Масса атмосферы земли в тоннах. Пограничный слой атмосферы

Энциклопедичный YouTube

    1 / 5

    ✪ Земля космический корабль (14 Серия) - Атмосфера

    ✪ Почему атмосферу не втянуло в космический вакуум?

    ✪ Вход в атмосферу Земли корабля "Союз ТМА-8"

    ✪ Атмосфера строение, значение, изучение

    ✪ О. С. Угольников "Верхняя атмосфера. Встреча Земли и космоса"

    Субтитры

Граница атмосферы

Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое . Атмосфера переходит в межпланетное пространство постепенно, в экзосфере , начинающейся на высоте 500-1000 км от поверхности Земли .

По определению, предложенному Международной авиационной федерацией , граница атмосферы и космоса проводится по линии Кармана , расположенной на высоте около 100 км, выше которой авиационные полёты становятся полностью невозможными. NASA использует в качестве границы атмосферы отметку в 122 километра (400 000 футов ), где «шаттлы » переключаются с маневрирования с помощью двигателей на аэродинамическое маневрирование .

Физические свойства

Кроме указанных в таблице газов, в атмосфере содержатся Cl 2 , SO 2 , NH 3 , СО , O 3 , NO 2 , углеводороды , HCl , , HBr , , пары , I 2 , Br 2 , а также и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является радон (Rn).

Строение атмосферы

Пограничный слой атмосферы

Нижний слой тропосферы (1-2 км толщиной), в котором состояние и свойства поверхности Земли непосредственно влияют на динамику атмосферы.

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 годах - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен редкими частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Обзор

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы.

На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу .

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В разрежённых слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км, знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана , за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (то есть с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами - растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном . Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 , а оксид азота до NO 2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н 2 SO 4 и азотная кислота НNO 3 выпадают на поверхность Земли в виде т. н. кислотных дождей. Использование

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Атмосферные слои до высоты 120 км

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Точный размер атмосферы неизвестен, так как ее верхняя граница четко не прослеживается. Однако строение атмосферы изучено достаточно для того чтобы каждый мог получить представление о том, как устроена газовая оболочка нашей планеты.

Ученые, изучающие физику атмосферы, определяют ее как область вокруг Земли, которая вращается вместе с планетой. ФАИ дает следующее определение :

  • граница между космосом и атмосферой проходит по линии Кармана. Линия эта, по определению той же организации — это высота над уровнем моря, находящаяся на высоте 100 км.

Все, что выше этой линии – космическое пространство. В межпланетное пространство атмосфера переходит постепенно, именно поэтому существуют разные представления о ее размерах.

С нижней границей атмосферы все гораздо проще – она проходит по поверхности земной коры и водной поверхности Земли – гидросфере. При этом граница, можно сказать, сливается с земной и водной поверхностью, так как частицы там также растворены частички воздуха.

Какие слои атмосферы входят в размер Земли

Интересный факт : зимой она находится ниже, летом – выше.

Именно в этом слое возникает турбулентность, антициклоны и циклоны, образуются облака. Именно эта сфера отвечает за формирование погоды, в ней расположено примерно 80% всех воздушных масс.

Тропопаузой называют слой, в котором с высотой не происходит снижение температуры. Выше тропопаузы, на высоте выше 11 и до 50 км находится . В стратосфере располагается слой озона, который, как известно, защищает планету от ультрафиолетовых лучей. Воздух в этом слое разряжен, эти объясняется характерный фиолетовый оттенок неба. Скорость воздушных потоков здесь может достигать 300 км/час. Между стратосферой и мезосферой находится стратопауза – пограничная сфера, в которой имеет место температурный максимум.

Следующий слой – . Она простирается до высот 85-90 километров. Цвет неба в мезосфере – черный, поэтому звезды можно наблюдать даже утром и днем. Там происходят сложнейшие фотохимические процессы, в ходе которых возникает свечение атмосферы.

Между мезосферой и следующим слоем, находится мезопауза. Его определяют как переходный слой, в котором наблюдается температурный минимум. Выше, на высоте 100 километров над уровнем моря, находится линия Кармана. Выше этой линии находятся термосфера (предел высоты 800км) и экзосфера, которую также называют «зоной рассеивания». Она на высоте примерно 2-3 тысячи километров переходит в ближнекосмический вакуум.

Учитывая то, что верхний слой атмосферы четко не прослеживается, точный ее размер высчитать невозможно. Кроме того, в разных странах существуют организации, придерживающиеся разных мнений на этот счет. Надо отметить, что линию Кармана можно считать границей земной атмосферы лишь условно, так как разные источники используют разные отметки границ. Так, в некоторых источниках можно найти сведения о том, что верхняя граница проходит на высоте 2500-3000 км.

NASA для расчетов использует отметку 122 километра. Не так давно были проведены эксперименты, которые уточнили границу, как расположенную на отметке 118км.

Наверное те, кто грезит космосом, наверняка задумывались, почему атмосфера есть только на Венере и Земле и больше нигде (не учитываем пока спутник)? И как сделать так что бы она там появилась. Где та причина, по которой ни на Марсе ни на Луне, дышать полной грудью без скафандра невозможно?

Что бы понять это, нам придется изучить понятие второй космической скорости,а также изучить связь массы молекулы и скорости.

Земной воздух, состоит в своей основе из следующих элементов: кислород(O) и азот(N).

При второй космической скорости, тело, размеры/масса которого пренебрежимо мала по сравнению с планетой, навсегда улетит в межпланетное пространство.

Теперь, зная наиболее вероятную скорость молекулы азота и вторую космическую скорость, легко определить условие, при которых молекула газа останется на орбите вокруг планеты.

