Вычислить пределы lim примеры. Предел функции – определения, теоремы и свойства

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

Решение задач на нахождение пределов При решении задач на отыскание пределов следует помнить некоторые пределы, чтобы каждый раз не вычислять их заново. Комбинируя эти известные пределы, будем находить при помощи свойств, указанных в § 4, новые пределы. Для удобства приведем наиболее часто встречающиеся пре делы: Пределы 1 lim х - а х а 2 lim 1 = 0 3 lim х- ± со X ± 00 4 lim -L, = оо Х->о\Х\ 5 lim sin*-l X -о X 6 lim f(x) = f(a), если f (x) непрерывна x a Если известно, что функция непрерывна, то вместо нахождения предела вычисляем значение функции. Пример 1. Найти lim (х*-6л:+ 8). Так как много- Х->2 член-функция непрерывная, то lim (х*-6x4- 8) = 2*-6-2 + 8 = 4. х-+2 х*_2х 4-1 Пример 2. Найти lim -г. . Сначала находим пре- Х-+1 х ~гъх дел знаменателя: lim [хг-\-Ъх)= 12 + 5-1 =6; он не равен Х-У1 нулю, значит, можно применить свойство 4 § 4, тогда x™i *" + &* ~~ lim {х2 Ъх) - 12 + 5-1 ""6 1 . Предел знаменателя X X равен нулю, поэтому свойство 4 § 4 применить нельзя. Так как числитель-постоянное число, а знаменатель [х2х)->-0 при х--1, то вся дробь неограниченно возрастает по абсолютной величине, т. е. lim " 1 Х-*- - 1 х* + х Пример 4. Найти lim \-ll*"!"» « Предел знаменателя равен нулю: lim (хг-6лг+ 8) = 2*-6-2 + 8 = 0, поэтому X свойство 4 § 4 неприменимо. Но предел числителя тоже равен нулю: lim (х2 - 5д; + 6) = 22 - 5-2-f 6 = 0. Итак, пре- делы числителя и знаменателя одновременно равны нулю. Однако число 2 является корнем и числителя и знаменателя, поэтому дробь можно сократить на разность х-2 (по теореме Безу). В самом деле, х*-5х + 6 (х-2) (х-3) х-3 х"-6х + 8~ (х-2) (х-4) ~~ х-4 " следовательно, хг--f- 6 г х-3 -1 1 Пример 5. Найти lim хп (п целое, положительное). X со Имеем хп = X* X . . X, п раз Так как каждый множитель неограниченно растет, то и произведение также неограниченно растет, т. е. lim хп=оо. х оо Пример 6. Найти lim хп(п целое, положительное). X -> - СО Имеем хп = х х... х. Так как каждый множитель растет по абсолютной величине, оставаясь отрицательным, то в случае четной степени произведение будет неограниченно расти, оставаясь положительным, т. е. lim *п= + оо (при п четном). *-* -со В случае нечетной степени абсолютная величина произведения растет, но оно остается отрицательным, т. е. lim хп =- оо (при п нечетном). п -- 00 Пример 7. Найти lim . х х-*- со * Если т>пу то можно написать: m = n + kt где k>0. Поэтому хт Ь lim -=- = lim -=-= lim x . уП Yn х -х> А х ю Пришли к примеру 6. Если же ти уТЛ xm I lim lim lim т. X - О х-* ю Л X ->со Здесь числитель остается постоянным, а знаменатель растет по абсолютной величине, поэтому lim -ь = 0. Х-*оо X* Результат этого примера рекомендуется запомнить в следующем виде: Степенная функция растет тем быстрее, чем больше показатель степени. $хв_Зхг + 7 Пример 8. Найти lim g L -г-=.В этом примере х-*® «J* "Г ЬХ -ох-о и числитель и знаменатель неограниченно возрастают. Разделим и числитель и знаменатель на старшую степень х, т. е. на хв, тогда 3 7_ Пример 9. Найти lira . Совершая преобразова- * г ^ ния, получим lira . . ^ = lim X СО + 3 7 3 Так как lim -5 = 0, lim -, = 0, то предел знаменателя раде-*® Х X-+-CD Х вен нулю, в то время как предел числителя равен 1. Следовательно, вся дробь неограниченно возрастает, т. е. t. 7х hm Х-+ ю Пример 10. Найти lim Вычислим предел S знаменателя, помня, что cos*-функция непрерывная: lira (2 +cos x) = 2 + cosy =2. Тогда х->- S lim (l-fsin*) Пример 15. Найдем lim *<*-e>2 и lim е"(Х"а)\ Поло- Х-+ ± со X ± СО жим (л: - a)2 = z; так как (л;-а)2 всегда неотрицательно и неограниченно растет вместе с х, то при х- ±оо новое переменное z-*ос. Поэтому получаем цт £<*-«)* = X -> ± 00 s=lim ег = оо (см. замечание к §5). г -*■ со Аналогично lim е~(Х-а)2 = lim e~z=Q, так как х ± оо г м - (х- а)г неограниченно убывает при х->±оо (см. замечание к §

