенной полосы, электроны на этих уровнях никак себя не обнаруживают. Если одному из электронов, находящихся на отрицательных уровнях, сообщить энергию Е ≥ 2m е с 2 , то этот электрон перейдет в состояние с положительной энергией и будет вести себя обычным образом, как частица с положительной массой и отрицательным зарядом. Эта первая из предсказанных теоретически частиц была названа позитроном. При встрече позитрона с электроном они аннигилируют (исчезают) – электрон переходит с положительного уровня на вакантный отрицательный. Энергия, соответствующая разности этих уровней, выделяется в виде излучения. На рис. 4 стрелка 1 изображает процесс рождения пары электрон-позитрон, а стрелка 2 – их аннигиляцию Термин “аннигиляция” не следует понимать буквально. По существу, происходит не исчезновение, а превращение одних частиц (электрона и позитрона) в другие (γ-фотоны).

Существуют частицы, которые тождественны со своими античастицами (то есть не имеют античастиц). Такие частицы называются абсолютно нейтральными. К их числу принадлежат фотон, π 0 -мезон и η-мезон. Частицы, тождественные со своими античастицами, не способны к аннигиляции. Это, однако, не означает, что они вообще не могут превращаться в другие частицы.

Если барионам (то есть нуклонам и гиперонам) приписать барионный заряд (или барионное число) В = +1, антибарионам – барионный заряд В = –1, а всем остальным частицам – барионный зарядВ = 0, то для всех процессов, протекающих с участием барионов и антибарионов, будет характерно сохранение барионов заряда, подобно тому как для процессовхарактерно сохранение электрического заряда. Закон сохранения барионного заряда обусловливаетстабильность самого мягкого из барионов – протона. Преобразование всех величин, описывающих физическую систему, при котором все частицы заменяются античастицами (например, электроны протонами, а протоны электронами и т. д.), называется зарядом сопряжения.

Странные частицы. К -мезоны и гипероны были обнаружены в составе космических лучей в начале 50-х гг.XXв. Начиная с 1953 г. их получают на ускорителях. Поведение этих частиц оказалось столь необычным, что они были названы странными. Необычность поведения странных частиц заключалась в том, что рождались они явно за счет сильных взаимодействий с характерным временем порядка 10 –23 с, а времена жизни их оказались порядка 10 –8 –10 –10 с. Последнее обстоятельство указывало на то, что распад частиц осуществляется в результате слабых взаимодействий. Было совершенно непонятно, почему странные частицы живут так долго. Поскольку и в рождении, и в распаде λ-гиперона участвуют одни и те же частицы (π-мезоны и протон), представлялось удивительным, что скорость (то есть вероятность) обоих процессов столь различна. Дальнейшие исследования показали, что странные частицы рождаются парами. Это навело на мысль, что сильные взаимодействия не могут играть роли в распаде частиц вследствие того, что для их проявления необходимо присутствие двух странных частиц. По той же причине оказывается невозможным одиночное рождение странных частиц.

Чтобы объяснить запрет одиночного рождения странных частиц, М. Гелл-Манн и К. Нишиджима ввели в рассмотрение новое квантовое число, суммарное значение которого должно, по их предположению, сохраняться при сильных взаимодействиях. Это квантовое число S было названостранностью частицы . При слабых взаимодействиях странность может не сохраняться. Поэтому она приписывается только сильно взаимодействующим частицам – мезонам и барионам.

Нейтрино. Нейтрино – единственная частица, которая не участвует ни в сильных, ни в электромагнитных взаимодействиях. Исключая гравитационное взаимодействие, в которомучаствуют все частицы, нейтрино может принимать участие лишь в слабых взаимодействиях.

Долгое время оставалось неясным, чем отличается нейтрино от антинейтрино. Открытие закона сохранения комбинированной четности дало возможность ответить на этот вопрос: они отличаются спиральностью. Под спиральностью понимается определенное соотношение между направлениями импульсаР и спинаS частицы. Спиральность считается положительной, если спин и импульс имеют одинаковое направление. В этом случаенаправление движения частицы (Р ) и направление “вращения”, соответствующего спину, образуют правый винт. При противоположно направленных спине и импульсе спиральность будет отрицательной (поступательное движение и “вращение” образуют левый винт). Согласно развитой Янгом, Ли, Ландау и Саламом теории продольного нейтрино, все существующие в природе нейтрино, независимо от способа их возникновения, всегда бывают полностью продольно поляризованы (то есть спин их направлен параллельно или антипараллельно импульсу Р ). Нейтрино имеет отрицательную (левую) спиральность (ему соответствует соотношение направлений S и Р , изображенное на рис. 5 (б), антинейтрино – положительную (правую) спиральность (а). Таким образом, спиральность – это то, что отличает нейтрино от антинейтрино.

Рис. 5. Схема спиральности элементарных частиц

Систематика элементарных частиц. Закономерности, наблюдаемые в мире элементарных частиц, могут быть сформулированы в виде законов сохранения. Таких законов накопилось уже довольно много. Некоторые из них оказываются не точными, а лишь приближенными. Каждый закон сохранения выражает определенную симметрию системы. Законы сохранения импульсаР , момента импульсаL и энергииЕ отражают свойства симметрии пространства и времени: сохранениеЕ есть следствие однородности времени, сохранениеР обусловлено однородностью пространства, а сохранениеL – его изотропностью. Закон сохранения четности связан с симметрией между правым и левым (Р -инвариантность). Симметрия относительно зарядового сопряжения (симметрия частиц и античастиц) приводит к сохранению зарядовой четности (С -инвариантность). Законы сохранения электрического, барионного и лептонного зарядов выражают особую симметриюС -функции. Наконец, закон сохранения изотопического спина отражает изотропность изотопического пространства. Несоблюдение одного из законов сохранения означает нарушение в данном взаимодействии соответствующего вида симметрии.

