Уксусный альдегид формула химическая. Применение уксусного альдегида

Дата публикации 27.01.2013 17:10

Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) - это органическое соединение, принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

Физические свойства уксусного альдегида

1. Уксусный альдегид – это жидкость без цвета, имеющая резкий неприятный запах.

2. Хорошо растворяется в эфире, спирте и воде.

3. Молярная масса составляет 44,05 грамм/моль.

4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства уксусного альдегида

1. Температура плавления равна -123 градусам.

2. Температура кипения составляет 20 градусов.

3. Температура воспламенения равна -39 градусам.

4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в окислении этилена (так называемый процесс Вакера). Так выглядит эта реакция:

2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования этилового спирта на серебряном или медном катализаторе.

Применение уксусного альдегида

Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.

Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.

Метилформальдегид – важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.

Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.

Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество – это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как сенильная деменция (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента – алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

Химические свойства ацетальдегида

1. Гидрирование. Присоединение водорода к происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом он переходит в этиловый спирт:

CH3CHO + H2C2H5OH

При восстановлении альдегидов или кетонов водородом в момент выделения (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами в незначительных количествах образуются также гликоли:

2 CH3CHO + 2НCH3 - CH - CH - CH3

2. Реакции нуклеофильного присоединения

2.1 Присоединение магнийгалогеналкилов

СН3 - СН2 - MgBr + CH3CHO BrMg - O - CH - C2H5

2.2 Присоединение синильной кислоты приводит к образованию нитрила б-гидроксипропионовой кислоты:

CH3CHO + HCN CH3 - CH - CN

2.3 Присоединение гидросульфита натрия дает кристаллические вещество - производное ацетальдегида:

CH3CHO + HSO3NaCH3 - C - SO3Na

2.4 Взаимодействие с аммиаком приводит к образованию ацетальдимина :

CH3CHO + NH3CH3-CH=NH

2.5 С гидроксиламином ацетальдегид, выделяя воду, образует ацетальдоксимоксим:

CH3CHO + H2NOH H2O + CH3-CH =NOH

2.6 Особый интерес представляют реакции ацетальдегида с гидразином и его замещенными :

CH3CHO + H2N - NH2 + OCHCH3 CH3-CH=N-N=CH-CH3 + 2H2O

Альдазин

2.7 Ацетальдегид способен присоединять по карбонильной группе воду с образованием гидрата - геминального гликоля. При 20?С ацетальдегид в водном растворе на 58% существует в виде гидрата -C- + HOH HO-C-OH

2.8 При действии на ацетальдегид спиртов образуются полуацетали:

CH3CHO + HOR CH3-CH

В присутствии следов минеральной кислоты образуются ацетали

CH3 - CH + ROH CH3 - CH + H2O

2.9 Ацетальдегид при взаимодействии с РС15 обменивает атом кислорода на два атома хлора, что используется для получения геминального дихлорэтана:

CH3CHO + РС15 CH3CHСl2 + POCl3

3. Реакции окисления

Ацетальдегид окисляются кислородом воздуха до уксусной кислоты. Промежуточным продуктом являются надуксусная кислота:

CH3CHO + O2 CH3CO-OOH

CH3CO-OOH + CH3CHOCH3-C-O-O-CH-CH3

Аммиачный раствор гидроксида серебра при легком нагревании с альдегидами окисляет их в кислоты с образованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ложится тонким слоем на ее внутренней поверхности - образуется серебряное зеркало :

CH3 CHO + 2OHCH3COONH4 + 3NH3 + H2O + 2Ag

4. Реакции полимеризации

При действии на ацетальдегид кислот происходит его тримеризация, образуется паральдегид:

3CH3CHO СH3 - CH CH - CH3

5. Галогенирование

Ацетальдегид реагирует с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Реакции ускоряются как кислотами, так и основаниями.

CH3CHO + Br2 CH2BrCHO + HBr

При нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием метана:

CH3CHO + [(C6H5)P]3RhClCH4 + [(C6H5)3P]3RhCOCl

7. Конденсация

7.1 Альдольная конденсация

В слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) ацетальдегид подвергаются альдольной конденсации по А. П. Бородину с образованием альдегидоспирта (3-гидроксибутаналя), сокращенно называемого альдолем. Альдоль образуется в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С -- Н в б-положеиии к карбонилу:

CH3CHO + CH3CHO CH3-CHOH-CH2-CHO

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида (2-бутеналя) :

CH3-CHOH-CH2-CHO CH3-CН=CH-CHO + Н2О

Поэтому переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в б-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, р-связь по отношению к карбонильной группе.

7.2 Сложноэфирная конденсация

Проходит с образованием уксусноэтилового эфира при действии на ацетальдегид алкоголятов алюминия в неводной среде (по В. Е. Тищенко):

2CH3CHOCH3-CH2-O-C-CH3

7.3 Конденсация Клайзена-- Шмидта.

Эта ценная синтетическая реакция состоит в катализируемой основаниями конденсации ароматического или иного альдегида, не имеющего водородных атомов, с алифатическим альдегидом или кетоном. Например, коричный альдегид может быть получен встряхиванием смеси бензальдегида и ацетальдегида примерно с 10 частями разбавленной щелочи и выдерживанием смеси в течение 8--10 суток. В этих условиях обратимые реакции приводят к двум альдолям, но один из них, в котором 3-гидроксил активирован фенильной группой, необратимо теряет воду, превращаясь в коричный альдегид:

C6H5--CHO + CH3CHO C6H5-CHOH-CH2-CHO C6H5-CH=CH-CHO

Химические свойства кислорода

Кислород обладает высокой химической активностью, особенно при нагревании и в присутствии катализатора. С большинством простых веществ он взаимодействует непосредственно, образуя оксиды. Лишь по отношению к фтору кислород проявляет восстановительные свойства.

Подобно фтору кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). С галогенами, криптоном, ксеноном, золотом и платиновыми металлами он непосредственно не реагирует, и их соединения получают косвенным путем. Со всеми остальными элементами кислород соединяется непосредственно. Эти процессы обычно сопровождаются выделением теплоты.

Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кислорода в подавляющем большинстве соединений принимается равной -2. Кроме того, кислороду приписывают степени окисления +2 и + 4, а также +1(F2O2) и -1(Н2О2) .

Наиболее активно окисляются щелочные и щелочноземельные металлы, причем в зависимости от условий образуются оксиды и пероксиды:

О2 + 2Са = 2СаО

О2 + Ва = ВаО2

Некоторые металлы в обычных условиях окисляются лишь с поверхности (например, хром или алюминий). Образующаяся пленка оксида препятствует дальнейшему взаимодействию. Повышение температуры и уменьшение размеров частиц металла всегда ускоряют окисление. Так, железо в нормальных условиях окисляется медленно. При температуре же красного каления (400 °С) железная проволока горит в кислороде:

3Fe + 2О2 = Fe3 O4

Тонкодисперсный железный порошок (пирофорное железо) самовоспламеняется на воздухе уже при обычной температуре.

С водородом кислород образует воду:

При нагревании сера, углерод и фосфор горят в кислороде. Взаимодействие кислорода с азотом начинается лишь при 1200 °С или в электрическом разряде:

Водородные соединения горят в кислороде, например:

2H2S + ЗО2 = 2SO2 + 2Н2О (при избытке О2)

2Н2S + О2 = 2S + 2Н2О (при недостатке О2)

Этаналь (уксусный альдегид) — второй член гомологического ряда алифатических альдегидов. Бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Промежуточный продукт обмена веществ в живом организме. Применяется для производства ацетатов целлюлозы, уксусной кислоты, бутанола и др.

