Чему равен косинус икс. Основные формулы тригонометрии


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решение простейших тригонометрических уравнений.

Решение тригонометрических уравнений любого уровня сложности в конечном итоге сводится к решению простейших тригонометрических уравнений. И в этом наилучшим помощником снова оказывается тригонометрический круг.

Вспомним определения косинуса и синуса.

Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .

Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .

Положительным направлением движения по тригонометрическому кругу считается движение против часовой стрелки. Повороту на 0 градусов (или 0 радиан) соответствует точка с координатами (1;0)

Используем эти определения для решения простейших тригонометрических уравнений.

1. Решим уравнение

Этому уравнению удовлетворяют все такие значения угла поворота , которые соответствуют точкам окружности, ордината которых равна .

Отметим на оси ординат точку с ординатой :


Проведем горизонтальную линию параллельно оси абсцисс до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие ординату . Эти точки соответствуют углам поворота на и радиан:


Если мы, выйдя из точки, соответствующей углу поворота на радиан, обойдем полный круг, то мы придем в точку, соответствующую углу поворота на радиан и имеющую ту же ординату. То есть этот угол поворота также удовлетворяет нашему уравнению. Мы можем делать сколько угодно "холостых" оборотов, возвращаясь в ту же точку, и все эти значения углов будут удовлетворять нашему уравнению. Число "холостых" оборотов обозначим буквой (или ). Так как мы можем совершать эти обороты как в положительном, так и в отрицательном направлении, (или ) могут принимать любые целые значения.

То есть первая серия решений исходного уравнения имеет вид:

, , - множество целых чисел (1)

Аналогично, вторая серия решений имеет вид:

, где , . (2)

Как вы догадались, в основе этой серии решений лежит точка окружности, соответствующая углу поворота на .

Эти две серии решений можно объединить в одну запись:

Если мы в этой записи возьмем (то есть четное ), то мы получим первую серию решений.

Если мы в этой записи возьмем (то есть нечетное ), то мы получим вторую серию решений.

2. Теперь давайте решим уравнение

Так как - это абсцисса точки единичной окружности, полученной поворотом на угол , отметим на оси точку с абсциссой :


Проведем вертикальную линию параллельно оси до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие абсциссу . Эти точки соответствуют углам поворота на и радиан. Вспомним, что при движении по часовой стрелки мы получаем отрицательный угол поворота:


Запишем две серии решений:

,

,

(Мы попадаем в нужную точку, пройдя из основной полный круг, то есть .

Объедим эти две серии в одну запись:

3. Решим уравнение

Линия тангенсов проходит через точку с координатами (1,0) единичной окружности параллельно оси OY

Отметим на ней точку, с ординатой равной 1 (мы ищем, тангенс каких углов равен 1):


Соединим эту точку с началом координат прямой линией и отметим точки пересечения прямой с единичной окружностью. Точки пересечения прямой и окружности соответствуют углам поворота на и :


Так как точки, соответствующие углам поворота, которые удовлетворяют нашему уравнению, лежат на расстоянии радиан друг от друга, то мы можем записать решение таким образом:

4. Решим уравнение

Линия котангенсов проходит через точку с координатами единичной окружности параллельно оси .

Отметим на линии котангенсов точку с абсциссой -1:


Соединим эту точку с началом координат прямой и продолжим ее до пересечения с окружностью. Эта прямая пересечет окружность в точках, соответствующих углам поворота на и радиан:


Поскольку эти точки отстоят друг от друга на расстояние, равное , то общее решение этого уравнения мы можем записать так:

В приведенных примерах, иллюстрирующих решение простейших тригонометрических уравнений были использованы табличные значения тригонометрических функций.

Однако, если в правой части уравнения стоит не табличное значение, то мы в общее решение уравнения подставляем значение :





ОСОБЫЕ РЕШЕНИЯ:

Отметим на окружности точки, ордината которых равна 0:


Отметим на окружности единственную точку, ордината которой равна 1:


Отметим на окружности единственную точку, ордината которой равна -1:


Так как принято указывать значения, наиболее близкие у нулю, решение запишем так:

Отметим на окружности точки, абсцисса которых равна 0:


5.
Отметим на окружности единственную точку, абсцисса которой равна 1:


Отметим на окружности единственную точку, абсцисса которой равна -1:


И чуть более сложные примеры:

1.

Синус равен единице, если аргумент равен

Аргумент у нашего синуса равен , поэтому получим:

Разделим обе части равенства на 3:

Ответ:

2.

Косинус равен нулю, если аргумент косинуса равен

Аргумент у нашего косинуса равен , поэтому получим:

Выразим , для этого сначала перенесем вправо с противоположным знаком:

Упростим правую часть:

Разделим обе части на -2:

Заметим, что перед слагаемым знак не меняется, поскольку k может принимать любые целые значения.

Ответ:

И в заключение посмотрите видеоурок "Отбор корней в тригонометрическом уравнении с помощью тригонометрической окружности"

На этом разговор о решении простейших тригонометрических уравнений мы закончим. Следующий раз мы с вами поговорим о том, как решать .

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы :

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Примеры:

\(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos⁡\)\(\frac{π}{3}\) \(=\)\(\frac{1}{2}\)
\(\cos⁡2=-0,416…\)

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

Пример :

1) Пусть дан угол и нужно определить косинус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.


3) Измерив, нужные стороны, можем вычислить косинус.


Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\) . А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Косинус для других часто встречающихся в практике чисел смотри в .

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

Как вы могли заменить, и косинус числа, и косинус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по числовой (тригонометрической) окружности:

Там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
- там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).


Связь с другими тригонометрическими функциями:

- того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
- того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
- и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
Другие наиболее часто применяемые формулы смотри .

Решение уравнения \(\cos⁡x=a\)

Решение уравнения \(\cos⁡x=a\), где \(a\) – число не большее \(1\) и не меньшее \(-1\) т.е. \(a∈[-1;1]\):

\(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


Если \(a>1\) или \(a<-1\), то решений у уравнения нет.

Пример . Решите тригонометрическое уравнение \(\cos⁡x=\)\(\frac{1}{2}\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси косинусов (оси \(y\)) отметим точку \(\frac{1}{2}\) .
4) Проведем перпендикуляр к оси косинусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(\frac{π}{3}\) ,\(-\)\(\frac{π}{3}\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\);


Ответ: \(x=±\frac{π}{3}+2πk\) \(k∈Z\)

Функция \(y=\cos{x}\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


График данной называется и обладает следующими свойствами:

Область определения – любое значение икса: \(D(\cos{⁡x})=R\)
- область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x})=[-1;1]\)
- четная: \(\cos⁡(-x)=\cos{x}\)
- периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos{x}\)
- точки пересечения с осями координат:
ось абсцисс: \((\)\(\frac{π}{2}\) \(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
- промежутки знакопостоянства:
функция положительна на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
- промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
- максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).



Понравилась статья? Поделитесь с друзьями!