Задачи на классическое определение вероятности. Элементы статистики, комбинаторики и теории вероятностей в основной школе

§ 7. Применение комбинаторики к подсчету вероятности

Если из совокупности объема n производится выборка k элементов с возвращением, то вероятность получения каждой конкретной выборки считается равной .

Если выборка производится без возвращения, то эта вероятность равна .

Пусть наступление события А состоит в появлении выборки с какими-то дополнительными ограничениями и количество таких выборок равно m. Тогда в случае выборки с возвращением имеем:

в случае выборки без возвращения:

Пример 1. Наудачу выбирается трехзначное число, в десятичной записи которого нет нуля. Какова вероятность того, что у выбранного числа ровно две одинаковые цифры?

Решение. Представим себе, что на 9 одинаковых карточках написаны цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и эти карточки помещены в урну. Выбор наудачу трехзначного числа равносилен последовательному извлечению с возвращением из урны 3 карточек и записыванием цифр в порядке их появления. Следовательно, число всех элементарных исходов опыта равно 93 = 729. Количество благоприятных случаев для интересующего нас события А подсчитываем так: 2 различные цифры х и у можно выбрать способами; если х и у выбраны, то из них можно составить https://pandia.ru/text/78/365/images/image007_10.gif" width="115 height=41" height="41">.

Пример 2. Из букв слова «ротор», составленного с помощью разрезной азбуки, наудачу последовательно извлекаются 3 буквы и складываются в ряд. Какова вероятность того, что получится слово «тор»?

Решение. Чтобы отличать одинаковые буквы друг от друга, снабдим их номерами: р1, р2, о1, о2. Тогда общее число элементарных исходов равно: . Слово «тор» получится в 1 × 2 ×2 = 4 случаях (то1р1, то1р2, то2р1, то2р2)..gif" width="24" height="25 src="> и мы предполагаем, что все они имеют равные вероятности .

Пример 3. В партии из N деталей имеется n бракованных. Какова вероятность того, что среди наудачу отобранных k деталей окажется s бракованных?

Решение. Количество всех элементарных исходов равно . Для подсчета числа благоприятных случаев рассуждаем так: из n бракованных можно выбрать s деталей способами, а из N - n небракованных можно выбрать k – s небракованных деталей способами; по правилу произведения число благоприятных случаев равно × . Искомая вероятность равна:

.

Пример 4. В бригаде 4 женщины и 3 мужчин. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчин?

Решение. Применим схему статистического выбора. Из 7 членов бригады 4 человека можно выбрать = 35 способами, следовательно, число всех элементарных исходов испытания равно 35..gif" width="28" height="34">= 3 способами. Тогда число благоприятных случаев будет равно 6 × 3 = 18..gif" width="21" height="41"> . Сколько в урне белых шаров?

150. В урне n белых и m черных шаров. Наудачу извлечены k шаров (k>m). Какова вероятность того, что в урне остались одни белые шары?

151. Из урны, содержащей N шаров, N раз извлекают по одному шару, каждый раз возвращая извлеченный шар. Какова вероятность того, что все шары извлекались по одному разу?

152. Полная колода карт (52 листа) делится наугад на 2 равные части (по 26 карт). Найдите вероятности следующих событий:

А – в каждой части окажется по 2 туза;

В – в одной из частей не будет ни одного туза;

С – в одной из частей будет ровно один туз.

153. В урне a белых, b черных и с красных шаров. Из этой урны один за другим вынимают без возвращения все шары и записывают их цвета. Найдите вероятность того, что в этом списке белый цвет встретится раньше черного.

154. Имеется 2 урны: в первой a белых и b черных шаров; второй с белых и d черных. Из каждой урны вынимается по шару. Найдите вероятность того, что оба шара будут белыми (событие А) и вероятность того, что шары будут разного цвета (событие В).

155. 2n команд разбиты на 2 подгруппы по n команд. Найдите вероятность того, что 2 наиболее сильные команды попадут: а) в разные подгруппы (событие А); б) в одну подгруппу (событие В).

156. Из колоды в 36 карт наудачу извлекаются 3 карты. Определите вероятность того, что сумма очков в этих картах равна 21, если валет составляет 2 очка, дама – 3, король – 4, туз – 11, а остальные карты – соответственно 6, 7, 8, 9, 10 очков.

