5 иррациональных уравнений. Решение иррациональных уравнений, методы решения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Иррациональное уравнение — это любое уравнение, содержащее функцию под знаком корня. Например:

Такие уравнения всегда решаются в 3 шага:

  1. Уединить корень. Другими словами, если слева от знака равенства помимо корня стоят другие числа или функции, все это надо перенести вправо, поменяв знак. Слева при этом должен остаться только радикал — без всяких коэффициентов.
  2. 2. Возводим обе части уравнения в квадрат. При этом помним, что область значений корня — все неотрицательные числа. Следовательно, функция справа иррационального уравнения также должна быть неотрицательна: g (x ) ≥ 0.
  3. Третий шаг логично следует из второго: надо выполнить проверку. Дело в том, что на втором шаге у нас могли появиться лишние корни. И чтобы отсечь их, надо подставить полученные числа-кандидаты в исходное уравнение и проверить: действительно ли получается верное числовое равенство?

Решение иррационального уравнения

Разберемся с нашим иррациональным уравнением, данным в самом начале урока. Тут корень уже уединен: слева от знака равенства нет ничего, кроме корня. Возводим обе стороны в квадрат:

2x 2 − 14x + 13 = (5 − x ) 2
2x 2 − 14x + 13 = 25 − 10x + x 2
x 2 − 4x − 12 = 0

Решаем полученное квадратное уравнение через дискриминант:

D = b 2 − 4ac = (−4) 2 − 4 · 1 · (−12) = 16 + 48 = 64
x 1 = 6; x 2 = −2

Осталось лишь подставить эти числа в исходное уравнение, т.е. выполнить проверку. Но и тут можно поступить грамотно, чтобы упростить итоговое решение.

Как упростить решение

Давайте подумаем: зачем вообще мы выполняем проверку в конце решения иррационального уравнения? Мы хотим убедиться, что при подстановке наших корней справа от знака равенства будет стоять неотрицательное число. Ведь мы уже точно знаем, что слева стоит именно неотрицательное число, потому что арифметический квадратный корень (из-за которого наше уравнение и носит название иррационального) по определению не может быть меньше нуля.

Следовательно, все, что нам надо проверить — это чтобы функция g (x ) = 5 − x , которая стоит справа от знака равенства, была неотрицательной:

g (x ) ≥ 0

Подставляем наши корни в эту функцию и получаем:

g (x 1) = g (6) = 5 − 6 = −1 < 0
g (x 2) = g (−2) = 5 − (−2) = 5 + 2 = 7 > 0

Из полученных значений следует, что корень x 1 = 6 нас не устраивает, поскольку при подстановке в правую часть исходного уравнения мы получаем отрицательное число. А вот корень x 2 = −2 нам вполне подходит, потому что:

  1. Этот корень является решением квадратного уравнения, полученного в результате возведения обеих сторон иррационального уравнения в квадрат.
  2. Правая сторона исходного иррационального уравнения при подстановке корня x 2 = −2 обращается в положительное число, т.е. область значений арифметического корня не нарушена.

Вот и весь алгоритм! Как видите, решать уравнения с радикалами не так уж и сложно. Главное — не забывать проверять полученные корни, иначе очень велика вероятность получить лишние ответы.

Методы решения иррациональных уравнений.

Предварительная подготовка к уроку: учащиеся должны уметь решать иррациональные уравнения различными способами.

За три недели до данного занятия учащиеся получают домашнее задание №1: решить различные иррациональные уравнения. (Учащиеся самостоятельно находят по 6 различных иррациональных уравнений и решают их в парах.)

За одну неделю до данного занятия учащиеся получают домашнее задание №2, которое выполняют индивидуально.

1. Решить уравнение различными способами.

2. Оценить достоинства и недостатки каждого способа.

3. Оформить запись выводов в виде таблицы.