Строение

В этаналя, как и у любого другого альдегида, три атома соединены с центральным тригонально атомом (а именно: атом кислорода, атом водорода и атом углерода). Все они лежат в одной плоскости с этим тригонально атомом. Все углы связей тригонального атома с этими атомами близки к 120 °.

В карбонильной группе есть очень большая разница в электроотрицательности между атомами углерода и кислорода. Это отражается в большом дипольном моменте уксусного альдегида. Электроны связи распределены неравномерно, поэтому молекула этаналя сильно полярная. Для качественного описания природы связи в карбонильной группе обычно используют представление о двойной связь, содержащая σ- и π-компоненты с двумя парами несвязанных (n) электронов у атома кислорода. Принято, что тригонально атом углерода находится в состоянии sp 2 гибридизация и образует σ-связь с водородом и другим атомом углерода.

Физические свойства

Этаналь, как и все альдегиды, не способен образовывать водородных связей, поэтому его температура кипения составляет лишь 20,16 ° C. При обычных условиях — это бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Хорошо растворяется в воде, спирте, эфире.

Получение

Процесс Вакера

Главным промышленным способом получения уксусного альдегида является процесс Вакера. Он заключается в окислении этилена, который получают при крекинга углеводородов. Этот способ имеет гораздо большее значение, чем окисления, каталитическая дегидрогенизация этанола или гидратация ацетилена. В процессе Вакера этилен окисляют в водном растворе, хлорид меди (II) и хлорид палладия (II). В одностадийном варианте катализатор регенерируют кислородом в условиях непрерывного синтеза, в двухстадийном варианте катализатор регенерируют воздухом в отдельном реакторе. Реакция катализируется палладием.

С дигалогенопохидних

В результате гидролиза дигалогенопохидних с двумя атомами галогена при одном атоме углерода образуются двухатомные спирты, содержащие две гидроксильные группы также при одном атоме углерода. Такие диолы крайне неустойчивы и легко отщепляют молекулу воды. Таким образом с 1,1-дихлорэтана можно получить этаналь.

С этанола

При окислении этанола кислородом воздуха при температуре 300-500 ° С при наличии катализаторов, а также такими окислителями, как хромовая смесь, оксид хрома (VI), марганца (IV) оксид и др., Образуется уксусный альдегид.

Данный процесс довольно сложно остановить на стадии образования альдегида и он может длиться до получения уксусной кислоты.

С этанола этаналь можно получить и дегидрогенизации. Для этого испарения спирта необходимо пропустить над катализаторами (цинк, медь) при высоких температурах.

С ацетилена

Этаналь можно получить гидратацией ацетилена. В качестве катализаторов в процессе применяются соли ртути.

Химические свойства

Нуклеофильное присоединение

Взаимодействие с цианидами металлов

При взаимодействии этаналя с солями цианидной кислоты образуются гидроксинитрилы. Сама синильная кислота малодиссоциированных. Поэтому реакцию проводят в щелочной среде, где образуется цианид-ион, который является активной нуклеофильного частью.

Реакция является весьма важной в органической химии. Во-первых, она позволяет продлить карбоновый цепь исходного соединения на один атом углерода. Во-вторых, продукт реакции — 2-гидроксипропанонитрил служит исходным продуктом для синтеза соответствующей гидроксикарбоновои кислоты.

Взаимодействие с водой

Уксусный альдегид вступает в обратимую реакцию гидратации, образуя соответствующий гидрат.

Этаналь в водном растворе гидратированный на 51%.

Взаимодействие со спиртами

Спирты, как и вода, обратимо присоединяются к этаналя с образованием пивацеталей. В спиртовых растворах пивацетали находятся в равновесии с уксусным альдегидом. Так, в этанольная растворе этаналя содержится около 30% пивацеталю (1-етоксиетанолу) (в расчете на альдегид).

При взаимодействий со второй молекулой спирта в условиях кислотного катализа пивацетали превращаются в ацетали.

Взаимодействие с аминами

На первой стадии реакции происходит нуклеофильное присоединение амина по двойной связи карбонильной группы. Первичным продуктом присоединения является биполярный ион, который стабилизируется в результате внутримолекулярного переноса протона от атома азота к атому кислорода, превращаясь в аминоспирт. Однако реакция не останавливается на этой стадии, ведь соединения, содержащие две электроноакцепторные группы при одном атоме углерода, неустойчивы и стремятся к стабилизации путем отщепления одной из групп в виде нейтральной термодинамически стабильной молекулы. В данном случае происходит отщепление молекулы воды от молекулы аминоспирта и образуется имин (основа Шиффа).

Подобно взаимодействия с первичными аминами проходят реакции этаналя с такими производными аммиака, как гидроксиламин, гидразин, фенилгидразин C 6 H 5 NHNH 2 и др. Образующиеся производные уксусного альдегида — оксимы, гидразоны, фенилгидразоны — обычно устойчивы кристаллическими веществами с четкими температурами плавления.

Восстановление

Этаналь восстанавливается до этанола. Одним из эффективных восстановителей является алюмогидрида лития LiAlH 4. Он играет роль поставщика гидрид-ионов H -, которые являются нуклеофильными частицами и присоединяются по двойной связи. Для преобразования образованного сначала алкоксид-иона в спирт после окончания восстановления в реакционную среду добавляют воду.

В промышленности этаналь превращают в этанол в результате каталитической гидрогенизации. Реакцию проводят, пропуская пары альдегида в смеси с водородом над никелевым или палладиевого катализатора.

Альдольно-кротоновая конденсация

В результате взаимодействия в щелочной среде двух молекул этаналя образуется 3-гидроксибутаналь.

Поскольку продукт реакции содержит в молекуле гидроксильную и альдегидную группы, его назвали альдоль (от слов альдегид и алкоголь), а сама реакция конденсации оксосоединений в щелочной среде получила название альдольной конденсации. Эта реакция имеет большое значение в органическом синтезе, поскольку позволяет синтезировать различные гидроксикарбонильни соединения. Альдольно конденсацию можно проводить в смешанном варианте, с использованием различных карбонильных соединений.


Часто альдольная конденсация сопровождается отщеплением воды и образованием α, β-ненасыщенного карбонильной соединения. В таком случае реакция называется кротонов конденсацией. Такое происходит часто, когда реакцию проводят при повышенной температуре.

Реакции окисления

Реакция «серебряного зеркала»

Одной из качественных реакций для определения альдегидной группы реакция «серебряного зеркала» — окисление альдегида аргентум (I) оксидом. Оксид серебра всегда готовят непосредственно перед опытом, добавляя к раствору аргентум (I) нитрата раствор гидроксида щелочного металла. В растворе аммиака аргентум (I) оксид образует комплексное соединение под названием гидроксид диаминсрибла или реактив Толленса. При действии этого соединения на этаналь происходит окислительно-восстановительная реакция. Уксусный альдегид окисляется до уксусной кислоты, а катион Аргентума восстанавливается в металлическое серебро, которое дает блестящий налет на стенках пробирки — «серебряное зеркало».