157. Владелец одной карточки лотереи «Спортлото» (6 из 49) зачеркивает 6 номеров. Какова вероятность того, что им будет угадано:

а) все 6 номеров в очередном тираже;

б) 5 или 6 номеров;

в) по крайней мере 3 номера?

158. Автобусу, в котором 15 пассажиров, предстоит сделать 20 остановок. Предполагая, что всевозможные способы распределения пассажиров по остановкам равновозможны, найдите вероятность того, что никакие 2 пассажира не выйдут на одной остановке.

159. Из чисел 1, 2, …, N выбирают наудачу r различных чисел (r £ N). Найдите вероятность того, что будут выбраны r последовательных чисел.

160. Из полной колоды карт (52 листа) извлекают сразу несколько карт. Сколько карт нужно извлечь для того, чтобы с вероятностью, большей чем 0,5, утверждать, что среди них будут карты одной и той же масти?

161. Имеется n шариков, которые случайным образом разбрасываются по m лункам. Найдите вероятность того, что в первую лунку упадет ровно k1 шариков, во вторую – k2 шариков и т. д., в m-ю – km шариков, если k1+k2+…+km=n.

162. В условиях предыдущей задачи найдите вероятность того, что в одной из лунок (безразлично в какой) будет k1 шариков, а в другой – k2 шариков и т. д., в m-й – km шариков (числа k1,k2,…,km предполагаются различными).

163. Из множества {1, 2,…, N} последовательно без возвращения выбираются числа х1 и х2. Найдите р(x2 > x1).

1рукописей разложены по 30 папкам (одна рукопись занимает 3 папки). Найдите вероятность того, что в случайно выброшенных 6 папках не содержится целиком ни одной рукописи.

165. Какова вероятность того, что в компании из r человек хотя бы у двоих совпадут дни рождения? (Для простоты предполагается, что 29 февраля не является днем рождения).

166. Используя таблицу значений lg n! и условие предыдущей задачи, вычислите вероятности при r = 22, 23, 60.

167.Вы задались целью найти человека, день рождение которого совпадает с Вашим. Сколько незнакомцев Вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше чем 0,5?

168. По Государственному займу ежегодно разыгрывается 6 основных тиражей и один дополнительный, происходящий после основного пятого. Из 100000 серий в каждом основном тираже выигрывают 170 серий, а в каждом дополнительном – 230 серий. Найдите вероятность выигрыша одной облигации за первые 10 лет: а) в основном тираже; б) в дополнительном тираже; в) в каком-либо тираже.

Жесткий препод, срочно нужно сделать решение задач по теории вероятности за 1 день, тема "Теория вероятности (Математика)"

1. Телефонный номер состоит из шести цифр. Найти вероятность того, что все цифры различны. 2. В партии 10 изделий, из них четыре нестандартных. Наугад берут четыре изделия. Найти вероятность того, что среди взятых изделий больше стандартных, чем нестандартных. 3. Десять человек случайным образом садятся на десятиместную скамейку. Найти вероятность того, что 2 определенных лица окажутся рядом. 4. Внутри квадрата с вершинами наудачу выбирается точка. Найти вероятность следующего события: 5. Два стрелка независимо сделали по одному выстрелу по мишени. Известно, что вероятность попадания в мишень для одного из стрелков равна 0,6; а для другого – 0,7. Найти вероятность того, что хотя бы один из стрелков не попадет в мишень. 6. Перед прохождением первого тура конкурса каждому претенденту выдаются три задания: текст на художественное чтение, тема для представления пантомимой, стихотворение для вокального исполнения на собственную мелодию. При прохождении конкурса предлагается исполнить два номера из трех. Выбор номеров случаен. Конкурсант оценивает, что пройдет первый тур в художественном чтении с вероятностью 0,9; при исполнении пантомимы – 0,3; при исполнении вокального задания – 0,5. Какова вероятность пройти первый тур для конкурсанта с такой подготовкой? 7. В первой урне содержится 10 шаров, из них 8 белых; во второй урне 15 шаров, из них 4 белых. Из первой урны наудачу извлекли два шара, а затем в нее переложили шар из второй урны. После этого из первой урны извлекли шар. Найти вероятность, что этот шар – белый. 8. Из 18 стрелков 5 попадают в мишень с вероятностью 0,6; 7 – с вероятностью 0,7; 4 – с вероятностью 0,8; 2 – с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежит этот стрелок? 9. Вероятность попадания в цель при одном выстреле равна 0.7. Найти вероятность того, что при 20 независимых выстрелах цель будет поражена не более 14 раз. 10. В кармане 5 монет, примерно одинаковые на ощупь: три – по 2 рубля и две – по 10 рублей. Не глядя, вытаскивают 2 монеты. Случайная величина суммарное число извлеченных рублей. Для случайной величины: а) построить ряд распределения, б) найти математическое ожидание и дисперсию, в) найти вероятность события {извлечено не менее 4, но не более 12 рублей}. 11. Мастер, вызванный на дом, может появиться в любое время с 10 до 18 часов. Клиент, прождав до 14 часов, отлучился на 1 час. Считая время прихода мастера случайной величиной, распределенной равномерно, найти плотность вероятностей, функцию распределения. Определить вероятность, что мастер (приход его обязателен) не застанет клиента дома? Построить графики плотности вероятностей и функции распределения.