п/п

Способ

Достоинства

Недостатки

Цели урока:

Образовательная: обобщение знаний учащихся по данной теме, демонстрация различных методов решения иррациональных уравнений, умения учащихся подходить к решению уравнений с исследовательских позиций.

Воспитательная: воспитание самостоятельности, умения выслушивать других и общаться в группах, повышение интереса к предмету.

Развивающая: развитие логического мышления, алгоритмической культуры, навыков самообразования, самоорганизации, работы в парах при выполнении домашнего задания, умений анализировать, сравнивать, обобщать, делать выводы.

Оборудование: компьютер, проектор, экран, таблица «Правила решения иррациональных уравнений», плакат с цитатой М.В. Ломоносова «Математику уже затем учить следует, что она ум в порядок приводит», карточки.

Правила решения иррациональных уравнений.

Тип урока: урок-семинар (работа в группах по 5-6 человек, в каждой группе обязательно есть сильные ученики).

Ход урока

I . Организационный момент

(Сообщение темы и целей урока)

II . Презентация исследовательской работы «Методы решения иррациональных уравнений»

(Работу представляет учащийся, который ее проводил.)

III . Анализ методов решения домашнего задания

(По одному учащемуся от каждой группы записывают на доске предложенные ими способы решения. Каждая группа анализирует один из способов решения, оценивает достоинства и недостатки, делает выводы. Учащиеся групп дополняют, если это необходимо. Оценивается анализ и выводы группы. Ответы должны быть четкими и полными.)

Первый способ: возведение обеих частей уравнения в одну и ту же степень с последующей проверкой.

Решение.

Снова возведем обе части уравнения в квадрат:

Отсюда

Проверка:

1. Если х= 42, то , значит, число 42 не является корнем уравнения.

2. Если х= 2, то , значит, число 2 является корнем уравнения.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Возведение обеих частей уравнения в одну и ту же степень

1. Понятно.

2. Доступно.

1. Словесная запись.

2. Сложная проверка.

Вывод. При решении иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень необходимо вести словесную запись, что делает решение понятным и доступным. Однако обязательная проверка иногда бывает сложной и занимает много времени. Этот метод можно использовать для решения несложных иррациональных уравнений, содержащих 1-2 радикала.

Второй способ: равносильные преобразования.

Решение: Возведем обе части уравнения в квадрат:

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Равносильных преобразований

1. Отсутствие словесного описания.

2. Нет проверки.

3. Четкая логическая запись.

4. Последовательность равносильных переходов.

1. Громоздкая запись.

2. Можно ошибиться при комбинации знаков системы и совокупности.

Вывод. При решении иррациональных уравнений методом равносильных переходов нужно четко знать, когда ставить знак системы, а когда - совокупности. Громоздкость записи, различные комбинации знаков системы и совокупности нередко приводят к ошибкам. Однако последовательность равносильных переходов, четкая логическая запись без словесного описания, не требующая проверки, являются бесспорными достоинствами данного способа.

Третий способ: функционально-графический.

Решение.

Рассмотрим функции и .

1. Функция степенная; является возрастающей, т.к. показатель степени - положительное (не целое) число.

D( f ).

Составим таблицу значений x и f ( x ).

1,5

3,5

f(x)

2. Функция степенная; является убывающей.

Найдем область определения функции D ( g ).

Составим таблицу значений x и g ( x ).

g(x)

Построим данные графики функций в одной системе координат.

Графики функций пересекаются в точке с абсциссой Т.к. функция f ( x ) возрастает, а функция g ( x ) убывает, то решение уравнения будет только одно.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Функционально-графический

1. Наглядность.

2. Не нужно делать сложных алгебраических преобразований и следить за ОДЗ.

3. Позволяет найти количество решений.

1. словесная запись.

2. Не всегда можно найти точный ответ, а если ответ точный, то нужна проверка.

Вывод. Функционально-графический метод является наглядным, позволяет найти количество решений, но применять его лучше тогда, когда легко можно построить графики рассматриваемых функций и получить точный ответ. Если ответ приближенный, то лучше воспользоваться другим методом.

