Что называется коэффициентами поглощения отражения и пропускания. Коэффициент пропускания

ГОСТ 26602.4-2012

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЛОКИ ОКОННЫЕ И ДВЕРНЫЕ

Метод определения общего коэффициента пропускания света

Windows and doors. Method for determination of total light transmittance


Текст Сравнения ГОСТ 26602.4-2012 с ГОСТ 26602.4-99 см. по ссылке .
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 91.060.50

Дата введения 2014-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) при участии Общества с ограниченной ответственностью "ЦЕРЕРА-ЭКСПЕРТ"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (протокол от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование органа государственного управления строительством

Азербайджан

Госстрой

Министерство градостроительства

Беларусь

Минстройархитектура

Киргизия

Госстрой

Министерство регионального развития

Узбекистан

Госархитектстрой

4 В настоящем стандарте учтены нормативные положения европейского регионального стандарта EN 13363-1:2003* Solar protection devices combined with glazing - Calculation of solar and light transmittance - Part 1: Simplified method (Солнцезащитные устройства в сочетании с остеклением. Расчет пропускания солнечного излучения и света. Часть 1. Упрощенный метод) в части определения коэффициента пропускания оконных и дверных блоков с солнцезащитой
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2017-ст межгосударственный стандарт ГОСТ 26602.4-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВЗАМЕН ГОСТ 26602.4-99


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на оконные и остекленные дверные блоки жилых, общественных, производственных и других зданий и устанавливает метод определения общего коэффициента пропускания света этих изделий.

Данный метод может быть применен для определения общего коэффициента пропускания света витражей, витрин, зенитных фонарей и других светопрозрачных конструкций или их фрагментов, включающих в себя различные комбинации непрозрачных и светопропускающих элементов из различных видов стекол (прозрачных или окрашенных, без покрытий или с покрытиями, узорчатых, армированных, многослойных и т.д.), а также оконные и остекленные блоки с солнцезащитой.

Метод применяют также для оценки соответствия светопрозрачных и солнцезащитных конструкций заявленным свойствам.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 8.014-72 Государственная система обеспечения единства измерений. Методы и средства поверки фотоэлектрических люксметров

ГОСТ 8.332-78 Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 15543-70 Изделия электротехнические. Исполнения для различных климатических районов. Общие технические требования в части воздействия климатических факторов внешней среды

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 фрагмент изделия: Часть изделия, отражающая его основные конструктивные особенности и оптические характеристики.

3.2 образец для испытаний: Светопрозрачная ограждающая конструкция в сборе или ее фрагмент, пригодные для испытаний, технические характеристики которых полностью соответствуют представленной в испытательный центр (лабораторию) сопроводительной нормативной и конструкторской документации.

3.3 относительная спектральная световая эффективность монохроматического излучения с длиной волны : Отношение двух потоков излучения соответственно с длинами волн и , вызывающих в точно определенных фотометрических условиях зрительные ощущения одинаковой силы. Длину волны выбирают так, чтобы максимальное значение этого отношения равнялось единице.

3.4 светопрозрачная ограждающая конструкция: Строительная конструкция, предназначенная для обеспечения естественного освещения внутренних помещений здания или сооружения.

3.5 световой поток : Физическая величина, оценивающая мощность оптического излучения по его воздействию на селективный приемник света, спектральная чувствительность которого определяется функцией относительной спектральной световой эффективности излучения , лм.

3.6 освещенность : Физическая величина, определяемая отношением светового потока, падающего на элемент поверхности, содержащий рассматриваемую точку, к площади этого элемента, лк.

3.7 средняя освещенность : Освещенность, усредненная по площади освещаемого помещения, участка, рабочей зоны, лк.

3.8 коэффициент остекления оконного блока (или другой светопрозрачной конструкции) : Отношение площади светопрозрачной части оконного блока к его рабочей площади. В случае наличия в конструкции нескольких рядов остекления за площадь светопрозрачной части принимают площадь остекления ряда с наименьшей светопрозрачной частью, отн. ед.

3.9 общий коэффициент пропускания света : Отношение светового потока, прошедшего сквозь изделие, к световому потоку, упавшему на него, отн. ед.