1. Телефонный номер состоит из шести цифр. Найти вероятность того, что все цифры различны. 2. В партии 10 изделий, из них четыре нестандартных. Наугад берут четыре изделия. Найти вероятность того, что среди взятых изделий больше стандартных, чем нестандартных. 3. Десять человек случайным образом садятся на десятиместную скамейку. Найти вероятность того, что 2 определенных лица окажутся рядом. Подробнее

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

– общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Комбинаторика изучает способы подсчета числа элементов в конечных множествах. Формулы комбинаторики, используют при непосредственном вычислении вероятностей.
Множества элементов, состоящие из одних и тех же различных элементов и отличающиеся друг от друга только их порядком, называются перестановками этих элементов. Число всевозможных перестановок из n элементов обозначают через , и это число равно n ! (читается "эн-факториал"):
\(P_n=n\) (1.3.1)
где
. (1.3.2)

З а м е ч а н и е 1. Для пустого множества принимается соглашение: пустое множество можно упорядочить только одним способом; по определению полагают .

Размещениями называют множества, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений определяется формулой
. (1.3.3)

Сочетаниями из n различных элементов по m называются множества, содержащие m элементов из числа n заданных, и которые отличаются хотя бы одним элементом. Число сочетаний из n элементов по m обозначают: или . Это число выражается формулой

. (1.3.4)

З а м е ч а н и е 2. По определению полагают .

Для числа сочетаний справедливы равенства:
, , (1.3.5)
. (1.3.6)

Последнее равенство иногда формулируется в виде следующей теоремы о конечных множествах:
Число всех подмножеств множества, состоящего их n элементов, равно .
Отметим, что числа перестановок, размещений и сочетаний связаны равенством

З а м е ч а н и е 3. Выше предполагалось, что все n элементов различны. Если же некоторые элементы повторяются, то в этом случае множества с повторениями вычисляют по другим формулам.

Например, если среди n элементов есть элементов одного вида, элементов другого вида и т.д., то число перестановок с повторениями определяется формулой
(1.3.7)
где .

Число размещений по m элементов с повторениями из n элементов равно
, то есть
с повт (1.3.8)
Число сочетаний с повторениями из n элементов по m элементов равно числу сочетаний без повторений из n + m - 1 элементов по m элементов, то есть
с повт . (1.3.9)

При решении задач комбинаторики используют следующие правила.

Правило суммы. Если некоторый объект А может быть выбран из множества объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения . Если объект А можно выбрать из множества объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана способами.

Классическая схема подсчета вероятностей пригодна для решения ряда сугубо практических задач. Рассмотрим, например, некоторое множество элементов объема N. Это могут быть изделия, каждое из которых является годным или бракованным, или семена, каждое из которых может быть всхожим или нет. Подобного рода ситуации описываются урновой схемой: в урне имеется N шаров, из них М голубых, (N - M) красных.