Четвертый способ: введение новой переменной.

Решение. Введем новые переменные, обозначив Получим первое уравнение системы

Составим второе уравнение системы.

Для переменной :

Для переменной

Поэтому

Получим систему двух рациональных уравнений, относительно и

Вернувшись к переменной , получим

Введение новой переменной

Упрощение - получение системы уравнений, не содержащих радикалы

1. Необходимость отслеживать ОДЗ новых переменных

2. Необходимость возврата к исходной переменной

Вывод. Этот метод лучше применять для иррациональных уравнений, содержащих радикалы различных степеней, или одинаковые многочлены под знаком корня и за знаком корня, или взаимообратные выражения под знаком корня.

- Итак, ребята, для каждого иррационального уравнения необходимо выбирать наиболее удобный способ решения: понятный. Доступный, логически и грамотно оформленный. Поднимите руку, кто из вас при решении этого уравнения отдал бы предпочтение:

1) методу возведения обеих частей уравнения в одну и ту же степень с проверкой;

2) методу равносильных преобразований;

3) функционально-графическому методу;

4) методу введения новой переменной.

IV . Практическая часть

(Работа в группах. Каждая группа учащихся получает карточку с уравнением и решает ее в тетрадях. В это время по одному представителю от группы решают пример на доске. Учащиеся каждой группы решают тот же пример, что и член их группы, и следят за правильностью выполнения задания на доске. Если отвечающий у доски допускает ошибки, то тот, кто их замечает, поднимает руку и помогает исправить. В ходе занятия каждый учащийся помимо примера, решаемого его группой, должен записать в тетрадь и другие, предложенные группам, и решить их дома.)

Группа 1.

Группа 2.

Группа 3.

V . Самостоятельная работа

(В группах сначала идет обсуждение, а затем учащиеся приступают к выполнению задания. Правильное решение, подготовленное преподавателем, выводится на экран.)

VI . Подведение итогов урока

Теперь вы знаете, что решение иррациональных уравнений требует от вас хороших теоретических знаний, умения применять их на практике, внимания, трудолюбия, сообразительности.

Домашнее задание

Решить уравнения, предложенные группам в ходе занятия.

Конспект урока

«Методы решения иррациональных уравнений»

11 класс физико-математического профиля.

Зеленодольского муниципального района РТ»

Валиева С.З.

Тема урока: Методы решения иррациональных уравнений

Цель урока: 1.Изучить различные способы решения иррациональных уравнений.


  1. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.

  2. Развивать самостоятельность, воспитывать грамотность речи

Тип урока: семинар.
План урока:


  1. Организационный момент

  2. Изучение нового материала

  3. Закрепление

  4. Домашнее задание

  5. Итог урока

Ход урока
I . Организационный момент: сообщение темы урока, цели урока.

На предыдущем уроке мы рассмотрели решение иррациональных уравнений, содержащих квадратные корни, возведением их в квадрат. При этом мы получаем уравнение-следствие, что приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней. Также рассмотрели решение уравнений, используя определение квадратного корня. В этом случае проверку можно не делать. Однако при решении уравнений не всегда следует сразу приступать к «слепому» применению алгоритмов решения уравнения. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с которыми мы сегодня и познакомимся. Предварительно класс был разделен на 8 творческих групп, и им было дано на конкретных примерах раскрыть суть того или иного метода. Слово даем им.


II. Изучение нового материала.

Из каждой группы 1 ученик объясняет ребятам способ решения иррациональных уравнений. Весь класс слушают и конспектируют их рассказ.

1 способ. Введение новой переменной.

Решить уравнение: (2х + 3) 2 - 3

4х 2 + 12х + 9 - 3

4х 2 - 8х - 51 - 3

, t ≥0

х 2 – 2х – 6 = t 2 ;

4t 2 – 3t – 27 = 0

х 2 – 2х – 15 =0

х 2 – 2х – 6 =9;

Ответ: -3; 5.