Окисления гидроксидом меди

Еще одна качественная реакция на альдегиды заключается в их окислении гидроксида меди (II). При окислении альдегида меди (II) гидроксид, что имеет светло-голубой цвет, восстанавливается до гидроксид меди (I) желтого цвета. Этот процесс проходит при комнатной температуре. Если подогреть исследовательский раствор, то меди (I) гидроксид желтого цвета превращается в оксид меди (I) красного цвета.

Галогенирования

Наличие в молекуле этаналя електроноакцепторний оксогруппы является причиной повышенной реакционной способности атомов водорода, находящихся у атомов углерода в α-положении. Они способны замещаться на атомы галогена.

Полимеризация

Уксусный альдегид подобно формальдегида способен полимеризоваться при наличии следов кислоты. При полимеризации трех молекул этаналя образуется паральдегид — жидкость с температурой кипения 124,5 ° С. При нагревании при наличии кислот он деполимеризуется с образованием исходного уксусного альдегида.

Взаимодействие с аммиаком

Уксусный альдегид реагирует с безводным аммиаком в эфире, давая тригидрат гексагидротриазину, который после дегидратации над серной кислотой образует 2,4,6-триметилгексагидро-1,3,5-триазин, азотный аналог «паральдегида».

В промышленности этаналь окисляют до уксусной кислоты и пероцтовои кислоты воздухом. Для получения уксусной кислоты окисления обычно проводят в испарениях и при повышенной температуре. Для получения пероцтовои кислоты реакцию проводят при 0 ° С или при более низкой температуре в растворителе. Как промежуточный продукт образуется 1-гидроксиетилперацетат, который разлагается с образованием пероцтовои кислоты и уксусного альдегида. Последний возвращают в цикл.

Применение

Этаналь применяют в промышленности для производства ацетатов целлюлозы, уксусной и пероцтовои кислот, уксусного ангидрида, этилацетата, глиоксаля, 2-етилгексанолу, алкиламинов, бутанола, пентаэритрита, алкилпиридинив, 1,3-бутиленгликоль, хлорала. Также используется как восстановитель в производстве зеркал.

Мировое производство в 1982 году составило 2 млн т / год (без СССР).

Физиологическое действие

Животные

Для белых мышей при 2-часовой экспозиции ЛК 50 = 21,8 мг / л, при введении в желудок ЛД 50 = 1232 мг / кг. Основные симптомы отравления — расстройство дыхания, раздражение слизистых оболочек. Вдыхание этаналя концентрацией 0,5 мг / л в течение семи часов вызывает заметное раздражение слизистых оболочек у кошек. При 2 мг / л — сильное раздражение, а 20 мг / л через 1-2 часа вызывает смерть. Вскрытие показывает отек и воспаление легких. Крысы и морские свинки переносили введение дозы 100 мг / кг в течение 6 месяцев. При этом отмечалось нарушение условнорефлекторной деятельности, повышение артериального давления. Те же изменения вызвала доза 10 мг / кг через 2-3 месяца.

Человек

Порог восприятия запаха составляет 0,0001 мг / л, а уже при 0,004 мг / л ощущается резкий запах. Кроме легкого раздражения слизистых оболочек от 0,1-0,4 мг / л при хроническом воздействии этаналя других патологических изменений не отмечалось. При больших концентрациях наблюдается учащение пульса, ночное потоотделение. При очень больших — удушье, резкий кашель, головные боли, бронхит, воспаление легких. Возможно привыкание к небольших концентраций.

Попадание в организм и преобразования

Задерживается в дыхательных путях кролика в среднем на 60%, около 25% абсорбируется в верхних дыхательных путях. В организме окисляется до уксусной кислоты, которая вступает в нормальный обмен и сгорает в и. Скорость метаболизма большая и кроликов составляет 7-10 мг / мин.. Промежуточным продуктом окисления является ацетон.

info-farm.ru

— Пропаналь

— Бутаналь

Спирты в результате присоединения к альдегидам и кетонам образуют с одной молекулой спирта неустойчивые полуацетали и полукетали, с двумя - устойчивые ацетали и кетали. Реакции образования полуацеталей катализируются кислотами и основаниями. Эта реакция обратима - ацетали гидролизуются под действием кислот.

Механизм реакции обратен механизму гидролиза ацеталей.

Ацетали образуются при действии избытка спирта только в кислой среде. Обратная реакция гидролиза ацеталей тоже катализируется кислотами.



При щелочном гидролизе уходящая группа (RO –) является очень плохой, и реакция невозможна. Это свойство - устойчивость ацеталей в щелочной среде - используется, когда необходимо защитить карбонильную группу.

5. Напишите схемы реакций взаимодействия:

— бензальдегида с метиламином

— бутаналя с метантиолом в мольном отношении 1:2

— бутаналя с этиламином

— пропаналя с гидроксиламином

Опишите механизм реакций. Способны ли гидролизоваться полученные соединения? Напишите схемы реакций гидролиза.

Решение

Имины, оксимы по реакциям, обратным их образованию могут подвергаться гидролизу водными кислотами. Гидролиз можно рассматривать как катализируемое кислотами присоединение воды к гетероаналогу карбонильного соединения.

Тиоацетали, также могут быть подвергнуты гидролизу.

Карбонильная группа содержит двойную углерод-кислородную связь; поскольку подвижные π-электроны сильно оттянуты к кислороду, углерод карбонильной группы является электрон-дефицитным центром, а кислород карбонильной группы - электроноизбыточным.

Поскольку важнейшая стадия в этих реакциях - образование связи с электронодефецитным (кислым) карбонильным углеродом, то карбонильная группа более всего склонна к взаимодействию с электроноизбыточными нуклеофильными реагентами, т. е. с основаниями. Типичными реакциями альдегидов и кетонов будут реакции нуклеофильного присоединения.

В переходном состоянии кислород начинает приобретать электроны и отрицательный заряд, который он будет иметь в конечном продукте. Именно тенденция кислорода приобретать электроны, точнее его способность нести отрицательный заряд, и является действительной причиной реакционной способности карбонильной группы по отношению к нуклеофилам.

Оксимы и тиоацетали образуются по этому механизму.

6. Напишите схемы реакций альдольной конденсации

— этаналя

— 2-метилпропаналя

— бутаналя

— пентаналя

Опишите механизмы реакций, объясните причину появления CH- кислотного центра.

Решение

На присоединении сопряженного карбаниона генерированного из альдегида или кетона, к карбонильной группе основывается важная реакция - альдольная конденсация (правильнее было бы называть эту реакцию альдольным присоединением):

В некоторых случаях альдольное присоединение происходит в присутствии кислого катализатора. При этом нейтральный и слабый С-нуклеофил - енол - присоединяется к активированной карбонильной группе.

Для проведения реакций используют слабощелочную среду.

Ионизация α-водородного атома

приводит к карбаниону I, представляющему собой резонансный гибрид двух структур (II и III), резонанс которых возможен лишь при участии карбонильной группы

Резонанс подобного типа невозможен для карбанионов, образующихся при ионизации β- и γ-водородных атомов и т. д. в насыщенных карбонильных соединениях.

Таким образом, карбонильная группа влияет на кислотность α-водородных атомов точно так же, как она влияет на кислотность карбоновых кислот: группа С=О участвует в делокализации отрицательного заряда аниона

Альдегидная группа обладает также отрицательным индуктивным эффектом (I ), что также влияет на усиление кислотных свойств α-водородных атомов.