Из урны, содержащей N шаров, в которой находится М голубых шаров, извлекается n шаров. Требуется определить вероятность того, что в выборке объема n будет обнаружено m голубых шаров. Обозначим через А событие "в выборке объема n имеется m голубых шаров", тогда
(1.3.10)

Пример 1. Сколькими различными способами можно выбрать три лица на три различные должности из десяти кандидатов?

Решение. Воспользуемся формулой (1.3.3). При n = 10, m = 3 получаем
.

Пример 2. Сколькими различными способами могут разместиться на скамейке 5 человек?

Решение. Согласно формуле (1.3.1) при n=5 находим
P 5 =5!=1·2·3·4·5=120.

Пример 3. Сколькими способами можно выбрать три лица на три одинаковые должности из десяти кандидатов?

Решение. В соответствии с формулой (1.3.4) находим

Пример 4. Сколько различных шестизначных чисел можно записать с помощью цифр 1; 1; 1; 2; 2; 2?

Решение. Здесь нужно найти число перестановок с повторениями, которое определяется формулой (1.3.7). При k =2, n 1 = 3, n 2 = 3, n=6 по этой формуле получаем

Пример 5. Сколько различных перестановок букв можно сделать в словах: замок, ротор, топор, колокол?

Решение. В слове замок все буквы различны, всего их пять. В соответствии с формулой (1.3.1) получаем P 5 = 5! = 1·2·3·4·5 = 120. В слове ротор , состоящем из пяти букв, буквы p и o повторяются дважды. Для подсчета различных перестановок применяем формулу (1.3.7). При n = 5, n 1 = 2, n 2 = 2 по этой формуле находим

В слове топор буква о повторяется дважды, поэтому

В слове колокол, состоящем из семи букв, буква к встречается дважды, буква о - трижды, буква л - дважды. В соответствии с формулой (13.7) при n = 7, n 1 = 2, n 2 = 3, n з = 2 получаем

Пример 6. На пяти одинаковых карточках написаны буквы И, К, М, Н, С. Карточки перемешиваются и наугад раскладываются в ряд. Какова вероятность того, что получится слово МИНСК?

Решение. Из пяти различных элементов можно составить Р5 перестановок:
. Значит, всего равно возможных исходов будет 120, а благоприятствующих данному событию - только один. Следовательно,

Пример 7. Из букв слова ротор , составленного с помощью разрезной азбуки, наудачу последовательно извлекаются 3 буквы и складываются в ряд. Какова вероятность того, что получится слово тор ?

Решение. Чтобы отличить одинаковые буквы друг от друга, снабдим их номерами: p 1 , p 2 , 0 1 , 0 2 . Общее число элементарных исходов равно: . Слово ротор получится в случаях (то 1 р 1 , то 1 р 2 , то 2 р 1 , то 2 р 2 ). Искомая вероятность равна

При подсчете числа благоприятных случаев здесь воспользовались правилом произведения: букву m можно выбрать одним способом, букву о - двумя, букву р - двумя способами.

Пример 8. На шести одинаковых по форме и размеру карточках написаны буквы слова талант - по одной букве на каждой карточке. Карточки тщательно перемешаны. их вынимают наудачу и располагают на столе одна за другой. Какова вероятность снова получить слово талант ?

Решение. Занумеруем карточки с буквами:

Слово т а л а н т (513246) не изменится, если буквы а переставить местами, но по расположению карточек получится иная комбинация: т а л а н т (523146). Если в каждой из этих двух комбинаций то же проделать с буквой т, то получим еще 2 различные комбинации карточек со словом талант. Значит, появлению слова талант благоприятствуют 4 элементарных исхода. Общее число равно возможных элементарных исходов равна числу перестановок из 6 элементов: n = 6! = 720. Следовательно, искомая вероятность

.

З а м е ч а н и е. Эту вероятность можно найти и с помощью формулы (1.3.7), которая при n = 6, n 1 = 1, n 2 = 1, n з = 2, n 4 = 2 принимает вид:

. Таким образом, Р = 1/180.

Пример 9. На пяти одинаковых карточках написаны буквы: на двух карточках л , на остальных трех и . Выкладывают наудачу эти карточки в
ряд. Какова вероятность того, что при этом получится слово лилии ?