Рассмотрим на показательных примерах.

Пусть х – числовая переменная величина, Х – область ее изменения. Если каждому числу х, принадлежащему Х, поставлено в соответствие некоторое число у, то говорят, что на множестве Х определена функция, и записывают у = f(x).
Множество Х в данном случае – плоскость, состоящая из двух координатных осей – 0X и 0Y. Для примера изобразим функцию у = х 2 . Оси 0X и 0Y образуют Х – область ее изменения. На рисунке прекрасно видно, как ведет себя функция. В таком случае говорят, что на множестве Х определена функция у = х 2 .

Совокупность Y всех частных значений функции называется множеством значений f(x). Другими словами, множество значений – это промежуток по оси 0Y, где определена функция. Изображенная парабола явно показывает, что f(x) > 0 , т.к. x2 > 0. Поэтому область значений будет . Множество значений смотрим по 0Y.

Совокупность всех х называется областью определения f(x). Множество определений смотрим по 0X и в нашем случае областью допустимых значений является [-; +].

Точка а (а принадлежит или Х) называется предельной точкой множества Х, если в любой окрестности точки а имеются точки множества Х, отличные от а.

Пришла пора понять – что же такое предел функции?

Чисто b, к которому стремится функция при стремлении х к числу а, называется пределом функции . Записывается это следующим образом:

Например, f(x) = х 2 . Нам надо узнать, к чему стремится (не равна) функция при х 2. Сначала запишем предел:

Посмотрим на график.

Проведем параллельно оси 0Y линию через точку 2 на оси 0X. Она пересечет наш график в точке (2;4). Опустим из этой точки на ось 0Y перпендикуляр – и попадем в точку 4. Вот к чему стремится наша функция при х 2. Если теперь подставить в функцию f(x) значение 2, то ответ будет таким же.

Теперь прежде чем перейти к вычислению пределов , введем базовые определения.

Введено французским математиком Огюстеном Луи Коши в XIX веке.

Допустим, функция f(x) определена на некотором интервале, в котором содержится точка x = A, однако совсем не обязательно, чтобы значение f(А) было определено.

Тогда, согласно определению Коши, пределом функции f(x) будет некое число B при x, стремящимся к А, если для каждого C > 0 найдется число D > 0, при котором

Т.е. если функция f(x) при x А ограничена пределом В, это записывается в виде

Пределом последовательности называется некое число А, если для любого сколь угодно малого положительного числа В > 0 найдется такое число N, при котором все значения в случае n > N удовлетворяют неравенству

Такой предел имеет вид .

Последовательность, у которой есть предел, будем называть сходящейся, если нет - расходящейся.