α-Водородные атомы карбонильных соединений все же слабо кислые, хотя и обладают кислотностью достаточной для того, чтобы они отрывались при действии основных реагентов. Поэтому образующиеся карбанионы будут сильными основаниями и исключительно реакционноспособными частицами. В реакциях они ведут себя, как и следовало ожидать, как нуклеофилы.

7. Напишите схемы внутримолекулярных превращений, которым подвергаются в кислой среде:

— 4-гидрокси — 3-метилпентаналя

— 5-гидроксигексаналя

Опишите механизм реакций. В чём причина этого внутримолекулярного взаимодействия? Способны ли гидролизоваться полученные соединения?

Решение

γ- и δ-Гидроксикарбонильные соединения легко образуют продукты внутримолекулярного взаимодействия гидроксильной группы с карбонильной - циклические полуацетали. Эти соединения могут существовать в форме с открытой цепью и в циклической полуацетальной форме. Такое явление называется кольчато-цепной изомерией. В отдельных случаях наблюдается равновесие между циклическими и открытыми формами.

γ-Гидроксикарбонильные соединения образуют производные тетрагидрофурана.

δ-Гидроксикарбонильные соединения образуют цикл тетрагидропирана, точнее производные 2-гидрокситетрагидропирана, в которых появляется асимметрический атом углерода.

Это реакции внутримолекулярного нуклеофильного присоединения с кислотным катализом.

Гидролиз этих соединений протекать не может, так как в процессе реакции не образовывалось воды (вода не отщеплялась).

8. Напишите схемы реакций получения:

— полного этилового эфира бутандиовой кислоты из бутандиовой кислоты

— полного амида бутандиовой кислоты из полного метилового эфира той же кислоты

— метилацетата из соответствующей карбоновой кислоты и ангидрида

— ацетамида из соответствующих функциональных производных: сложного эфира и ангидрида

— метилацетата по реакции этерификации

— сложного эфира из бутановой кислоты и этилового спирта

— пропанамида из различных ацилирующих агентов: кислоты, ангидрида, сложного эфира

— ангидридов бутановой и бутандиовой кислот из соответствующих кислот

Опишите механизмы реакций. Объясните необходимость катализатора в реакции этерификации.

Решение

studfiles.net

Введение

На сегодняшний день известны миллионы химических соединений. И большинство из них относится к органическим. Эти вещества делят на несколько больших групп, название одной из них — альдегиды. Сегодня мы рассмотрим представителя этого класса — уксусный альдегид.

Определение

Уксусный альдегид является органическим соединением класса альдегидов. Его могут называть и по-другому: ацетальдегидом, этаналем или метилформальдегидом. Формула уксусного альдегида — CH 3 -CHO.

Свойства

Рассматриваемое вещество имеет вид бесцветной жидкости с резким удушливым запахом, которая хорошо растворима водой, эфиром и спиртом. Так как температура кипения обсуждаемого соединения низкая (около 20 о С), хранить и перевозить можно только его тример — паральдегид. Уксусный альдегид получают, нагрев упомянутое вещество с неорганической кислотой. Это — типичный алифатичетский аьдегид, и он может принимать участие во всех реакциях, которые характерны для данной группы соединений. Вещество имеет свойство таутомеризироваться. Этот процесс завершается образованием енола — винилового спирта. Из-за того что уксусный альдегид доступен как безводный мономер, его применяют в качестве электрофила. Вступать в реакции может как он, так и его соли. Последние, например при взаимодействии с реактивом Гриньяра и литий-органическими соединеними, образуют производные гидроксэтила. Уксусный альдегид при конденсации отличается своей хиральностью. Так, при реакции Штрекера он может конденсироваться с аммиаком и цианидами, а продуктом гидролиза станет аминокислота аланин. Еще уксусный альдегид вступает в такого же вида реакцию с другими соединениями — аминами, тогда продуктом взаимодействия становятся имины. В синтезе гетероциклических соединений уксусный альдегид является очень важным компонентом, основой всех проводящихся опытов. Паральдегид — циклический тример этого вещества — получается при конденсации трех молекул этаналя. Также уксусный альдегид может образовывать стабильные ацетали. Это происходит во время взаимодействия рассматриваемого химического вещества с этиловым спиртом, проходящего в безводных условиях.

Получение

В основном уксусный альдегид получают с помощью окисления этилена (процесс Вакера). В роли окислителя выступает хлорид палладия. Еще данное вещество можно получить во время гидратации ацетилена, в которой присутствуют соли ртути. Продуктом реакции является енол, который изомеризуется в искомое вещество. Еще один способ получения уксусного альдегида, который был наиболее популярным задолго до того, как стал известен процесс Вакера, — окисление или дегидратация этанола в присутствии медного или серебряного катализаторов. При дегидратации, помимо искомого вещества, образуется водород, а во время окисления — вода.

Применение

С помощью обсуждаемого соединения получают бутадиен, альдегидные полимеры и некоторые органические вещества, в том числе и одноименную кислоту. Она образуется при его окислении. Реакция выглядит так: «кислород + уксусный альдегид = уксусная кислота». Этаналь — важный прекурсор ко многим производным, и это свойство широко применяется в синтезе
многих веществ. В организмах человека, животных и растений ацетальдегид является участником некоторых сложных реакций. Также он входит в состав сигаретного дыма.

Заключение

Ацетальдегид может приносить как пользу, так и вред. Он плохо воздействует на кожу, является ирритантом и, возможно, канцерогеном. Поэтому его присутствие в организме нежелательно. Но некоторые люди сами провоцируют появление ацетальдегида, куря сигареты и употребляя алкоголь. Подумайте над этим!

www.syl.ru

При окислении этанола образуется этаналь (уксусный альдегид) и далее этановая кислота (уксусная кислота). Сильные окислители сразу превращают этаналь в уксусную кислоту. К тому же результату приводит и окисление кислородом воздуха под влиянием бактерий. Мы легко сможем убедиться в этом, если немного разбавим спирт и оставим его на некоторое время в открытой чашке, а затем проверим реакцию на лакмус. Для получения столового уксуса до сих пор используют, в основном, уксуснокислое брожение спирта или низкосортных вин (винный уксус). Для этого спиртовый раствор при интенсивной подаче воздуха медленно пропускают через опилки из буковой древесины. В продажу поступает 5 % или 10 %-ный столовый уксус или так называемая уксусная эссенция, содержащая 40 % уксусной кислоты (В СССР концентрация пищевой уксусной эссенции, поставляемой в торговую сеть, составляет 80 %, а концентрация столового уксуса - 9 %.- Прим. перев ). Для большинства опытов она нам подойдет. Лишь в некоторых случаях понадобится безводная (ледяная) уксусная кислота, которая относится к числу ядов. Ее можно купить в аптеке или магазине химических реактивов. Она уже при 16,6 °С затвердевает в кристаллическую массу, похожую на лед. Синтетическим путем уксусную кислоту получают из этина через этаналь.