Должно выполнятся условие

или если радиус планеты выразим через километры то

Азот переходит в жидкое состояние около -200 градусов Цельсия , или в Кельвинах T=73 градуса.

Итак подставив сюда уже известные величины получим, что азот в газообразном состоянии может находится на поверхности планеты в случае когда

Для Земли это соотношение равно 62435>21681 - а значит азот может быть удержан у Земли не только при температуре 73 градуса Кельвина, но и при тепературе не выше 210 градусов Кельвина(то есть порядка 400 градусов Цельсия). Если температура газа будет выше, тогда скорость молекул будет выше второй космической скорости и они начинают улетать в межпланетное пространство и Земля начнет терять атмосферу.

Что с другими планетами и азотом?

Данные будем брать из сводной таблицы Основные характеристики планет Солнечной системы

Для Венеры (радиус=6052,ускорение свободного падения=8.6) 52047>21681. Азот может быть удержан планетой.

Для Марса (радиус=3398,ускорение свободного падения=3.72) 12641<21681. Азот не может быть удержан планетой.

Раз Венера удерживает азот с молекулярной массой 14 гр/моль, то тем более планета будет удерживать еще газы обладающие более высокой массой (а значит например, кислород, а также метан, углексилый газ и другие производные..

Хорошо - скажете Вы- а как насчет самого тяжелого газа - радона? Там молекулярная масса 226 гр/моль!

Газовая постоянная для радона равна 36.8

Марс может своей массой удерживать радон если температура газа не будет превышать 343 градусов Кельвина. Поэтому да, Марс удерживает и возможно притягивает молекулы радона к себе, но для организации жизни на планете нам это не поможет.

В начале статьи, шла речь о спутнике, который обладает атмосферой. Это естественный спутник Сатурна - Титан . Примечательно что радиус его 2575 км, а ускорение свободного падения 1,352.

То есть по вышеприведенным правилам, спутник не должен обладать атмосферой, но он ею обладает.

Что же, наши расчеты неверны? Я так не думаю, иначе бы пришлось пересматривать многие основополагающие формулы.

Причина скорее всего в том, что спутник находится близко к своей "мамке" Сатурну и выведенное соответствие средней скорости молекул и второй космической скорости при наличии такого "соседа" не столь однозначно.

Или как третий вариант, что на спутнике идет "утекание" атмосферы в космос, но что генерирует такое количество газа, пока узнать невозможно.

Осталась какая то недосказанность.. поэтому

Что ж делать то на Марсе, что бы там была атмосфера?

Генерация кислорода мощными станциями как это было в фантастическом фильме с участием Шварцнегера, не пойдет.. атмосфера в конце концов улетучится.

Такой же неудачный вариант будет, если что то взрывать на планете типа термоядерных зарядов как предлагают некоторые.

Что бы азот оставался на Марсе, нам надо увеличить или радиус планеты или его ускорение свободного падения в почти два раза.

Радиус увеличить нереально, а что с ускорением?

В разделе на вопрос Вес атмосферы Земли?? заданный автором Gregory лучший ответ это Галилей доказал факт весомости воздуха. Сколько же весит вся атмосфера? По подсчетам Паскаля -столько же, сколько весил бы медный шар диаметром 10 км - 5 квадриллионов тонн!
Вся атмосфера весит 5,15 х 10 в 15 степени тонн. ссылка
Знание атмосферного давления позволяет рассчитать общую массу атмосферы. Среднее атмосферное давление на уровне моря эквивалентно весу столба ртути высотой 760 мм. В пара­графе 11 показано, что масса ртутного столба высотой 760 мм над одним квадратным сантиметром земной поверхности состав­ляет 1033,2 г; таков же будет вес этого столба ртути в граммах. Таков же, очевидно, будет и средний вес столба атмосферы над одним квадратным сантиметром поверхности на уровне моря. Зная площадь земной поверхности и превышение материков над уровнем моря, можно вычислить общий вес всей атмосферы. Пренебрегая изменениями силы тяжести с высотой, можно счи­тать этот вес численно равным массе атмосферы.
Общая масса атмосферы составляет немного больше 5 10 в 21 степени грамм, или 5 10 в 15 степени тонн. Это примерно в миллион раз меньше, чем масса самого Земного шара. При этом, по­ловина всей массы атмосферы находится в нижних 5 км, три четверти - в нижних 10 км и 95% - в нижних 20 км.
Атмосфера Земли - это смесь газов. Азот 78, 08% , углекислый газ 0,03%, аргон 0,9325%, кислород 20,95%, неон 0,0018% ,гелий 0,0005%, водород 0,00005%, криптон 0,000108%, ксенон 0,000008%, озон 0,000001%, радон 0,000000000000000006%
Источник:

Ответ от худосочный [гуру]
АТМОСФЕРА ЗЕМЛ?И (от греч. atmos - пар и сфера), воздушная среда вокруг Земли, вращающаяся вместе с нею; масса ок. 5,15·1015 т. Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности - от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает.


Ответ от Европейский [гуру]
Зная атмосферное давление, определяем, что почти точно десять тонн на каждый квадратный метр земной поверхности.
так что десять тонн на кв.метр умножь на 511 миллионов кв.километров =5111859325225255,3092562483408718 тонн.
Могу добавить следующее:
Считается, что для Земли толщина эквивалентного слоя атмосферы составляет около примерно восемь километров
(эквивалентный слой атмосферы -- воображаемая величина -- толщина, которую имела бы атмосфера планеты, если бы в ней сверху донизу было бы атмосферное давление равное 760мм.рт.ст)
у Венеры этот слой примерно 800 км; у луны -- толи полтора толи два сантиметра.



Понравилась статья? Поделитесь с друзьями!