Решение. Найдем число перестановок из этих пяти букв с повторениями.
По формуле (1.3.7) при n = 5, n 1 = 2, n 2 = 3 получаем

Это общее число равновозможных исходов опыта, данному событию А - "появление слова лилии" благоприятствует один. В соответствиис формулой (1.2.1) получаем

Пример 10. В партии из 10 деталей 7 стандартных. Найти вероятность
того, что среди 6 взятых наудачу деталей 4 стандартных.

Решение. Общее число возможныIx элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, то есть числу сочетаний из 10 элементов по 6 элементов ().

Определяем число исходов, благоприятствующих событию А - "среди 6 взятых деталей 4 стандартных". Четыре стандартные детали из семи стандартных можно взять способами, при этом остальные 6 - 4 = 2 детали должны быть нестандартными; взять же 2 нестандартные детали из 10 - 7 = 3 нестандартных деталей можно способами. Следовательно, число благоприятных исходов равно .

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

З а м е ч а н и е. Последняя формула является частным случаем формулы (1.3.10): N= 10, М= 7, n = 6, m = 4.

Пример 11. Среди 25 студентов группы, в которой 10 девушек, разыгрывается 5 билетов. Найти вероятность того, что среди обладателей билетов окажутся 2 девушки.

Решение. Число всех равновозможных случаев распределения 5 билетов среди 25 студентов равно числу сочетаний из 25 элементов по 5, то есть . Число групп по трое юношей из 15, которые могут получить билеты, равно . Каждая такая тройка может сочетаться с любой парой из десяти девушек, а число таких пар равно .Следовательно, число групп по 5 студентов, образованных из группы в 25 студентов, в каждую из которых будут входить трое юношей и две девушки, равно произведению . Это произведение равно числу благоприятствующих случаев распределения пяти билетов среди студентов группы так, чтобы три билета получили юноши и два билета - девушки. В соответствии с формулой (1.2.1) находим искомую вероятность

З а м е ч а н и е. Последняя формула является частным случаем формулы (1.3.10): N= 25, М= 15,n = 5, m = 3.

Пример 12 . В ящике находятся 15 красных, 9 голубых и 6 зеленых шаров. Наудачу вынимают 6 шаров. Какова вероятность того, что вынуты 1 зеленый, 2 голубых и 3 красных шара (событие А)?

Решение. В ящике всего 30 шаров. При данном испьпании число всех равновозможных элементарных исходов будет . Подсчитаем число элементарных исходов, благоприятствующих событию А. Три красных шара из 15 можно выбрать способами, два голубых шара из 9 можно выбрать споcобами, один зеленый из 6 -
Число благоприятных исходов равно произведению

Искомая вероятность определяется формулой (1.3.10):

Пример 14. Игральный кубик подбрасывают 10 раз. Какова вероятность того, что при этом грани 1, 2, 3, 4, 5, 6 выпадут соответственно 2, 3, 1, 1, 1, 2 раза (событие А)?

Решение. Число исходов, благоприятных для события А, подсчитаем по формуле (1.3.7):
Число всех элементарных исходов в данном опыте n = 6 10 , поэтому

Задачи
1. На 5 одинаковых карточках написаны буквы Б, Е, Р, С, Т. Эти карточки наудачу разложены в ряд. Какова вероятность того, что получится слово БРЕСТ?
2. В ящике 4 голубых и 5 красных шаров. Из ящика наугад вынимают 2 шара. Найдите вероятность того, что эти шары разного цвета.
3. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?
4. В ящике 10 шаров, из которых 2 белых, 3 красных и 5 голубых.Наудачу извлечены 3 шара. Найдите вероятность того, что все 3 шара разного цвета.
5. На пяти одинаковых карточках написаны буквы л, м, о, о, т. Какова вероятность того, что извлекая карточки по одной наугад, получим в порядке их выхода слово молот?
6. Из партии, содержащей 10 изделий, среди которых 3 бракованных, наудачу извлекают 3 изделия. Найдите вероятность того, что в полученной выборке одно изделие бракованное.
7. Из десяти билетов выигрышными являются два. Чему равна вероятность того, что среди взятых наудачу пяти билетов один выигрышный?