Неоднократно упоминавшийся этаналь, или уксусный альдегид, - важнейший промежуточный продукт в химической технологии, основанной на использовании карбида кальция. Его можно превратить в уксусную кислоту, спирт или же в бутадиен - исходное вещество для получения синтетического каучука. Сам этаналь производится в промышленности путем присоединения воды к этину. В ГДР на комбинате синтетического бутадиенового каучука в Шкопау этот процесс осуществляется в мощных реакторах непрерывного действия. Сущность процесса заключается в том, что этин вводится в нагретую разбавленную серную кислоту, в которой растворены катализаторы - соли ртути и другие вещества (Эта реакция открыта русским ученым М. Г. Кучеровым в 1881 г. — Прим. перев ). Поскольку соли ртути очень ядовиты, мы не будем сами синтезировать этаналь из этина. Выберем более простой способ - осторожное окисление этанола.

Нальем в пробирку 2 мл спирта (денатурата) и добавим 5 мл 20%-ной серной кислоты и 3 г тонкоизмельченного бихромата калия. Затем быстро закроем пробирку резиновой пробкой, в которую вставлена изогнутая стеклянная трубка. Смесь нагреем малым пламенем до кипения и выделяющиеся при этом пары пропустим через ледяную воду. Образующийся этаналь растворяется в воде, и его можно обнаружить с по мощью описанных выше реакций для определения алканалей. Кроме того, раствор проявляет кислую реакцию, потому что окисление легко идет дальше с образованием уксусной кислоты.

Чтобы получить этаналь в больших количествах и более чистым, соберем, руководствуясь рисунком, более сложную установку. Однако этот опыт можно выполнять только в кружке или при наличии у читателя большого опыта. Этаналь ядовит и очень летуч!

Левая часть установки предназначена для пропускания тока диоксида углерода (углекислого газа). Последний необходим для удаления выделяющегося этаналя из сферы реакции, прежде чем он окислится дальше до уксусной кислоты. Поместим в колбу кусочки мрамора и будем добавлять к ним малыми порциями разбавленную соляную кислоту. Для этого нужна капельная воронка с длинной отводной трубкой (не менее 25 см). Можно плотно присоединить такую трубку и к обычной капельной воронке с помощью резинового шланга. Эта трубка должна быть все время заполнена кислотой, чтобы Углекислый газ мог преодолеть избыточное сопротивление последующей части установки и не выходил в обратном направлении (Можно использовать и капельную воронку без длинной отводной трубки. В этом случае в пробку, закрывающую колбу с мрамором, нужно вставить еще одну короткую стеклянную трубку. Такую же трубку вставим в пробку, закрывающую капельную воронку, и соединим обе трубки резиновым шлангом. Еще удобнее пользоваться аппаратом Киппа. - Прим. перев. ).

Как обеспечить выравнивание давления в приборе для выделения газа, показано на рисунке на стр. 45.

В другой сосуд, который служит реактором, - круглодонную колбу на 250 мл - нальем сначала 20 мл денатурата. Затем растворим 40 г тонкоизмельченного бихромата калия или натрия (Яд!) в 100 мл разбавленной серной кислоты (Добавим 20 мл концентрированной серной кислоты к 80 мл воды.) Ввиду большей плотности серной кислоты обязательно нужно приливать ее к воде, а не наоборот. Серную кислоту всегда добавляют постепенно и только в защитных очках. Ни в коем случае нельзя лить воду в серную кислоту!

Одну треть приготовленного раствора сразу поместим в реактор, а остальную часть - в соединенную с реактором капельную воронку. Вставим в реактор отвод трубки, соединяющей его с устройством для выделения углекислого газа. Эта трубка должна быть погружена в жидкость.

Наконец, особого внимания заслуживает система охлаждения. В трубке, которая под углом отходит вверх от реактора, должны конденсироваться пары спирта и уксусной кислоты. Лучше всего охлаждать эту трубку с помощью наружного свинцового змеевика, пропуская через него проточную воду. В крайнем случае, можно обойтись без охлаждения, но тогда мы получим более грязный продукт. Для конденсации этаналя, который кипит уже при 20,2 °С, используем прямой холодильник. Желательно, конечно, взять эффективный холодильник - змеевиковый, шариковый или с внутренним охлаждением. В крайнем случае подойдет и не слишком короткий холодильник Либиха. В любом случае охлаждающая вода должна быть очень холодной. Водопроводная вода годится для этого только зимой. В другое же время года можно пропускать ледяную воду из большого бака, установленного на достаточной высоте. Приемники - две соединенные друг с другом пробирки - охладим, погрузив их в охлаждающую смесь из равных (по массе) количеств измельченного льда или снега и поваренной соли. Несмотря на все эти меры предосторожности, пары этаналя все же частично улетучиваются. Так как этаналь имеет неприятный резкий запах и ядовит, опыт нужно проводить в вытяжном шкафу или на открытом воздухе.

Только теперь, когда установка заряжена и собрана, начнем опыт. Вначале проверим работу прибора для выделения газа, приливая к мрамору малое количество соляной кислоты. При этом установка сразу же заполняется углекислым газом. Если он наверняка проходит через реактор и никаких неплотностей не обнаруживается, приступим собственно к получению этаналя, Приостановим выделение газа, включим всю систему охлаждения и нагреем содержимое реактора до кипения. Поскольку теперь при окислении спирта выделяется тепло, горелку можно убрать. После этого снова будем постепенно добавлять соляную кислоту, чтобы через реакционную смесь все время проходил умеренный ток углекислого газа. Одновременно оставшийся раствор бихромата должен медленно поступать из капельной воронки в реактор.

По окончании реакции в каждом из двух приемников содержится по несколько миллилитров почти чистого этаналя. Заткнем пробирки ватой и сохраним для следующих опытов на холоду. Длительное хранение этаналя нецелесообразно и опасно, так как он слишком легко испаряется и, находясь в склянке с притертой пробкой, может с силой выбивать пробку. В продажу этаналь поступает только в запаянных толстостенных стеклянных ампулах.

Опыты с этаналем

Помимо описанных выше качественных реакций, мы можем провести с малыми количествами этаналя ряд других опытов,

В пробирке к 1-2 мл этаналя осторожно добавим (в защитных очках и на расстоянии от себя) с помощью стеклянной палочки 1 каплю концентрированной серной кислоты. Начинается бурная реакция. Как только она затихнет, разбавим реакционную смесь водой и встряхнем пробирку. Выделяется жидкость, которая в отличие от этаналя не смешивается с водой и кипит только при 124 °С. Она получается в результате соединения трех молекул этаналя с образованием кольца:

Этот полимер этаналя называется паральдегидом. При перегонке с разбавленными кислотами он превращается снова в этаналь. Паральдегид применяется в медицине в качестве снотворного средства.

В следующем опыте осторожно нагреем малое количество этаналя с концентрированным раствором едкого натра. Выделяется желтая "альдегидная смола". Она тоже возникает вследствие присоединения друг к другу молекул этаналя. Однако в отличие от паральдегида молекулы этой смолы построены из большого числа молекул этаналя.

Другой твердый продукт полимеризации — метальдегид — образуется при обработке этаналя на холоду газообразным хлористым водородом. Раньше он находил некоторое применение в качестве твердого горючего ("сухого спирта").

Приблизительно 0,5 мл этаналя разбавим 2 мл воды. Добавим 1 мл разбавленного раствора едкого натра или соды и будем нагревать в течение нескольких минут. Мы почувствуем исключительно резкий запах кротонового альдегида. (Проводить опыт в вытяжном шкафу или на открытом воздухе!).

Из этаналя в результате присоединения друг к другу двух его молекул образуется вначале альдол, который также является промежуточным продуктом при получении бутадиена. Он содержит одновременно функциональные группы и алканаля, и алканола.