4 Средства измерений

4.1 Для прямых измерений общего коэффициента пропускания света используется испытательная установка, состоящая из:

- источников диффузного света типа А (искусственного небосвода отраженного света, окрашенного белой диффузно отражающей краской) по ГОСТ 7721 ;

- светомерной камеры, окрашенной матовой белой диффузно отражающей краской, разделенной горизонтальной перегородкой с проемом и опорной решеткой в нем для установки испытываемого образца;

- измерительного блока, состоящего из шести люксметров. Измерительная головка одного люксметра располагается в наружной камере, измерительные головки остальных пяти - во внутренней камере. Измерительные головки люксметров должны иметь предел допускаемой относительной погрешности не более 10% с учетом погрешности спектральной коррекции, определяемой как отклонение относительной спектральной чувствительности измерительного преобразователя излучения от относительной спектральной световой эффективности монохроматического излучения для дневного зрения по ГОСТ 8.332 , а также погрешности калибровки абсолютной чувствительности и погрешности, вызванной нелинейностью световой характеристики;

- темнителя света по ГОСТ 15543 .

Используемые в установке люксметры должны быть поверены и иметь действующие свидетельства о Государственной поверке средств измерений. Государственная поверка люксметров осуществляется органами стандартизации и метрологии в соответствии с ГОСТ 8.014 .

4.2 Для определения общего коэффициента пропускания расчетно-измерительным методом используются фотометры или спектрофотометры, позволяющие измерять коэффициенты пропускания светопрозрачных материалов.

5 Определение общего коэффициента пропускания света оконных блоков прямыми измерениями

5.1 Порядок отбора образцов

5.1.1 Испытания проводят на образцах, представляющих собой готовые изделия или фрагменты изделий, соответствующих требованиям, установленным в нормативных документах (конструкторской документации) на конкретную продукцию полной заводской готовности.

В случае если результаты испытаний предполагается распространить на типоразмерный ряд (включающий испытываемую конструкцию), то для проведения испытаний выбирают конструкцию с наименьшим коэффициентом остекления. Минимальный размер образцов - 700х700 мм, максимальный размер образцов определяют техническими возможностями испытательной установки.

Рекомендуемые размеры образцов оконных блоков: высота - 1460 мм; ширина - 1470 (или 1320) мм.

Окна, как правило, должны быть двустворчатыми, с форточным узлом. Если конструкция предусматривает откидное или поворотно-откидное открывание узкой створки, наличие форточного узла не обязательно.

5.1.2 Порядок отбора и количество образцов для испытаний устанавливают в нормативных документах (НД) на конкретную продукцию. Рекомендуется испытывать не менее двух идентичных образцов.

5.2 Подготовка образцов к испытаниям

Проверку комплектности конструкции и показателей внешнего вида образцов проводят визуально в соответствии с требованиями НД на испытываемые изделия.

Проверку геометрических размеров образцов проводят с помощью средств измерений по методикам, приведенным в НД на испытываемые изделия.

Перед испытаниями изделия должны быть тщательно очищены от загрязнения и промыты.

5.3 Определение общего коэффициента пропускания света

5.3.1 Сущность метода состоит в определении отношения величины светового потока , лм, прошедшего сквозь изделие, к величине светового потока , лм, падающего на это изделие из наружного пространства.

5.3.2 Испытания проводят при значениях освещенности 500; 750; 1000 лк ±5%, создаваемой источником диффузного света на плоскости проема разделительной перегородки светомерной камеры.

В обоснованных случаях допускается разрабатывать уточненную программу испытаний с другими характеристиками условий проведения испытаний, согласованную испытателем и заказчиком.

5.3.3 Проводят регулировку освещенности с помощью темнителя света и фиксируют ее величину.

5.3.4 Контроль освещенности осуществляют люксметром с измерительным преобразователем излучения, установленным в источнике диффузного света горизонтально (наружный преобразователь излучения) и обращенным приемной поверхностью от испытываемого изделия в соответствии с рисунком А.1 приложения А.

5.3.5 Измерения светового потока, прошедшего через проем разделительной перегородки светомерной камеры, проводят люксметрами с выносными измерительными преобразователями излучения. Преобразователи излучения люксметров должны быть закреплены внутри светомерной камеры и обращены приемной плоскостью в направлении от проема. Число измерителей излучения должно быть не менее пяти.

5.3.6 Испытываемый образец горизонтально устанавливают на опорную решетку в проеме разделительной перегородки светомерной камеры заподлицо с нижней плоскостью перегородки так, чтобы геометрический центр образца находился на вертикальной оси светомерной камеры.