В мире элементарных частиц действует правило: разрешено все, что не запрещают законы сохранения . Последние играют роль правил запрета, регулирующих взаимопревращения частиц. Прежде всего отметим законы сохранения энергии, импульса и электрического заряда. Эти три закона объясняют стабильность электрона. Из сохранения энергии и импульса следует, что суммарная масса покоя продуктов распада должна быть меньше массы покоя распадающейся частицы. Значит, электрон мог бы распадаться только на нейтрино и фотоны. Но эти частицы электрически нейтральны. Вот и получается, что электрону просто некому передать свой электрический заряд, поэтому он стабилен.

Кварки. Частиц, называемых элементарными, стало так много, что возникли серьезные сомнения в их элементарности. Каждая из сильно взаимодействующих частиц характеризуется тремя независимыми аддитивными квантовыми числами: зарядомQ , гиперзарядомУ и барионным зарядомВ . В связи с этим появилась гипотеза о том, что все частицы построены из трех фундаментальных частиц – носителей этих зарядов. В 1964 г. Гелл-Манн и независимо от него швейцарский физик Цвейг выдвинули гипотезу, согласно которой все элементарные частицы построены из трех частиц, названных кварками. Этим частицам приписываются дробные квантовые числа, в частности, электрический заряд, равный +⅔; –⅓; +⅓ соответственно для каждого из трех кварков. Эти кварки обычно обозначаются буквамиU ,D ,S . Кроме кварков, рассматриваются антикварки (u ,d ,s). На сегодняшний день известно 12 кварков – 6 кварков и 6 антикварков. Мезоны образуются из пары кварк-антикварк, а барионы – из трех кварков. Так, например, протон и нейтрон состоят из трех кварков, что делает протон или нейтрон бесцветными. Соответственно различают три заряда сильных взаимодействий – красный (R ), желтый (Y ) и зеленый (G ).

Каждому кварку приписывается одинаковый магнитный момент (мкВ), величина которого из теории не определяется. Расчеты, произведенные на основании такого предположения, дают для протона значение магнитного момента μ p = μ кв, а для нейтрона μ n = – ⅔μ кв.

Таким образом, для отношения магнитных моментов получается значение μ p / μ n = –⅔, превосходно согласующееся с экспериментальным значением.

В основном цвет кварка (подобно знаку электрического заряда) стал выражать различие в свойстве, определяющем взаимное притяжение и отталкивание кварков. По аналогии с квантами полей различных взаимодействий (фотонами в электромагнитных взаимодействиях,р -мезонами в сильных взаимодействиях и т. д.) были введены частицы-переносчики взаимодействия между кварками. Эти частицы были названыглюонами . Они переносят цвет от одного кварка к другому, в результате чего кварки удерживаются вместе. В физике кварков сформулирована гипотеза конфайнмента (от англ.confinements – пленение) кварков, согласно которой невозможно вычитание кварка из целого. Он может существовать лишь в качествеэлемента целого. Существование кварков как реальных частиц в физике надежно обосновано.

Идея кварков оказалась весьма плодотворной. Она позволила не только систематизировать уже известные частицы, но и предсказать целый ряд новых. Положение, сложившееся в физике элементарных частиц, напоминают положение, создавшееся в физике атома после открытия в 1869 г. Д. И. Менделевым периодического закона. Хотя сущность этого закона была выяснена только спустя примерно 60 лет после создания квантовой механики, он позволил систематизировать известные к тому времени химические элементы и, кроме того, привел к предсказанию существования новых элементов и их свойств. Точно так же физики научились систематизировать элементарные частицы, причем разработанная систематика вряде случаев позволила предсказать существование новых частиц и предвосхитить их свойства.

Итак, в настоящее время истинно элементарными можно считать кварки и лептоны; их 12, или вместе с античатицами – 24. Кроме того, существуют частицы, обеспечивающие четыре фундаментальные взаимодействия (кванты взаимодействия). Этих частиц 13: гравитон, фотон, W ± - иZ -частицы и 8 глюонов.

Существующие теории элементарных частиц не могут указать, что является началом ряда: атомы, ядра, адроны, кваркиВ этом ряду каждая более сложная материальная структура включает более простую как составную часть. По-видимому, так бесконечно продолжаться не может. Предположили, что описанная цепочка материальных структур базируется на объектах принципиально иной природы. Показано, что такими объектами могут быть не точечные, а протяженные, хотя и чрезвычайно малые (~10 ‑33 см) образования, названныесуперструнами. Описанная идея в нашем четырехмерном пространстве не реализуема. Данная область физики вообще чрезвычайно абстрактна, и очень трудно подобрать наглядные модели, помогающие упрощенному восприятию идей, заложенных в теориях элементарных частиц. Тем не менее, эти теории позволяют физикам выразить взаимопревращение и взаимообусловленность “наиболее элементарных” микрообъектов, их связь со свойствами четырехмерного пространства-времени. Наиболее перспективной считается так называемаяМ-теория (М – отmystery – загадка, тайна). Она оперируетдвенадцатимерным пространством . В конечном итоге при переходе к непосредственно воспринимаемому нами четырехмерному миру все “лишние” измерения “сворачиваются”. М-теория пока единственная теория, которая дает возможность свести четыре фундаментальные взаимодействия к одному – так называемойСуперсиле. Важно также, что М-теория допускает существование разных миров и устанавливает условия, обеспечивающие возникновение нашего мира. М-теория еще недостаточно разработана. Считается, что окончательная«теория всего» на основе М-теории будет построена вXXIв.



Понравилась статья? Поделитесь с друзьями!