Отщепляя воду, альдол превращается в кротоновый альдегид:

studopedia.org

Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) — это органическое соединение, принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

Физические свойства

1. Уксусный альдегид - это жидкость без цвета, имеющая резкий неприятный запах.
2. Хорошо растворяется в эфире, спирте и воде.
3. Молярная масса составляет 44,05 грамм/моль.
4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства

1. Температура плавления равна -123 градусам.
2. Температура кипения составляет 20 градусов.
3. Температура воспламенения равна -39 градусам.
4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в окислении этилена (так называемый процесс Вакера). Так выглядит эта реакция:
2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования этилового спирта на серебряном или медном катализаторе.

Применение уксусного альдегида

— Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.
— Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.
— Метилформальдегид - важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.
— Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.
— Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество - это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как сенильная деменция (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента - алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

Безопасность

Данное вещество токсично. Является загрязнителем атмосферы при курении или от выхлопов в автомобильных пробках.

fb.ru

АЦЕТАЛЬДЕГИД (уксусный альдегид, этаналь) СН3СНО - бесцветная л ид-кость с резким удушливым запахом, т. кип. 20,8° С, с водой, спиртом, эфиром смешивается во всех отношениях. Получают А. гидратацией ацетилена в присутствии солей ртути (метод Кучерова), окислением этилового спирта и другими способами. Применяют для получения уксусной кислоты, бутадиена, ацетялъ-доля, ацеталя, синтетических смол и др. 

Синтез Проводили при комнатной температуре, использовали эквимолекулярные количества нитрометана и а-нафтальдегида в растворе этаналя. Полученный 1-(а-нафтил)-2-нитроэтилен по элементарному составу и свойствам не отличался от синтезированного по описанной методике . 

Только теперь, когда установка заряжена и собрана, начнем опыт. Вначале проверим работу прибора для выделения газа, приливая к мрамору малое количество соляной кислоты. При этом установка сразу же заполняется углекислым газом. Если он наверняка проходит через реактор и никаких неплотностей не обнаруживается, приступим собственно к получению этаналя. Приостановим выделение газа, включим всю систему охлаждения и нагреем содержимое реактора до кипения. Поскольку теперь при окислении спирта выделяется тепло, горелку можно убрать. После этого снова будем постепенно добавлять соляную кислоту, чтобы через реакционную смесь все время проходил умеренный ток углекислого газа. Одновременно оставшийся раствор бихромата должен медленно поступать из капельной воронки в реактор. 

Получим малое количество эфира. Для этого в пробирку нальем около 2 мл денатурата и 1,5 мл концентрированной серной кислоты. Подберем к пробирке пробку с двумя отверстиями. В одно из них вставим маленькую капельную воронку или просто маленькую воронку с удлиненной трубкой, выход из которой вначале закроем с помощью кусочка резинового шланга и зажима. Используя второе отверстие в пробке, присоединим к пробирке устройство для охлаждения паров - такое же, как и при получении этаналя (стр. 144). Приемник надо непременно охлаждать водой со льдом, потому что эфир кипит уже при 34,6 °С Ввиду его необычайно легкой воспламеняемости, холодильник должен быть как можно длиннее (не меньше 80 см), чтобы между источником огня и приемником было достаточное расстояние. По этой же причине проведем опыт вдали от горючих предметов, на открытом воздухе или в вытяжном шкафу. Нальем в воронку еще около 5 мл денатурата и осторожно нагреем пробирку на асбестированной сетке горелкой Бунзена приблизительно до 140 °С В приемнике конденсируется очень летучий дистиллят, и в случае недостаточного охлаждения мы почувствуем характерный запах эфира. Осторожно приоткрывая зажим, будем постепенно, малыми 

Этот эфир используется в промышленности для получения других веществ, в том числе этаналя (при кислом гидролизе). 

При окислении этаналя выделилось 2,7 г сереет. Вычислите, сколько литров ацетилена потребовалось для получения необходимой массы этаналя СН3-СН=0 (и. у.). 

На окисление смеси этаналя и бутаналя массой 2 г затратили раствор, полученный при растБорении оксида серебра массой 6,96 г в аммиаке. Определите мяссовые доли альдегидов в смеси,  

В этих реакциях карбанион (88), полученный при действии основания (как правило, 0Н), на а-Н-атом одной молекулы карбонильного соединения (87), присоединяется к карбонильному углероду другой молекулы (87) с образованием р-гидро-ксикарбонильного соединения. Например, в случае этаналя СНзСНО продуктом реакции является 3-гидроксибутаналь 

Определите строение спирта, полученного по реакции Гриньяра из этаналя и бромистого пропилмагния. 

Ацетальдегид (этаналь) является промежуточным при биологической деграда ции углеводов (см. раздел 3.8.1). Впервые он был получен в 1782 г. Шееле, структура была установлена Либихом (1835 г.). Ацетальдегид получают дегидрированием или окислением этанола над серебряными катализаторами, гидратацией ацетилена (см. раздел 2.1.4), пропусканием этилена и кислорода в водный раствор хлорида палладия (II) и хлорида меди (II) при 50 °С (прямое окисление этилена до ацетальдегида)  

При окислении этанола образуется этаналь (уксусный альдегид) и далее этановая кислота (уксусная кислота). Сильные окислители сразу превращают этаналь в уксусную кислоту. К тому же результату приводит и окисление кислородом воздуха под влиянием бактерий. Мы легко сможем убедиться в этом, если немного разбавим спирт и оставим его на некоторое время в открытой чашке, а затем проверим реакцию на лакмус. Для получения столового уксуса до сих пор используют, в основном, уксуснокислое брожение спирта или низкосортных вин (винный уксус). Для этого спиртовый раствор при интенсивной подаче воздуха медленно пропускают через опилки из буковой древесины. В продажу поступает 5% или 10%-ный столовый уксус или так называемая уксусная эссенция, содержащая 40% уксусной кислоты. Для большинства опытов она нам подойдет. Лишь в некоторых случаях понадобится безводная (ледяная) уксусная кислота, которая относится к числу ядов. Ее можно купить в аптеке или магазине химических реактивов. Она уже при 16,6 °С затвердевает в кристаллическую массу, похожую на лед. Синтетическим путем уксусную кислоту получают из этина через этаналь. 

Насыщенные и мононенасыщенные пяти- и шестичленные циклы можно металлировать так же, как их ациклические аналоги. Однако в случае тетрагидрофурана при нагревании с н-бутиллитием образуется литиевое производное, которое подвергается циклореверсии, в результате которой генерируется этилен и литиевый енолят этаналя . Этот процесс представляется наиболее удобным методом получения такого енолята, однако необходимо учитывать возможность протекания такого нежелательного побочного процесса при проведении реакций металлирования с использованием тетрагидрофурана в качестве растворителя. 

