Стационарный случайный процесс. Стационарный процесс

Стационарный случайный процесс

важный специальный класс случайных процессов (См. Случайный процесс), часто встречающийся в приложениях теории вероятностей к различным разделам естествознания и техники. Случайный процесс X (t ) называется стационарным, если все его вероятностные характеристики не меняются с течением времени t (так что, например, распределение вероятностей величины X (t ) при всех t является одним и тем же, а совместное распределение вероятностей величин X (t 1 ) и X (t 2 ) зависит только от продолжительности промежутка времени t 2 -t 1 , т. е. распределения пар величин {X (t 1 ), X (t 2 )} и {X (t 1 + s ), X (t 2 + s )} одинаковы при любых t 1 , t 2 и s и т. д.).

Схема С. с. п. с хорошим приближением описывает многие реальные явления, сопровождающиеся неупорядоченными флуктуациями. Так, например, пульсации силы тока или напряжения в электрической цепи (электрический «шум») можно рассматривать как С. с. п., если цепь эта находится в стационарном режиме, т. е. если все её макроскопические характеристики и все условия, вызывающие протекание через неё тока, не меняются во времени; пульсации скорости в точке турбулентного течения представляют собой С. с. п., если не меняются общие условия, порождающие рассматриваемое течение (т. е. течение является установившимся), и т.д. Эти и другие примеры С. с. п., встречающиеся в физике (в частности, гео- и астрофизике), механике и технике, стимулировали развитие исследований в области С. с. п.; при этом существенными оказались также и некоторые обобщения понятия С. с. п. (например, понятия случайного процесса со стационарными приращениями заданного порядка, обобщённого С. с. п. и однородного случайного поля).

В математической теории С. с. п. основную роль играют моменты распределении вероятностей значений процесса X (t ), являющиеся простейшими числовыми характеристиками этих распределений. Особенно важны моменты первых двух порядков: среднее значение С. с. п. EX (t ) = m - математическое ожидание случайной величины X (t ) и корреляционная функция С. с. п. EX (t 1 ) X (t 2 )= B (t 2 -t 1 ) - математическое ожидание произведения X (t 1 ) X (t 2 ) (просто выражающееся через дисперсию величин X (t ) и коэффициент корреляции между X (t 1 ) и X (t 2 ); см. Корреляция). Во многих математических исследованиях, посвященных С. с. п., вообще изучаются только те их свойства, которые полностью определяются одними лишь характеристиками m и В (τ) (т. н. корреляционная теория С. с. п.). В этой связи случайные процессы X (t ), имеющие постоянное среднее значение EX (t ) = m и корреляционную функцию В (t 2 , t 1 ) = EX (t 1 ) X (t 2 ), зависящую только от t 2 - t 1 , часто называют С. с. п. в широком смысле (а более частные случайные процессы, все характеристики которых не меняются с течением времени, в таком случае называются С. с. п. в узком смысле).

Большое место в математической теории С. с. п. занимают исследования, опирающиеся на разложение случайного процесса X (t ) и его корреляционной функции B (t 2 -t 1 ) = В (τ) в интеграл Фурье, или Фурье - Стилтьеса (см. Фурье интеграл). Основную роль при этом играет теорема Хинчина, согласно которой корреляционная функция С. с. п. X (t ) всегда может быть представлена в виде

где F (λ) - монотонно неубывающая функция λ (а интеграл справа - это интеграл Стилтьеса); если же В (τ) достаточно быстро убывает при |τ|→∞ (как это чаще всего и бывает в приложениях при условии, что под X (t ) понимается на самом деле разность X (t ) - m ), то интеграл в правой части (1) обращается в обычный интеграл Фурье:

где f (λ) = F’ (λ) - неотрицательная функция. Функция F (λ) называемая спектральной функцией С. с. п. X (t ), а функция F (λ) [в случаях, когда имеет место равенство (2)] - его спектральной плотностью. Из теоремы Хинчина вытекает также, что сам процесс X (t ) допускает Спектральное разложение вида

где Z (λ) - случайная функция с некоррелированными приращениями, а интеграл справа понимается как предел в среднем квадратичном соответствующей последовательности интегральных сумм. Разложение (3) даёт основание рассматривать любой С. с. п. X (t ) как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными амплитудами и фазами; при этом спектральная функция F (λ) и спектральная плотность f (λ) определяют распределение средней энергии входящих в состав X (t ) гармонических колебаний по спектру частот λ (в связи с чем в прикладных исследованиях функция f (λ) часто называется также энергетическим спектром или спектром мощности С. с. п. X (t )).

Выделение понятия С. с. п. и получение первых относящихся к нему математических результатов являются заслугой Е. Е. Слуцкого (См. Слуцкий) и относятся к концу 20-х и началу 30-х гг. 20 в. В дальнейшем важные работы по теории С. с. п. были выполнены А. Я. Хинчин ым, А. Н. Колмогоров ым, Г. Крамер ом, Н. Винер ом и др.

Лит.: Слуцкий Е. Е., Избр. тр., М., 1960; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, «Успехи математических наук», 1938, в. 5, с, 42-51; Розанов Ю. А., Стационарные случайные процессы, М., 1963; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. (Основные понятия. Предельные теоремы. Случайные процессы), 2 изд., М., 1973; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1, М., 1971; Хеннан Э., Многомерные временные ряды, пер. с англ., М., 1974.

А. М. Яглом.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Стационарный случайный процесс" в других словарях:

    Случайный процесс, определённый для всех моментов времени,стохастич. характеристики к рого не зависят от выбора нач. момента отсчёта(т. е. не меняются при замене Более точно это означает, что для любого набора моментов времени t1,...,tn… … Физическая энциклопедия

Определение [ | ]

X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

где T {\displaystyle T} произвольное множество , называется случайной функцией .