5.3.7 Устанавливают ограничители проема разделительной перегородки по периметру оконного блока. Монтажные зазоры между образцом и проемом изолируют от прохождения света.

5.3.8 Проводят измерение освещенности, соответствующей световому потоку , прошедшему через проем разделительной перегородки светомерной камеры с установленным в нем образцом.

5.3.9 Удаляют образец из проема разделительной перегородки светомерной камеры, не нарушая положения ограничителей проема.

5.3.10 Повторно измеряют освещенность, соответствующую световому потоку , прошедшему через проем разделительной перегородки светомерной камеры без образца.

5.3.11 Измерения проводят при трех фиксированных значениях освещенности по 5.3.2 с интервалом в 5 мин. Результаты измерений для каждого образца заносят в таблицу Б.1 приложения Б.

5.4 Обработка результатов испытаний

5.4.1 Для каждого значения освещенности вычисляют значение коэффициента пропускания света и относительную погрешность его определения по формулам:

где - количество внутренних фотоэлементов;

- абсолютная погрешность определения коэффициента пропускания света при данной освещенности, отн. ед.;

- коэффициент пропускания света изделием в относительных единицах, определенный -м внутренним фотоэлементом при данном значении освещенности, рассчитанный с учетом относительной погрешности измерения по формулам:

где - значения освещенности по люксметру с -м внутренним преобразователем излучения, пропорциональные величине светового потока , лм, прошедшего через проем разделительной перегородки светомерной камеры с образцом;

- значения освещенности по люксметру с -м внутренним преобразователем излучения, пропорциональные величине светового потока , лм, прошедшего через проем разделительной перегородки светомерной камеры без образца;

- абсолютная погрешность определения коэффициента пропускания света -м преобразователем излучения при данной освещенности, отн. ед.;

- абсолютная погрешность измерения значения освещенности с исследуемым образцом;

- абсолютная погрешность измерения значения освещенности без образца в делениях шкалы микроамперметра или гальванометра.

5.4.2 Общий коэффициент пропускания света образца изделия , отн. ед., принимают равным среднеарифметическому значению результатов испытаний изделий, а относительную погрешность его определения принимают равной среднеквадратичному значению относительных погрешностей испытаний:

где 3 - число испытаний по 5.3.11.

5.4.3 При испытании двух и более идентичных образцов за общий коэффициент пропускания света изделия принимают наименьшее значение из полученных по результатам испытаний каждого образца. Относительную погрешность определения общего коэффициента пропускания света изделия в этом случае вычисляют как среднеарифметическое значение для испытанных образцов.

5.5 Оформление результатов испытаний

5.5.1 Результаты испытаний оформляют протоколом, в котором указывают:

- наименование испытательного центра (лаборатории), проводившего испытания;

- номер аттестата аккредитации испытательного центра (лаборатории), проводившего(ей) испытания;

- наименование и юридический адрес организации - заказчика испытаний;

- наименование и юридический адрес организации - изготовителя испытываемой продукции;

- наименование испытываемой продукции и документа, регламентирующего требования к ее качеству;

- описание испытываемых образцов продукции: маркировка образцов, габаритные размеры образцов, тип использованного стекла, геометрические размеры сечений, вид окраски и др.;

- отношение площади остекления к общей площади образца (коэффициент остекления);

- дату поступления образцов в испытательный центр (лабораторию);

- номер регистрации образцов в испытательном центре (лаборатории);

- дату испытаний образцов;

- результаты испытаний - по форме таблицы Б.1 приложения Б;

- заключение: значение общего коэффициента пропускания света испытываемого образца (изделия) и относительной погрешности измерения;

- подписи руководителя испытательного центра (лаборатории) и испытателя, печать испытательного центра.

6 Определение общего коэффициента пропускания света оконных блоков расчетно-измерительным методом

6.1 При расчетно-измерительном методе определения общий коэффициент пропускания света оконного блока определяют по формуле

где - коэффициент пропускания света светопрозрачным заполнением;

- коэффициент передачи светового потока ячейками оконного блока, учитывающий потери света в переплетах светового проема (в оконном блоке).

6.2 Определение коэффициента пропускания света светопрозрачным заполнением (стеклом или стеклопакетом) проводят на фотометре по действующим нормативным документам.