Этаналь может быть получен из ацетилена в результате  

XIII.26. Насыщенный кетон А с молекулярным весом 100, спектр ПМР которого состоит только нз, авух синглетов при 1,08 и 2,15 м. д., обрабатывают РСЬ и затем полученное соединение подвергают действию поташа. При этом получается соединеиие Б, которое затем обрабатывают амидом натрия в растворе жидкого аммиака и продукт реакции вводят в конденсацию с этаналем. После гидролиза выделяют вещество В. Это соединение затем претерпевает два ряда превращений  

Неоднократно упоминавшийся этаналь, или уксусный альдегид, - важнейший промежуточный продукт в химической технологии, основанной на использовании карбида кальция. Его можно превратить в уксусную кислоту, спирт или же в бутадиен - исходное вещество для получения синтетического каучука. Сам этаналь производится в промышленности путем присоединения воды к этину. В ГДР на комбинате синтетического бутадиенового каучука в Шкопау этот процесс осуществляется в мощных реакторах непре- 

Из этаналя в результате присоединения друг к другу двух его молекул образуется вначале альдол, который также является промежуточным продуктом при получении бутадиена. Он содержит одновременно функциональные группы и алканаля, и алканола. 169 

Этнн можно превратить в очень многие соединения, которые, в частности, приобрели большое значение для производства пластмасс, синтетического каучука, лекарств и растворителей. Например, при присоединении к этину хлористого водорода образуется винилхлорид (хлористый винил) - исходное вещество для получения поливинилхлорида (ПВХ) и пластмасс на его основе. Из этина же получают этаналь, с которым мы еще познакомимся, а из него - многие другие продукты. 

Неоднократно упоминавшийся этаналь, или уксусный альдегид, - важнейший промежуточный продукт в химической технологии, основанной на использовании карбида кальция. Его можно превратить в уксусную кислоту, спирт или же в бутадиен - исходное вещество для получения синтетического каучука. Сам этаналь производится в промышленности путем присоединения воды к этину. В ГДР на комбинате синтетического бутадиенового каучука в Шкопау этот процесс осуществляется в мощных реакторах непрерывного действия. Сущность процесса заключается в том, что этин вводится в нагретую разбавленную серную кислоту, в которой растворены катализаторы - соли ртути и другие вещества. Поскольку соли ртути очень ядовиты, мы не будем сами синтезировать этаналь нз этина. Выберем более простой способ - осторожное окисление этанола. 

Ацетальдегид (этаналь), СН3-СНО, был впервые получеп, Фуркруа и Вокеленом в 1800 г. его состав был установлен Либихом в 1835 г. Ацетальдегид является простейшим алифатическим альдегидом, дающим характерные альдегидные реакции. Кипит при 20,2°, плавится при - 123°. Может быть получен  

Ацетальдегид (уксусный альдегид, этаналь) - легко кипящая жидкость с запахом зеленой листвы. В промышленности получается из ацетилена по реакции Кучерова (см. 38), окислением этилового спирта, изомеризацией этиленоксида (см. схему 5). Наиболее современный способ получения уксусного альдегида - прямое окисление этилена кислородом воздуха  

Этаналь, ацетальдегид, уксусный альдегид, СНаСНО, жидкость, кипящая при 4-21°, получается из этанола окислением бихроматом калия и серной кислотой или каталитическим дегидрированием. Единственным способом получения, применяемым в промышленности, является присоединение воды к ацетилену в присутствии солей ртути. Исходным в этом способе является неорганическое сырье - уголь и известь. 

Этаналь (ацетальдегид) (СН3.СНО). Получают при окислении этанола или ацетилена. Подвижная бесцветная жидкость с острым, фруктовым запахом едкая очень летучая, воспламеняемая способна смешиваться с водой, спиртом и эфиром. Используется в органическом синтезе для получения пластиков, масляных лаков или в медицине в качестве антисептического средства. 

Уксусный альдегид, ацетальдегид, этаналь СНяСНО, чрезвычайно летучая жидкость с температурой кипения 20° и своеобразным сильным запахом. Получается окислением этилового спирта и очищается через альдегидаммиак. Технически его получают, присоединяя воду к ацетилену для этого ацетилен пропускают в теплую разбавленную (50%) серную кислоту, содержащую немного сернокислой ртути (Кучеров). Этот способ является главным для получения ацетальдегида. При нормальном брожении ацетальдегид образуется в качестве промежуточного продукта. 

Смотреть страницы где упоминается термин Этаналь получение :                Основные начала органической химии том 1 (1963) — [ c.167 , c.264 , c.380 , c.395 , c.453 , c.454 , c.487 ]

Основные начала органической химии Том 1 Издание 6 (1954) — [ c.207 , c.226 , c.243 , c.269 , c.339 , c.372 , c.409 , c.410 , c.413 , c.516 ]

Органическая химия Издание 3 (1980) — [ c.79 , c.179 , c.183 ]

chem21.info


Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) - принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

Физические свойства

1. Уксусный альдегид - это жидкость без цвета, имеющая резкий неприятный запах.
2. Хорошо растворяется в эфире, спирте и воде.
3. составляет 44,05 грамм/моль.
4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства

1. Температура плавления равна -123 градусам.
2. Температура кипения составляет 20 градусов.
3. равна -39 градусам.
4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в (так называемый процесс Вакера). Так выглядит эта реакция:
2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования на серебряном или медном катализаторе.

Применение уксусного альдегида

Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.
- Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.
- Метилформальдегид - важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.
- Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.
- Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество - это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента - алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

Безопасность

Данное вещество токсично. Является загрязнителем атмосферы при курении или от выхлопов в автомобильных пробках.

СH 3 СHO Эмпирическая формула С 2 H 4 O Физические свойства Состояние (ст. усл.) жидкость Молярная масса 44.05 г/моль Плотность 0.788 г/см³ Динамическая вязкость (ст. усл.) ~0.215 при 20 °C Па·с
(при 20 °C) Термические свойства Температура плавления −123.5 °C Температура кипения 20.2 °C Температура воспламенения 234,15 K (−39 °C) °C Температура самовоспламенения 458,15 K (185 °C) °C Химические свойства Растворимость в воде смешивается Структура Дипольный момент 2.7 Классификация Рег. номер CAS 75-07-0 SMILES O=CC Регистрационный номер EC 200-836-8 RTECS AB1925000

Ацетальдеги́д (у́ксусный альдегид , этана́ль , метилформальдегид ) - органическое соединение класса альдегидов с химической формулой CH 3 -CHO . Это один из наиболее важных альдегидов, широко встречающийся в природе и производящийся в больших количествах индустриально. Ацетальдегид встречается в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма. Также производится окислением этанола.

Физические свойства

Вещество представляет собой бесцветную жидкость с резким запахом, хорошо растворяется в воде , спирте , эфире . Из-за очень низкой температуры кипения (20,2 °C) хранят и перевозят ацетальдегид в виде тримера - паральдегида , из которого он может быть получен нагреванием с минеральными кислотами (обычно серной).

Получение

В 2003 глобальное производство было около миллиона тонн в год. Основной способ получения - окисление этилена (процесс Вакера ):

В качестве окислителя В процессе Вакера используется хлорид палладия, регенерирущийся окислением хлоридом меди в присутствии кислорода воздуха:

Также получают уксусный альдегид гидратацией ацетилена в присутствии солей (реакция Кучерова), с образованием енола , который изомеризуется в альдегид:

Этот метод раньше доминировал до появления процесса Вакера окислением или дегидрированием этилового спирта , на медном или серебряном катализаторе.