Ответы
1. 1/120. 2. 5/9. 3. 18/35. 4 . 0,25. 5 . 1/60. 6 . 21/40. 7 . 5/9.

Вопросы
1. Что назьrвают перестановками?
2. По какой форме вычисляют число перестановок из n различных элементов?
3. Что называют размещениями?
4. По какой формуле вычисляют число размещений из n различных элементов по m элементов?
5. Что называют сочетаниями?
6. По какой формуле вы исляют число сочетаний из n элементов по m элементов?
7. Каким равенством связаны числа перестановок, размещений и сочетаний?
8. По какой формуле вычисляется число перестановок из n элементов, если некоторые элементы повторяются?
9. Какой формулой определяется число размещений по m элементов с повторениями из n элементов?
10. Какой формулой определяется число сочетаний с повторениями из n элементов по m элементов?

Ответы

Задачи

Упражнения.

1. Найдите среди следующих случайных событий достоверные и невозможные события:

А 1 – появление 10 очков при бросании игральной кости,

А 2 – появление 10 очков при бросании трех игральных костей,

А 3 – появление 20 очков при бросании трех игральных костей,

А 4 – наугад выбранное двузначное число не больше 100,

А 5 – появление двух гербов при бросании двух монет.

2. Являются ли несовместными события А 1 и А 2:

б) испытание – бросание игральной кости; события: А 1 – появление трех очков, А 2 – появление нечетного числа очков,

в) испытание – бросание двух монет; события: А 1 –появление герба на одной монете, А 2 – появление герба на другой монете?

3. Являются ли равновозможными события А 1 и А 2:

а) испытание – бросание игральной кости; события: А 1 – появление двух очков, А 2 – появление пяти очков;

б) испытание – бросание игральной кости; события: А 1 – появление двух очков, А 2 – появление четного числа очков;

в) испытание – два выстрела по мишени; события: А 1 –промах при первом выстреле, А 2 – промах при втором выстреле?

4. Образуют ли полную группу события:

а) испытание – бросание монеты; события: А 1 – появление герба, А 2 – появление цифры;

б) испытание – два выстрела по мишени; события: А 1 – ни одного попадания, А 2 – одно попадание, А 3 – два попадания?

5. Найти сумму событий:

б) испытание – бросание игральной кости; события: А – появление одного очка, В – появление двух очков, С – появление трех очков;

в) испытание – приобретение лотерейных билетов; события: А – выигрыш 10 рублей; В – выигрыш 20 рублей; С – выигрыш 25 рублей.

6. Найти произведение событий:

а) испытание – два выстрела по мишени; события: А – попадание первым выстрелом, В – попадание вторым выстрелом;

б) испытание – бросание игральной кости; события: А – непоявление трех очков, В – непоявление пяти очков, С – появление нечетного числа очков.

1. Из слова НАУГАД выбирается наугад одна буква. Какова вероятность того, что это буква А? Какова вероятность того, что это гласная?

2. Бросают игральную кость. Какова вероятность выпадания номера 4? Какова вероятность выпадания номера большего 4?

3. Подлежат контролю 250 деталей, из которых 5 нестандартных. Какова вероятность того, что наудачу взятая деталь окажется:

а) нестандартной;

б) стандартной?

4. На карточках написаны буквы О, К, Т. Карточки наудачу расставлены в ряд. Какова вероятность прочесть слово КОТ?



5. На каждой из шести одинаковых карточек написаны буквы Т, Р, С, О, А, М. Карточки перемешиваются и из них четыре выкладываются наудачу в ряд. Какова вероятность появления слова ТРОС?

6. Из пяти карточек с буквами А, Б, В, Г, Д наугад одна за другой выбираются три и располагаются в ряд в порядке появления. Какова вероятность того, что получится слово ДВА?

7. Абонент забыл две последние цифры телефона и, набирая номер наугад, помнил лишь, что они различные. Найти вероятность того, что выбраны нужные цифры.

Решить задачу, если забыты три последние цифры.

8. В урне 3 белых и 7 черных шаров. Какова вероятность того, что вынутые наугад два шара окажутся черными?