6.3 Для измерений используют фрагменты светопрозрачных заполнений, применяемых в оконном блоке размером от 100х100 мм до 300х300 мм.

6.4 Коэффициент передачи светового потока ячейками оконного блока прямоугольной, круглой и полукруглой формы рассчитывают по формуле

где - площадь оконного блока по наружному обмеру, м;

- площадь -й ячейки в свету, м;



- составляющая коэффициента светопередачи, зависящая от геометрических размеров ячейки переплета:

где - составляющая коэффициента светопередачи, зависящая от отражательных свойств внутренних граней ячеек переплета:

где - коэффициент диффузного отражения внутренних граней ячейки;

, - ширина и высота -й ячейки в свету, м;

- толщина ячейки переплета, м;

- радиус ячейки переплета, м;

- индекс ячейки:

- для ячейки переплета прямоугольной формы, пример которой приведен на рисунке 1:

Рисунок 1 - Оконные блоки прямоугольной формы


- для ячейки переплета круглой формы, пример которой приведен на рисунке 2:

Рисунок 2 - Оконные блоки с ячейками круглой формы


- для ячейки переплета полукруглой формы, пример которой приведен на рисунке 3:

Рисунок 3 - Оконные блоки полукруглой и сложной формы

7 Определение коэффициента пропускания оконных и дверных блоков с солнцезащитой

7.1 При использовании внешних и внутренних солнцезащитных устройств определение общих коэффициентов пропускания света может быть рассчитано по формулам:

- при внешних солнцезащитных устройствах

При внутренних солнцезащитных устройствах

где - общий коэффициент пропускания света оконным блоком, определенный в соответствии с настоящим стандартом;

- коэффициент отражения внешней стороны остекления;

- коэффициент отражения внутренней стороны остекления;

- коэффициент пропускания солнцезащитного устройства;

- коэффициент отражения обратной отражающей стороны солнцезащитного устройства;

- коэффициент отражения внутренней стороны солнцезащитного устройства.

Приложение А (обязательное). Установка для определения общего коэффициента пропускания света

Приложение А
(обязательное)

1 - источник диффузного света; 2 - светомерная камера; 3 - проем с опорной решеткой; 4 - осветительные приборы источника света; 5 - измерительный преобразователь излучения люксметра наружной камеры; 6 - измерительные преобразователи люксметров внутренней камеры; 7 - регистрирующие устройства люксметров; 8 - регулятор напряжения осветительных приборов; 9 - экран фотоэлемента от прямого света источника


Таблица Б.1

Освещенность по люксметру с преобразователем излучения, размещенным в наружной камере, соответствующая величине горизонтальной освещенности, создаваемой источником диффузного света

Номер внутреннего преобра-
зователя излучения ()

Освещенность по люксметру с преобразователем излучения, размещенному во внутренней камере, соответствующая величине светового потока, прошедшего через проем светомерной камеры

Коэффициент пропускания света при данном значении освещенности, определенной -м внутренним фотоэлементом

Коэффициент пропускания света для каждого значения освещенности

Общий коэффициент пропускания света образца

с оконным блоком

без оконного блока

Приложение В (справочное). Перечень рекомендуемых средств измерения освещенности, используемых в измерительной установке

Приложение В
(справочное)

Люксметр типа Аргус 01.

Люксметр-пульсметр типа Аргус 07.

Люксметр типа ТКА-Люкс.

Люксметр типа ТКА-ПКМ модель 02.

Люксметр типа ТКА-ПКМ модель 08.

Люксметр типа ТКА-ПКМ модель 31.

Люксметр типа "Pocket-Lux2" фирмы LMT (Германия).

Люксметр-яркомер типа ТЕС-0693 (Украина).

Люксметр-яркомер типа ТКА модель 04/3.

Люксметр-яркомер Аргус 12.



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2014

Согласно закону Хопкинса – Кранца при взрыве дух зарядов взрывчатого вещества одной формы, но разного размера (массы) в одинаковой атмосфере подобные взрывные волны будут наблюдаться на одинаковом расстоянии

R*=R(Pо/m ) , (1)

гдеR – расстояние от эпицентра взрыва, м;

Pо – давление начальное в фиксированной точке, кПа;

M – масса взрывчатого вещества, кг.