2 способ. Исследование ОДЗ.

Решить уравнение

ОДЗ:


х = 2. Проверкой убеждаемся, что х = 2 является корнем уравнения.

3 способ. Умножение обеих частей уравнения на сопряженный множитель.

+
(умножим обе части на -
)

х + 3 – х – 8 = 5(-)


2=4, отсюда х=1. Проверкой убеждаемся, что х = 1 является корнем данного уравнения.


4 способ. Сведение уравнения к системе с помощью введения переменной.

Решить уравнение

Пусть = u,
=v.

Получим систему:

Решим методом подстановки. Получим u = 2, v = 2. Значит,

получим х = 1.

Ответ: х = 1.

5 способ. Выделение полного квадрата.

Решить уравнение

Раскроем модули. Т.к. -1≤сos0,5x≤1, то -4≤сos0,5x-3≤-2, значит, . Аналогично,

Тогда получим уравнение

x = 4πn, nZ.

Ответ: 4πn, nZ.

6 способ. Метод оценки

Решить уравнение

ОДЗ: х 3 - 2х 2 - 4х + 8 ≥ 0, по определению правая часть -х 3 + 2х 2 + 4х - 8 ≥ 0

получим
т.е. х 3 - 2х 2 - 4х + 8 = 0. Решив уравнение разложением на множители, получим х = 2, х = -2

7 способ: Использование свойств монотонности функций.

Решить уравнение . Функции строго возрастают. Сумма возрастающих функций есть возрастающая и данное уравнение имеет не более одного корня. Подбором находим х = 1.

8 способ. Использование векторов.

Решить уравнение . ОДЗ: -1≤х≤3.

Пусть вектор
. Скалярное произведение векторов - есть левая часть. Найдем произведение их длин . Это есть правая часть. Получили
, т.е. векторы а и в – коллинеарны. Отсюда
. Возведем обе части в квадрат. Решив уравнение, получим х = 1 и х =
.


  1. Закрепление. (каждому ученику раздаются листы с заданиями)
Фронтальная устная работа

Найти идею решения уравнений (1-10)

1.
(ОДЗ - )

2.
х = 2

3. х 2 – 3х +
(замена)

4. (выделение полного квадрата)

5.
(Сведение уравнения к системе с помощью введения переменной.)

6.
(умножением на сопряженное выражение)

7.
т.к.
. То данное уравнение не имеет корней.

8. Т.к. каждое слагаемое неотрицательно, приравниваем их к нулю и решаем систему.

9. 3

10. Найдите корень уравнения (или произведение корней, если их несколько) уравнения.

Письменная самостоятельная работа с последующей проверкой

решить уравнения под номерами 11,13,17,19


Решить уравнения:

12. (х + 6) 2 -

14.


  • Метод оценки

  • Использование свойств монотонности функций.

  • Использование векторов.

    1. Какие из этих методов используются при решении уравнений других типов?

    2. Какой из этих методов вам понравился больше всего и почему?

    1. Домашнее задание: Решить оставшиеся уравнения.
    Список литературы:

    1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. М: Прсвещение, 2009

    1. Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

    2. Мордкович А. Г. Алгебра и начала анализа. 10 – 11 кл.: Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2000.

    3. Ершова А. П., Голобородько В. В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10 – 11 классов. – М.: Илекса, 2004

    4. КИМы ЕГЭ 2002 – 2010 г. г
    6. Алгебраический тренажер. А.Г.Мерзляк, В.Б.Полонский, М.С. Якир. Пособие для школьников и абитуриентов. Москва.: «Илекса» 2001г.
    7. Уравнения и неравенства. Нестандартные методы решения. Учебно – методическое пособие. 10 – 11 классы. С.Н.Олейник, М.К. Потапов, П.И.Пасиченко. Москва. «Дрофа». 2001г.

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.



    Понравилась статья? Поделитесь с друзьями!