9. Подброшены медная и серебряная монеты. Какова вероятность того, что на обоих монетах появится ГЕРБ?

10. В ящике имеется 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

11. В упаковке на складе 10 смывных бачков, среди них 4 с пластмассовыми поплавками. На удачу взяты 2 бачка. Найти вероятность того, что оба бачка с пластмассовыми поплавками.

12. Устройство состоит из пяти элементов, из которых два изношены. При включении устройства включаются случайным образом два элемента. Найти вероятность того, что включенными окажутся неизношенные элементы.

13. Для облицовки жилого дома завезена облицовочная плитка. В ящике находится 300 плиток. Брак продукции составляет 2 %. Найти вероятность того, что первые три взятые плитки не будут бракованными.

14. В цехе работают шесть мужчин и четыре женщины. По табельным номерам наудачу отобраны семь человек. Найти вероятность того, что среди отобранных лиц окажутся три женщины.

15. На складе имеется 15 кинескопов, причем 10 из них изготовлены Львовским заводом. Найти вероятность того, что среди пяти взятых наудачу кинескопов окажутся три кинескопа Львовского завода.

16. В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов пять отличников.

17. Десять книг наудачу расставлены на полке. Найти вероятность того, что три определенные книги окажутся рядом.

18. Оля и Коля договорились встретить Новый год в компании из 10 человек. Они оба хотели сидеть за праздничным столом рядом. Найти вероятность исполнения их желания, если среди друзей принято места распределять по жеребьевке.

19. Среди 20 билетов 5 выигрышных. Найти вероятность того, что среди купленных билетов окажется:

а) все три выигрышные;

б) ни одного выигрышного;

в) 2 выигрышных;

г) 1 выигрышный.

20. На пятиместную скамейку случайным образом садятся 5 человек. Какова вероятность того, что 3 определенных лица окажутся рядом?

21. В команде из 12 спортсменов – 5 мастеров спорта. По жеребьевке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные являются мастерами спорта?

22. Среди 17 студентов группы, из которых 8 девушек, разыгрывается 7 билетов. Какова вероятность того, что среди обладателей билетов окажутся 4 девушки?

23. В урне 6 белых и 4 черных шара. Из этой урны наудачу извлекли 5 шаров. Какова вероятность того, что 2 из них белые, а 3 черные?

24. В партии из 60 изделий 5 бракованных. Из партии выбираются наугад 6 изделий. Определить вероятность того, что среди этих 6 изделий 2 окажутся бракованными.

25. В лотерее n билетов, из которых m выигрышных. Участник лотереи покупает k билетов. Определить вероятность того, что выиграет хотя бы один билет.

26. Имеется r шаров, которые случайным образом разбрасываются по n ящикам. В одном и том же ящике могут находиться несколько шаров и даже все шары. Найти вероятность того, что в первый ящик попадут ровно r 1 шаров, во второй r 2 шаров и т.д., в n-ый ящик r n шаров.

27. В лифт семиэтажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятности следующих событий:

А={все пассажиры выйдут на четвертом этаже};

В= {все пассажиры выйдут одновременно на одном и том же этаже};

С={все пассажиры выйдут на разных этажах}.

28. Найти вероятность того, что дни рождения 12 человек придутся на разные месяцы года.

29. В точке С, положение которой на телефонной линии АВ длины равновозможно, произошел разрыв. Определить вероятность того, что точка С удалена от точки А на расстояние, не меньшее, чем l .

30. Точка брошена в круг радиуса R. Найдите вероятность того, что она попадет внутрь вписанного в этот круг квадрата.

31. Слово составлено из карточек, на каждой из которых написана одна буква. Карточки смешивают и вынимают без возврата по одной. Найти вероятность того, что карточки с буквами вынимаются в порядке следования букв заданного слова: а) «событие»; б) «статистика».

32. Пятитомное собрание сочинений расположено на полке в случайном порядке. Какова вероятность того, что книги стоят слева направо в порядке нумерации томов (от 1 до 5)?

33. Среди 25 студентов, из которых 15 девушек, разыгрываются четыре билета, причем каждый может выиграть только один билет. Какова вероятность того, что среди обладателей билета окажутся: а) четыре девушки; б)четыре юноши; в) три юноши и одна девушка?