Данная формула дает возможность оценивать различные взрывы, сопоставляя их со взрывом эталонного вещества, в качестве которого обычно принимают тротил. Под тротиловым эквивалентом m тнт, кг, понимают массу такого тротилового заряда, при взрыве которого выделяется столько же энергии, сколько и при взрыве данного заряда массой m, кг, т.е.

m тнт = m Qv / Qv тнт, (2)

Где Qv , Qv тнт – энергия взрыва данного вещества и тротила, кДж/кг.

Общая энергия взрыва, к Дж, определяется как

Е= [(Р1 – Р0)/(kt -1) ]V1 ,(3)

где Р1 – начальное давление газа в сосуде, к Па;

kr - показатель адиабаты газа (kr= Ср/ Cv);

V1- объем сосуда, м.

4.2 Задание на практическую работу.

Задание 1. Определить скорости распространения фронта племени.

Задание 5. Расчет аварии, связанный с образованием «огненного шара».

Условия выполнения задания.

Задание 1. Определение скорости распространения фронта племени.

Скорость распространения фронта племени определяется по формуле

V = k ·М , (4)

где: k - константа, равная 43;

М -масса топлива, содержащегося в облаке.

Эффективный энергозапас топливовоздушной смеси рассчитываются по формуле:

Е = 2М ·q ·С /С , (5)

Безразмерное расстояние при взрыве рассчитывается по формуле:

R = R/(E/P ) , (6)

Безразмерное давление при взрыве рассчитывается по формуле:

P = (V /С ) (( - 1)/ )(0,83/R - 0,14/R ) , (7)

Задание 5. Расчет аварии, связанный с образованием «огненного шара»:

Поражающее действие «огненного шара» на человека определяется величиной тепловой энергии (импульсом теплового излучения) и временем существования «огненного шара», а на остальные объекты – интенсивностью его теплового излучения.

Исходные данные:

количество разлившегося при аварии топлива 10,6 м 3 ;

плотность жидкой фазы пропана,  Г = 530 кг/м 3 ;

температура «огненного шара»,  = 1350 К.

Необходимо определить время существования «огненного шара» и расстояние, при котором импульс теплового излучения соответствует различным степеням ожога человека.

Порядок оценки последствий аварии по ГОСТ Р 12.3.047-98 «Пожарная безопасность технологических процессов»:

Импульс теплового излучения Q, кДж, рассчитывают по формуле:

Q = t s · q , (8)

где t s - время существования огненного шара, с;

q - интенсивность теплового излучения, кВт/м 2 .

Расчет интенсивности теплового излучения «огненного шара», проводят по формуле:

q = E f · F q · t , (9)

где E f - среднеповерхностная плотность теплового излучения, кВт/м 2 ;

F q - угловой коэффициент облученности;

t - коэффициент пропускания атмосферы.

E f определяют на основе имеющихся экспериментальных данных, допускается принимать E f равным 450 кВт/м 2 .

Угловой коэффициент облученностирассчитывают по формуле

, (10)

где Н- высота центра «огненного шара», м;

D s - эффективный диаметр «огненного шара», м;

r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара», м.

Эффективный диаметр «огненного шара» D s рассчитывают по формуле

D s =5,33 m 0,327 , (11)

где m - масса горючего вещества, кг.

H - определяют в ходе специальных исследований. Допускается принимать H равной D s /2.

Время существования «огненного шара» t s , с, рассчитывают по формуле

t s = 0,92 m 0,303 , (12)

Коэффициент пропускания атмосферы т рассчитывают по формуле

t = ехр [-7,0 · 10 -4 ( - D s / 2)] , (13)

4.3. Оформление и представление результатов.

1. Изучить теоретический курс лекционных занятий и предлагаемую учебную литературу.

3. Провести идентификацию опасных производственных объектов, используяпризнаки опасности объекта.

4. Исследовать устойчивость объектов экономики.

5. Разработать мероприятия по ПУФ ОЭ.

6. Сделать выводы по полученным исследованиям, сформулировать предложения.

7. Подготовить отчет по выполненной работе. Форма отчетности – письменная, согласно требованиям методических рекомендаций по выполнения практической работы.

8. Подготовить ответы на контрольные вопросы.

9. Осуществить самоконтроль.

10. Защитить практическую работу с первого раза в течении 15 минут.

Представление результатов.