Как Вы уже заметили, пределы обозначаются значком lim, под которым записывается некоторое условие для переменной, и далее уже записывается сама функция. Такой набор будет читаться, как «предел функции при условии…». Например:

- предел функции при х, стремящимся к 1.

Выражение «стремящимся к 1» означает, что х последовательно принимает такие значения, которые бесконечно близко приближаются к 1.

Теперь становится ясно, что для вычисления данного предела достаточно подставить вместо х значение 1:

Кроме конкретного числового значения х может стремиться и к бесконечности. Например:

Выражение х означает, что х постоянно возрастает и неограниченно близко приближается к бесконечности. Поэтому подставив вместо х бесконечность станет очевидно, что функция 1- х будет стремиться к , но с обратным знаком:

Таким образом, вычисление пределов сводится к нахождению его конкретного значения либо определенной области, в которую попадает функция, ограниченная пределом.

Исходя из вышеизложенного следует, что при вычислении пределов важно пользоваться несколькими правилами:

Понимая сущность предела и основные правила вычисления пределов , вы получите ключевое представление о том, как их решать. Если какой предел будет вызывать у вас затруднения, то пишите в комментарии и мы обязательно вам поможем.

Заметка: Юриспруденция - наука о законах, помогающее в конфлитных и других жизненных трудностях.

Тема 4.6.Вычисление пределов

Предел функции не зависит от того, определена она в предельной точке или нет. Но в практике вычисления пределов элементарных функций это обстоятельство имеет существенное значение.

1. Если функция является элементарной и если предельное значение аргумента принадлежит ее области определения, то вычисление предела функции сводится к простой подстановке предельного значения аргумента, т.к. предел элементарной функции f (x) при х стремящемся к а , которое входит в область определения, равен частному значению функции при х=а , т.е. lim f(x)=f(a ) .

2. Если х стремится к бесконечности или аргумент стремится к числу, которое не принадлежит области определения функции, то в каждом таком случае нахождение предела функции требует специального исследования.

Ниже приведены простейшие пределы, основанные на свойствах пределов, которые можно использовать как формулы:

Более сложные случаи нахождения предела функции:

рассматриваются каждый в отдельности.

В этом разделе будут приведены основные способы раскрытия неопределенностей.

1. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно малых величин

а) Сначала нужно убедится, что предел функции нельзя найти непосредственной подстановкой и при указанном изменении аргумента она представляет отношение двух бесконечно малых величин. Делаются преобразования, чтобы сократить дробь на множитель, стремящийся к 0. Согласно определению предела функции аргумент х стремится к своему предельному значению, никогда с ним не совпадая.

Вообще если ищется предел функции при х стремящемся к а , то необходимо помнить, что х не принимает значения а , т.е. х не равен а.

б) Применяется теорема Безу. Если ищется предел дроби, числитель и знаменатель которой многочлены, обращающиеся в 0 в предельной точке х=а , то согласно вышеназванной теореме оба многочлена делятся без остатка на х-а .

в) Уничтожается иррациональность в числителе или в знаменателе путем умножения числителя или знаменателя на сопряженное к иррациональному выражение, затем после упрощения дробь сокращается.

г) Используется 1-й замечательный предел (4.1).

д) Используется теорема об эквивалентности бесконечно малых и следующие б.м.:

2. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно больших величин

а) Деление числителя и знаменателя дроби на наивысшую степень неизвестного.

б) В общем случае можно использовать правило

3. Случай, когда при х стремящемся к а функция f (x) представляет произведение бесконечно малой величины на бесконечно большую

Дробь преобразовывается к виду, числитель и знаменатель которой одновременно стремятся к 0 или к бесконечности, т.е. случай 3 сводится к случаю 1 или случаю 2.

4. Случай, когда при х стремящемся к а функция f (x) представляет разность двух положительных бесконечно больших величин

Этот случай сводится к виду 1 или 2 одним из следующих способов:

а) приведение дробей к общему знаменателю;

б) преобразование функции к виду дроби;

в) избавление от иррациональности.