34. Из 20 сбербанков 10 расположены за чертой города. Для обследования случайным образом отобрано 5 сбербанков. Какова вероятность того, что среди отобранных банков окажется в черте города: а) 3 сбербанка; б) хотя бы один?

35. Из ящика, содержащего 5 пар обуви, из которых три пары мужской, а две пары женской обуви, перекладывают наудачу 2 пары обуви в другой ящик, содержащий одинаковое количество пар женской и мужской обуви. Какова вероятность того, что во втором ящике после этого окажется одинаковое количество пар мужской и женской обуви?

36. В магазине имеются 30 телевизоров, причем 20 из них импортных. Найти вероятность того, что среди 5 проданных в течение дня телевизоров окажется более 3 импортных телевизоров, предполагая, что вероятности покупки телевизоров разных марок одинаковы.

37. Наудачу взятый телефонный номер состоит из 5 цифр. Какова вероятность того, что в нем все цифры: а) различные; б) одинаковые; в) нечетные? Известно, что номер телефона не начинается с цифры ноль.

38. Для проведения соревнований 16 волейбольных команд разбиты по жребию на две подгруппы (по восемь команд в каждой). Найти вероятность того, что две наиболее сильные команды окажутся: а) в разных подгруппах; б) в одной подгруппе.

39. Студент знает 20 из 25 вопросов программы. Зачет считается сданным, если студент ответит не менее чем на три из 4 поставленных в билете вопросов. Взглянув на первый вопрос билета, студент обнаружил, что он его знает. Какова вероятность того, что студент: а) сдаст зачет; б) не сдаст зачет?

40. У сборщика имеются 10 деталей, мало отличающихся друг от друга, из них четыре – первого, по две – второго, третьего и четвертого видов. Какова вероятность того, что среди шести взятых одновременно деталей три окажутся первого вида, два – второго и одна – третьего?

41. Найти вероятность того, что из десяти книг, расположенных в случайном порядке, 3 определенные книги окажутся рядом.

42. В старинной игре в кости необходимо было для выигрыша получить при бросании трех игральных костей сумму очков, превосходящую 10. Найти вероятности: а) выпадения 11 очков; б) выигрыша.

43. На фирме работают 8 аудиторов, из которых 3 – высокой квалификации, и 5 программистов, из которых 2 – высокой квалификации. В командировку надо отправить группу из 3 аудиторов и 2 программистов. Какова вероятность того, что в этой группе окажется по крайней мере 1 аудитор высокой квалификации и хотя бы 1 программист высокой квалификации, если каждый специалист имеет равные возможности поехать в командировку?

44. Два лица условились встретиться в определенном месте между 18 и 19 часами и договорились, что пришедший первым ждет другого в течение 15 минут, после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время и моменты прихода независимы.

45. Какова вероятность того, что наудачу брошенная в круг точка окажется внутри вписанного в него квадрата.

46. При приеме партии изделий подвергается проверке половина изделий. Условие приемки – наличие брака в выборке менее 2 %. Вычислить вероятность того, что партия из 100 изделий, содержащая 5 % брака, будет принята.

1/3, 1/2 19 б 91/228 33 а
1/6, 1/3 19 в 5/38 33 б
1/50, 49/50 19 г 35/76 33 в
1/6 3/10 34 а
1/360 1/22 34 б
1/60 0,302
1/90 0,2381
7/15 0,049 37 а
1/6 37 б
24/91 37 в
2/15 27 а 1/216 38 а
0,3 27 б 1/36 38 б
27 в 5/54 39 а
½ 39 б 0,099
0,4
14/55 .
1/15 31 а 1/Р 7 =1/7!= =0,000198 а) 0,125; б) 0,5
1/5 31 б Р 2 Р 3 Р 2 Р 2 /Р 10 =2!3!2!2!/10! = 0,0000132
19 а 1/114 1/Р 5 =1/5!= =,00833 0,4375

Студент должен знать:

Основные формулы теории вероятностей

Студент должен уметь:

Находить вероятность произведения, суммы событий, появления хотя бы одного события;

Литература: стр.37-43.



Понравилась статья? Поделитесь с друзьями!