Реакционная способность

По своим химическим свойствам уксусный альдегид является типичным алифатическим альдегидом и для него характерны реакции этого класса соединений. Его реакционная способность определяется двумя факторами - активностью карбонила альдегидной группы и подвижностью атомов водорода метильной группы вследствие индуктивного эффекта карбонила. Подобно другим карбонильным соединениям с атомами водорода у α-углеродного атома, ацетальдегид таутомеризуется , образуя енол - виниловый спирт, равновесие почти полностью смещено в сторону альдегидной формы (константа равновесия - только 6·10 −5 при комнатной температуре ):


Реакция конденсации

Из-за маленьких размеров и доступности в виде безводного мономера (в отличие от формальдегида) является широко распространённым электрофилом в органическом синтезе. Что касается реакций конденсации, альдегид прохирален . Используется, в основном, как источник синтона «CH 3 C + H(OH)» в альдольной и соответствующих реакциях конденсации . Реактив Гриньяра и литий-органические соединения реагируют с MeCHO, образуя производные гидроксэтила. В одной из очень интересных реакций конденсации , три эквивалента формальдегида присоединяются, а один восстанавливает образующийся альдегид, образуя из MeCHO пентаэритрит (C(CH 2 OH) 4 .)

Реакция альдольной конденсации обусловлена подвижностью водорода в альфа-положении в радикале и осуществляется в присутствии разбавленных щелочей. Ее можно рассматривать как реакцию нуклеофильного присоединения одной молекулы альдегида к другой: CH 3 -CH 2 -CH=O + CH 3 -CH 2 -CH=O → CH 3 -CH 2 -CH(OH)-CH(CH 3)-CH=O +(OH)- Продукт- 2-метил-3-гидроксипентаналь.

Производные ацеталя

Три молекулы ацетальдегида конденсируются, образуя «паральделгид» - циклический тример, содержащий одиночные С-О связи. Конденсация четырёх молекул даёт циклическое соединение, называемое метальдегид .

Ацетальдегид образует стабильные ацетали при реакции с этанолом в условиях дегидратации. Продукт CH 3 CH(OCH 2 CH 3) 2 называется «ацеталь» , хотя термин используется для описания более широкой группы соединений с общей формулой RCH(OR") 2 .

Применение

Применяют уксусный альдегид для получения уксусной кислоты , бутадиена , некоторых органических веществ, альдегидных полимеров.

Традиционно ацетальдегид, в основном, использовался в качестве прекурсора к уксусной кислоте. Такое применение было отвергнуто ввиду того, что уксусная кислота более эффективно производится из метанола с помощью процессов Монсанто и Катива . В терминах реакции конденсации , ацетальдегид - важный прекурсор к пиридиновым производным, пентаэритролу и кротоналдегиду. Мочевина и ацетальдегид конденсируются, образуя смолы. Уксусный ангидрид реагирует с ацетальдегидом, давая этилидендиацетат, из которого получают винилацетат - мономер поливинилацетат .

Биохимия

Альцгеймерова болезнь

Люди, у которых отсутствует генетический фактор конверсии ацетальдегида в уксусную кислоту, могут иметь большой риск предрасположенности к болезни Альцгеймера . «Эти результаты указывают что отсутствие ALDH2 - это фактор риска для поздно возникающей болезни Альцгеймера.»

Проблема алкоголя

Ацетальдегид, полученный из поглощённого этанола, связывает ферменты, образуя аддукты, связанные с заболеваниями органов. Лекарство дисульфирам (Antabuse) предотвращает окисление ацетальдегида до уксусной кислоты. Это даёт неприятные ощущения при принятии алкоголя. Antabuse используется в случае, когда алкоголик сам хочет излечиться.

Канцероген

Ацетальдегид предположительно является канцерогеном для человека. «Существует достаточно доказательств канцерогенности ацетальдегида (основного метаболита этанола) в экспериментах на животных», кроме того, ацетальдегид повреждает ДНК и вызывает несоразмерное с общей массой тела развитие мускулов, связанное с нарушением белкового равновесия организма. В результате исследования 818 алкоголиков ученые пришли к выводу, что у тех пациентов, которые подвергались действию ацетальдегида в большей степени, присутствует дефект в гене фермента алкогольдегидрогеназы. Поэтому такие пациенты подвержены большему риску развития рака верхней части ЖКТ и печени.

Безопасность

Врожденная непереносимость алкоголя

Одним из механизмов врожденной непереносимости алкоголя является накопление ацетальдегида.

Примечания

  1. en:Wacker process
  2. March, J. «Organic Chemistry: Reactions, Mechanisms, and Structures» J. Wiley, New York: 1992. ISBN 0-471-58148-8 .
  3. Sowin, T. J.; Melcher, L. M. «Acetaldehyde» in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI :10.1002/047084289
  4. en:Strecker amino acid synthesis
  5. Kendall, E. C. McKenzie, B. F. (1941), «dl-Alanine», Org. Synth.; Coll. Vol. 1: 21
  6. Wittig, G.; Hesse, A. (1988), «Directed Aldol Condensations: β-Phenylcinnamaldehyde», Org. Synth.; Coll. Vol. 6: 901
  7. Frank, R. L.; Pilgrim, F. J.; Riener, E. F. (1963), «5-Ethyl-2-Methylpyridine», Org. Synth.; Coll. Vol. 4: 451
  8. Adkins, H.; Nissen, B. H. (1941), «Acetal», Org. Synth.; Coll. Vol. 1: 1
  9. en:Monsanto process
  10. en:Cativa process
  11. NAD+ to NADH Hipolito, L.; Sanchez, M. J.; Polache, A.; Granero, L. Brain metabolism of ethanol and alcoholism: An update. Curr. Drug Metab. 2007, 8, 716-727
  12. Study Points to Acetaldehyde-Nicotine Combination in Adolescent Addiction
  13. Nicotine’s addictive hold increases when combined with other tobacco smoke chemicals, UCI study finds
  14. «Mitochondrial ALDH2 Deficiency as an Oxidative Stress». Annals of the New York Academy of Sciences 1011: 36-44. April 2004. doi:10.1196/annals.1293.004. PMID 15126281 . Retrieved 2009-08-13.
  15. Nakamura, K.; Iwahashi, K.; Furukawa, A.; Ameno, K.; Kinoshita, H.; Ijiri, I.; Sekine, Y.; Suzuki, K.; Iwata, Y.; Minabe, Y.; Mori, N. Acetaldehyde adducts in the brain of alcoholics. Arch. Toxicol. 2003, 77, 591.
  16. Chemical Summary For Acetaldehyde, US Environmental Protection Agency
  17. DNA and chromosome damage induced by acetaldehyde in human lymphocytes in vitro
  18. ^ Nicholas S. Aberle, II, Larry Burd, Bonnie H. Zhao and Jun Ren (2004). «Acetaldehyde-induced cardiac contractile dysfunction may be alleviated by vitamin В1 but not by vitamins B6 or B12». Alcohol & Alcoholism 39 (5): 450-454. doi:10.1093/alcalc/agh085.
  19. Nils Homann, Felix Stickel, Inke R. König, Arne Jacobs, Klaus Junghanns, Monika Benesova, Detlef Schuppan, Susanne Himsel, Ina Zuber-Jerger, Claus Hellerbrand, Dieter Ludwig, Wolfgang H. Caselmann, Helmut K. Seitz Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers International Journal of Cancer Volume 118, Issue 8, Pages 1998-2002
  20. Smoking. (2006). Encyclopædia Britannica. Accessed 27 Oct 2006.


Понравилась статья? Поделитесь с друзьями!