Терминология [ | ]

Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

Классификация [ | ]

  • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
  • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
  • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
  • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
  • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
  • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
  • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
  • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
  • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
  • Среди случайных процессов выделяют импульсные случайные процессы .

Траектория случайного процесса [ | ]

Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

Стационарный случайный процесс

важный специальный класс случайных процессов, часто встречающийся в приложениях теории вероятностей к различным разделам естествознания и техники. Случайный процесс X (t) называется стационарным, если все его вероятностные характеристики не меняются с течением времени t (так что, например, распределение вероятностей величины X (t) при всех t является одним и тем же, а совместное распределение вероятностей величин X (t

    зависит только от продолжительности промежутка времени t2≈t1, т. е. распределения пар величин {X (t1), X (t2)} и {X (t1 + s), X (t2 + s)} одинаковы при любых t1, t2и s и т.д.).

    Схема С. с. п. с хорошим приближением описывает многие реальные явления, сопровождающиеся неупорядоченными флуктуациями. Так, например, пульсации силы тока или напряжения в электрической цепи (электрический «шум») можно рассматривать как С. с. п., если цепь эта находится в стационарном режиме, т. е. если все её макроскопические характеристики и все условия, вызывающие протекание через неё тока, не меняются во времени; пульсации скорости в точке турбулентного течения представляют собой С. с. п., если не меняются общие условия, порождающие рассматриваемое течение (т. е. течение является установившимся), и т.д. Эти и другие примеры С. с. п., встречающиеся в физике (в частности, гео- и астрофизике), механике и технике, стимулировали развитие исследований в области С. с. п.; при этом существенными оказались также и некоторые обобщения понятия С. с. п. (например, понятия случайного процесса со стационарными приращениями заданного порядка, обобщённого С. с. п. и однородного случайного поля).

    В математической теории С. с. п. основную роль играют моменты распределении вероятностей значений процесса X (t), являющиеся простейшими числовыми характеристиками этих распределений. Особенно важны моменты первых двух порядков: среднее значение С. с. п. EX (t) = m ≈ математическое ожидание случайной величины X (t) и корреляционная функция С. с. п. EX (t1) X (t2)= B (t2≈t1) ≈ математическое ожидание произведения X (t1) X (t2) (просто выражающееся через дисперсию величин X (t) и коэффициент корреляции между X (t1) и X (t2); см. Корреляция). Во многих математических исследованиях, посвященных С. с. п., вообще изучаются только те их свойства, которые полностью определяются одними лишь характеристиками m и В (t) (т. н. корреляционная теория С. с. п.). В этой связи случайные процессы X (t), имеющие постоянное среднее значение EX (t) = m и корреляционную функцию В (t2, t1) = EX (t1) X (t2), зависящую только от t2 ≈ t1, часто называют С. с. п. в широком смысле (а более частные случайные процессы, все характеристики которых не меняются с течением времени, в таком случае называются С. с. п. в узком смысле).

    Большое место в математической теории С. с. п. занимают исследования, опирающиеся на разложение случайного процесса X (t) и его корреляционной функции B (t2 ≈t1) = В (t) в интеграл Фурье, или Фурье ≈ Стилтьеса (см. Фурье интеграл). Основную роль при этом играет теорема Хинчина, согласно которой корреляционная функция С. с. п. X (t) всегда может быть представлена в виде

    где F (l) ≈ монотонно неубывающая функция l (а интеграл справа ≈ это интеграл Стилтьеса); если же В (t) достаточно быстро убывает при |t|╝¥ (как это чаще всего и бывает в приложениях при условии, что под X (t) понимается на самом деле разность X (t) ≈ m), то интеграл в правой части (1) обращается в обычный интеграл Фурье:

    где f (l) = F▓(l) ≈ неотрицательная функция. Функция F (l) называемая спектральной функцией С. с. п. X (t), а функция F (l) [в случаях, когда имеет место равенство (2)] ≈ его спектральной плотностью. Из теоремы Хинчина вытекает также, что сам процесс X (t) допускает спектральное разложение вида

    где Z (l) ≈ случайная функция с некоррелированными приращениями, а интеграл справа понимается как предел в среднем квадратичном соответствующей последовательности интегральных сумм. Разложение (3) даёт основание рассматривать любой С. с. п. X (t) как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными амплитудами и фазами; при этом спектральная функция F (l) и спектральная плотность f (l) определяют распределение средней энергии входящих в состав X (t) гармонических колебаний по спектру частот l (в связи с чем в прикладных исследованиях функция f (l) часто называется также энергетическим спектром или спектром мощности С. с. п. X (t)).

    Выделение понятия С. с. п. и получение первых относящихся к нему математических результатов являются заслугой Е. Е. Слуцкого и относятся к концу 20-х и началу 30-х гг. 20 в. В дальнейшем важные работы по теории С. с. п. были выполнены А. Я. Хинчиным, А. Н. Колмогоровым, Г. Крамером, Н. Винером и др.

    Лит.: Слуцкий Е. Е., Избр. тр., М., 1960; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, «Успехи математических наук», 1938, в. 5, с, 42≈51; Розанов Ю. А., Стационарные случайные процессы, М., 1963; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. (Основные понятия. Предельные теоремы. Случайные процессы), 2 изд., М., 1973; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1, М., 1971; Хеннан Э., Многомерные временные ряды, пер. с англ., М., 1974.



Понравилась статья? Поделитесь с друзьями!