Перевести насыщенный пар в ненасыщенный. Чем отличается насыщенный пар от ненасыщенного

Если в пространстве, содержащем пары какой-нибудь жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, называется ненасыщенным паром.

Изменяя объём ненасыщенного пара, мы заметим, что давление его также изменяется: при уменьшении объёма давление увеличивается, а при увеличении объёма давление уменьшается.

Пусть трубка В поднята так высоко, что в ней находится ненасыщенный пар. Давление этого пара равно Н – h, где Н – атмосферное давление. Если после этого опускать трубку, то уровень ртути в ней будет понижаться: h 1 < h, а это показывает, что давление пара возрастает (H – h 1 > H - H). Давление пара будет возрастать до тех пор, пока пар не станет насыщающим. Над ртутью при этом появится жидкость. С момента насыщения пара его давление станет постоянным и равным Н – h 2 . Это будет наибольшее давление пара при данной температуре.?

Наибольшее давление при данной температуре пар производит в состоянии насыщения.

Графически переход ненасыщенного пара в жидкость путём уменьшения его объёма без изменения температуры представляется кривой ABCD. Часть АВ этой кривой соответствует ненасыщенному пару, точка В – состоянию насыщения, линия ВС – конденсации пара и CD – жидкости. Кривая ABCD называется изотермой пара и жидкости.

Ненасыщенный пар можно привести в состояние насыщения не только путём уменьшения объёма, но и путём понижения его температуры. Так, если полить эфиром наружную часть трубки В, то эфир, испаряясь, охладит её, вследствие чего ненасыщенный пар перейдёт в состояние насыщения, частично обратившись при этом в жидкость.

Этим свойством пара объясняется запотевание холодных предметов, внесённых в тёплую комнату, образование тумана, росы и т. д. Таким образом, переход пара из ненасыщенного состояния в насыщенное достигается двумя путями: 1) понижением температуры и 2) повышением давления (уменьшением объёма).

Обратно переход из насыщенного в ненасыщенное состояние достигается: 1) без изменения температуры уменьшением давления (увеличением объёма) и 2) повышением температуры пара.

Если осторожно нагревать трубку, содержащую насыщающий пар, то жидкость, находящаяся над ртутью, постепенно испарится, и при дальнейшем нагревании над ртутью будет уже ненасыщенный пар.

В технике ненасыщенный пар, получаемый путём перегрева насыщенного пара, называется перегретым паром. Для работы паровых двигателей в настоящее время применяют исключительно перегретый пар, имеющий температуру от 150 до 600° С.

Прежде, чем отвечать на вопрос, поставленный в названии статьи, разберемся, что такое пар. Образы, возникающие у большинства людей при этом слове: кипящий чайник или кастрюля, парилка, горячий напиток и еще множество подобных картинок. Так или иначе, в наших представлениях присутствует жидкость и газообразная субстанция, поднимающаяся над ее поверхностью. Если вас попросят привести пример пара, вы сразу вспомните водяной пар, пары спирта, эфира, бензина, ацетона.

Существует еще одно слово для обозначения газообразных состояний – газ . Здесь мы обычно вспоминаем кислород, водород, азот и другие газы, не ассоциируя их с соответствующими жидкостями. При этом хорошо известно, что они существуют и в жидком состоянии. На первый взгляд различия заключаются в том, что пар соответствует естественным жидкостям, а газы надо сжижать специально. Однако это не совсем верно. Более того, образы, возникающие при слове пар – паром не являются. Чтобы дать более точный ответ, разберемся, как возникает пар.

Чем отличается пар от газа?

Агрегатное состояние вещества задается температурой, точнее соотношением между энергией, с которой взаимодействуют его молекулы и энергией их теплового хаотического движения. Приближенно, можно считать, что если энергия взаимодействия значительно больше – твердое состояние, если значительно больше энергия теплового движения — газообразное, если энергии сравнимы – жидкое.

Получается, чтобы молекула могла оторваться от жидкости и участвовать в образовании пара, величина тепловой энергии должна быть больше энергии взаимодействия. Как это может произойти? Средняя скорость теплового движения молекул равна определенному значению, зависящему от температуры. Однако индивидуальные скорости молекул различны: большая их часть обладает скоростями близкими к среднему значению, но некоторая часть имеет скорости больше средней, некоторая — меньше.

Более быстрые молекулы могут иметь тепловую энергию большую, чем энергия взаимодействия, а значит, попав на поверхность жидкости, способны оторваться от нее, образуя пар. Такой способ парообразования называется испарением . Из-за того же распределения скоростей существует и противоположный процесс — конденсация: молекулы из пара переходят в жидкость. Кстати образы, которые обычно возникают при слове пар, это не пар, а результат противоположного процесса — конденсации. Пар увидеть нельзя.

Пар при определенных условиях может стать жидкостью, но для этого его температура не должна превышать определенного значения. Это значение называется критической температурой. Пар и газ — газообразные состояния, отличающиеся температурой, при которой они существуют. Если температура не превышает критической — пар, если превышает – газ. Если поддерживать температуру постоянной и уменьшать объем, пар — сжижается, газ – не сжижается.