5. Случай, когда при х стремящемся к а функция f (x) представляет степень, основание которой стремится к 1, а показатель к бесконечности.

Функция преобразовывается таким образом, чтобы использовать 2-й замечательный предел (4.2).

Пример. Найти .

Так как х стремится к 3 , то числитель дроби стремится к числу 3 2 +3 *3+4=22, а знаменатель- к числу 3+8=11. Следовательно,

Пример

Здесь числитель и знаменатель дроби при х стремящемся к 2 стремятся к 0 (неопределенность вида), разложим числитель и знаменатель на множители, получим lim(x-2)(x+2)/(x-2)(x-5)

Пример

Умножим числитель и знаменатель на выражение, сопряженное к числителю, имеем

Раскрываем скобки в числителе, получим

Пример

Уровень 2. Пример. Приведем пример применения понятия предела функции в экономических расчетах. Рассмотрим обыкновенную финансовую сделку: предоставление в долг суммы S 0 с условием, что через период времени T будет возвращена сумма S T . Определим величину r относительного роста формулой

r=(S T -S 0)/S 0 (1)

Относительный рост можно выразить в процентах, умножив полученное значение r на 100.

Из формулы (1) легко определить величину S T :

S T = S 0 (1 + r )

При расчете по долгосрочным кредитам, охватывающим несколько полных лет, используют схему сложных процентов. Она состоит в том, что если за 1-й год сумма S 0 возрастает в (1 + r ) раз, то за второй год в (1 + r ) раз возрастает сумма S 1 = S 0 (1 + r ), то есть S 2 = S 0 (1 + r ) 2 . Аналогично получается S 3 = S 0 (1 + r ) 3 . Из приведенных примеров можно вывести общую формулу для вычисления роста суммы за n лет при расчете по схеме сложных процентов:

S n = S 0 (1 + r ) n .

В финансовых расчетах применяются схемы, где начисление сложных процентов производится несколько раз в году. При этом оговариваются годовая ставка r и количество начислений за год k . Как правило, начисления производятся через равные промежутки времени, то есть длина каждого промежутка T k составляет часть года. Тогда для срока в T лет (здесь T не обязательно является целым числом) сумма S T рассчитывается по формуле

(2)

где - целая часть числа, которая совпадает с самим числом, если, например, T ? целое число.

Пусть годовая ставка равна r и производится n начислений в год через равные промежутки времени. Тогда за год сумма S 0 наращивается до величины, определяемой формулой

(3)

В теоретическом анализе и в практике финансовой деятельности часто встречается понятие “непрерывно начисляемый процент”. Чтобы перейти к непрерывно начисляемому проценту, нужно в формулах (2) и (3) неограниченно увеличивать соответственно, числа k и n (то есть устремить k и n к бесконечности) и вычислить, к какому пределу будут стремиться функции S T и S 1 . Применим эту процедуру к формуле(3):

Заметим, что предел в фигурных скобках совпадает со вторым замечательным пределом. Отсюда следует, что при годовой ставке r при непрерывно начисляемом проценте сумма S 0 за 1 год наращивается до величины S 1 * , которая определяется из формулы

S 1 * = S 0 e r (4)

Пусть теперь сумма S 0 предоставляется в долг с начислением процента n раз в год через равные промежутки времени. Обозначим r e годовую ставку, при которой в конце года сумма S 0 наращивается до величины S 1 * из формулы (4). В этом случае будем говорить, что r e - это годовая ставка при начислении процента n раз в год, эквивалентная годовому проценту r при непрерывном начислении. Из формулы (3) получаем

S* 1 =S 0 (1+r e /n) n

Приравнивая правые части последней формулы и формулы (4), полагая в последней T = 1, можно вывести соотношения между величинами r и r e :

Эти формулы широко используются в финансовых расчётах.

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.



Понравилась статья? Поделитесь с друзьями!