Что такое пар насыщенный и ненасыщенный

Само слово «насыщенный» несет определенную информацию, трудно насытить большую область пространства. Значит, чтобы получить насыщенный пар, надо ограничить пространство, в котором находится жидкость . Температура при этом должна быть меньше критической для данного вещества. Теперь испарившиеся молекулы остаются в пространстве, где находится жидкость. Сначала большинство переходов молекул будет происходить из жидкости, при этом плотность пара будет повышаться. Это в свою очередь вызовет большее число обратных переходов молекул в жидкость, что увеличит скорость процесса конденсации.

Наконец, устанавливается состояние, для которого среднее число молекул, переходящих из одной фазы в другую будет равным. Такое состояние называется динамическое равновесие . Для этого состояния характерно одинаковое изменение величины и направления скоростей испарения и конденсации. Это состояние соответствует насыщенному пару. Если состояние динамического равновесия не достигнуто, это соответствует ненасыщенному пару.

Начинают изучение какого-то объекта, всегда с самой простой его модели. В молекулярно-кинетической теории это — идеальный газ. Основные упрощения здесь — пренебрежение собственным объемом молекул и энергией их взаимодействия. Оказывается, подобная модель вполне удовлетворительно описывает ненасыщенный пар. Причем чем менее он насыщен, тем правомернее ее применение. Идеальный газ — это газ, он не может стать ни паром, ни жидкостью. Следовательно, для насыщенного пара подобная модель не является адекватной.

Основные отличия насыщенного пара от ненасыщенного

  1. Насыщенный означает, что данный объект имеет самое большое из возможных значений некоторых параметров. Для пара — это плотность и давление . Эти параметры для ненасыщенного пара имеют меньшие значения. Чем дальше пар от насыщения, тем меньше эти величины. Одно уточнение: температура сравнения должна быть постоянной.
  2. Для ненасыщенного пара выполняется закон Бойля-Мариотта : если температура и масса газа постоянны, увеличение или уменьшение объема, вызывает уменьшение или увеличение давления во столько же раз, давление и объем — связаны обратно пропорциональной зависимостью. Из максимальности плотности и давления при постоянной температуре вытекает их независимость от объема насыщенного пара, получается, что для насыщенного пара давление и объем — не зависят друг от друга.
  3. Для ненасыщенного пара плотность не зависит от температуры , и если объем сохраняется, не меняется и значение плотности. Для насыщенного пара при сохранении объема плотность изменяется, если изменяется температура. Зависимость в данном случае прямая. Если увеличивается температура, увеличивается и плотность, если температура уменьшается, так же изменяется плотность.
  4. Если объем постоянен, ненасыщенный пар ведет себя в соответствии с законом Шарля: при увеличении температуры во столько же раз увеличивается и давление. Такая зависимость называется линейной. У насыщенного пара при увеличении температуры давление возрастает быстрее, чем у ненасыщенного пара. Зависимость имеет экспоненциальный характер.

Подводя итог, можно отметить значительные различия свойств сравниваемых объектов. Основное отличие в том, что пар, в состоянии насыщения, нельзя рассматривать в отрыве от его жидкости. Это двухкомпонентная система, к которой нельзя применять большинство газовых законов.

Видеоурок 2: Температурная зависимость давления пара. Точка росы

Лекция: Насыщенные и ненасыщенные пары


Парообразование и конденсация

Твердые тела отличаются от жидких более устойчивым положением молекул. В жидкостях имеются силы притяжения, однако их не всегда достаточно. Если молекуле некоторого жидкого вещества придать кинетическую энергию, которая позволит структурным единицам стать свободными, то они способны покинуть поверхность жидкости и улететь в газ, который находится сверху. Некоторым молекулам энергии становится недостаточно, и они возвращаются обратно в жидкость.


Процесс, в результате которого молекулы покидают жидкость, называется парообразованием. Процесс, обратный парообразованию, называется конденсацией .


Существует два вида образования парообразного состояния: испарение и кипение.


Испарение


Процесс испарения характеризуется способностью молекул жидкости покидать верхние слои при любой температуре. В тот момент, когда молекула покидает поверхность, температура жидкости снижается. Это происходит в результате того, что для отрывания структурной единицы необходима энергия, а когда энергия расходуется, температура падает.


Именно поэтому организм человека выделяет пот. В результате его испарения температура тела падает. Каждый из нас, выходя из реки, моря или другого водоема, ощущал холодок - это происходит в результате испарения.


Скорость процесса испарения зависит :


1. От размера свободной поверхности жидкости . Если взять одинакового объема кружку и тарелку, то с тарелки испарения будет происходить быстрее за счет большей площади.


2. От рода жидкости . Вода быстрее испаряется, чем спирт, например. Чем легче структурная единица вещества, тем быстрее происходит испарение.


3. От температуры жидкости . Чем выше температура, тем быстрее протекает процесс.


4. От давления окружающей среды . Если давление большое, то оно не дает жидкости покинуть поверхность, поэтому испарение протекает медленнее.


5. Если жидкость находится в закрытом пространстве, то ей тяжелее испарятся . Поэтому скорость зависит от количества водяного пара над поверхностью жидкости.


Пары: насыщенный и ненасыщенный

Представьте, что вы взяли два сосуда. Один из которых закрыли крышкой. В обоих сосудах происходит и испарение и конденсация.

В сосуде, который не закрыт, количество молекул, что испарились, больше тех, что вернулись обратно. Такой пар называется ненасыщенным. В закрытом сосуде количество молекул, покинувших жидкость, равна тем, что вернулись обратно. Такой пар называется насыщенным.


Кипение


Данный процесс перехода жидкости в газообразное состояние происходит со всего объема и при определенной температуре. Для каждой жидкости соответствует своя температура кипения. Для воды, например, при нормальном давлении температура кипения 100 градусов. Чем меньше давление, тем меньше температура кипения. Таким образом, на высокой горе закипетить воду можно при более низкой температуре.

Только обратите внимание, приготовить на такой воде мясо практически невозможно - для него нужна температура выше.

Во время кипения пузырьки газа, содержащиеся в жидкости, выходят с её объема. Закипетить повторно воду тяжелее, поскольку данных пузырьков нет. Кипение начинается тогда, когда давление в пузырьках меньше, чем в жидкости - они начинают лопаться.

Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

  • испарение (переход из жидкого в газообразное состояние);
  • конденсация (переход из газообразного состояния в жидкое);
  • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
  • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

Как образуется насыщенный и ненасыщенный пар

Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

Свойства насыщенного пара

Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

Еще о температуре и насыщенном паре

Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

Определение давления насыщенного пара в смеси с другими газами

Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

О давлении и кипении

Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

Кстати, в герметично закрытом сосуде кипение невозможно вообще.

Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

Подведем итоги

На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

У разных жидкостей динамическое равновесие с паром наступает при различной плотности пара. Причина этого заключается в различии сил межмолекулярного взаимодействия. В жидкостях, у которых силы межмолекулярного притяжения велики, например у ртути, только наиболее «быстрые» молекулы, число которых незначительно, могут вылетать из жидкости. Поэтому для таких жидкостей уже при небольшой плотности пара наступает состояние равновесия. У летучих жидкостей с малой силой притяжения молекул, например у эфира, при той же температуре может вылететь за пределы жидкости множество молекул. Поэтому и равновесное состояние наступает только при значительной плотности пара.

Насыщенный пар имеет максимальные плотность и давление при заданной температуре.

§ 6.3. Изотермы реального газа

Для более детального выяснения условий, при которых возможны взаимные превращения газа и жидкости, недостаточно простых наблюдений за испарением жидкости. Нужно внимательно проследить за изменением давления реального газа в зависимости от его объема при различных температурах.

Пусть в цилиндре под поршнем (рис. 6.3) находится углекислый газ. Будем его медленно сжимать, при этом мы совершаем над газом работу, вследствие чего внутренняя энергия газа должна увеличиваться. Если мы хотим провести процесс при постоянной температуре Т, то нужно обеспечить хороший теплообмен между цилиндром и окружающей средой. Для этого можно поместить цилиндр в большой сосуд с жидкостью постоянной температуры (термостат) и сжимать газ настолько медленно, чтобы теплота успевала передаваться от газа к окружающим телам.

Проводя данный опыт, можно заметить, что вначале, когда объем достаточно велик (V > V 2 , см. рис. 6.3), давление углекислого газа с уменьшением объема растет в соответствии с законом Бойля-Мариотта, а затем при дальнейшем увеличении давления наблюдаются небольшие отклонения от этого закона. Данная зависимость между давлением и объемом газа изображена графически на рисунке 6.3 кривой АВ.

При дальнейшем уменьшении объема, начиная со значения V 2 , давление в цилиндре под поршнем перестает меняться. Если заглянуть при этом в цилиндр через специальное смотровое окно, то можно увидеть, что часть объема цилиндра занимает прозрачная жидкость. Это значит, что газ (пар) превратился в насыщенный пар, а часть его превратилась в жидкость, т. е. сконденсировалась.

Продолжая сжимать содержимое цилиндра, мы заметим, что количество жидкости в цилиндре увеличивается, а пространство, занятое насыщенным паром, уменьшается. Давление, которое показывает манометр, остается постоянным до тех пор, пока все пространство под поршнем не окажется заполненным жидкостью. Этот процесс изображен на рисунке 6.3 участком ВС графика.

В дальнейшем при незначительном уменьшении объема, начиная со значения V 3, давление очень резко нарастает (участок CD графика; см. рис. 6.3). Это объясняется тем, что жидкости малосжимаемы.

Так как рассмотренный процесс происходил при постоянной температуре Г, график ABCD (см. рис. 6.3), изображающий зависимость давления газа р от объема V , называют изотермой реального газа. Участок АВ (V > V 2 ) соответствует ненасыщенному пару, участок ВС (V 3 < V < V 2 ) - равновесному состоянию жидкости и ее насыщенного пара, а участок CD (V < V 3 ) - жидкому состоянию вещества.

Опыты показывают, что такой же вид имеют изотермы и других веществ, если их температура не слишком велика.



Понравилась статья? Поделитесь с друзьями!