Определения

Обозначения и сокращения

Введение

Основная часть

Заключение

Список использованных источников

Приложения

4.4 Варианты задания.

Поряд-ковый номер Номер варианта Значение М(в кг) С R(м) V1, (куб.м)
0,14
0,13
0,12
0,14
0,15
0,15
0,14
0,13
0,12
0,14
0,13
0,15
0,13
0,14
0,12
0,13
0,15
0,14
0,15
0,13
0,12
0,14
0,15
0,13
0,12
0,14
0,15
0,15
0,13
0,12

Контрольные вопросы :

1. Дать определение взрыва?

2. Перечислить основные характеристики взрыва?

3. Описать процесс взрывных превращений?

4. Обосновать закон Хопкинса-Кранца?

5. В чем заключаются особенности детонации и дефлографии?

6. Чем характеризуется фаза высокого давления?

7. Объясните процесс взрыва ТВС?

8. Приведите последовательность действия ударной волны?

9. Пользуясь вариантом задания, дайте объяснения давления при взрыве?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Безопасность жизнедеятельности / Под ред. Л.А. Михайлова. – М: Академия, 2009. – 272 c.

2. Ильин Л.А. Радиационная гигиена / Л.А. Ильин, В.Ф. Кириллов, И.П. Коренков. – М: Гэотар-Медиа, 2010. –384 c.

3. Практикум по безопасности жизнедеятельности / Под ред. А.В. Фролова. – Ростов-на-Дону: Феникс, 2009. – 496 c.

4. Болтыров В.В. Опасные природные процессы / В.В. Болтыров. – М: КДУ, 2010. – 292 c.

5. Шуленина Н.С. Рабочая тетрадь по основам безопасности жизнедеятельности / Н.С. Шуленина, В.М. Ширшова, Н.А. Волобуева. – Новосибирск: Сибирское университетское издательство, 2010. – 192 c.

6. Почекаева Е.И.. Экология и безопасность жизнедеятельности / E.И. Почекаева. – Ростов-на-Дону: Феникс, 2010. – 560 c.

7. Белов С.В. Безопасность жизнедеятельности / С.В. Белов. – М: А-Приор, – 2011. – 128 c.

8. Хван Т.А. Безопасность жизнедеятельности. Практикум / Т.А. Хван, П.А. Хван. – Ростов-на-Дону: Феникс, 2010. – 320 c.

9. ГОСТ Р 22.0.01-94. БЧС, Безопасность в чрезвычайных ситуациях. Основ­ные положения.

10. ГОСТ Р 22.0.02-94. БЧС. Термины и определения основных понятий.

11. ГОСТ Р 22.0.05-94. БЧС". Техногенные чрезвычайные ситуации. Термины и определения

12. ГОСТ Р 22.0.07-95. БЧС. Источники техногенных чрезвычайных ситуа­ций. Классификация и номенклатура поражающих факторов и их параметров.

13. ГОСТ Р 22.3.03-94. БЧС. Защита населения. Основные положения.

14. ГОСТ Р 22.1.01-95. БЧС". Мониторинг и прогнозирование. Основные по­ложения.

15. ГОСТ Р 22.8.01-96. БЧС". Ликвидация чрезвычайных ситуаций.

16. ГОСТ Р 22.0.06-95. БЧС. Поражающие факторы. Методика определения парамет­ров поражающих воздействий.

Приложение 1.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

ОПРЕДЕЛЕНИЕ

Коэффициентом пропускания называют скалярную физическую величину, равную отношению потока излучения, который прошел сквозь вещество (Ф), к потоку излучения, который падает на поверхность данного вещества (). Коэффициент пропускания часто обозначают буквами T или . Математическое определение коэффициента пропускания имеет вид:

Величина коэффициента пропускания зависит от свойств вещества тела, угла падения света его спектрального состава (длины волны) и поляризации излучения.

Коэффициент пропускания поверхности раздела сред можно определить как:

T — интенсивность преломленной волны, I — интенсивность падающей волны. Если свет преломляется и отражается на границе двух прозрачных веществ, которые не поглощают свет, то выполняется равенство:

где — коэффициент отражения света. В случае полного внутреннего отражения

Связь коэффициента пропускания с оптической плотностью (D) определена формулой:

Некоторые виды коэффициента пропускания

Спектральным коэффициентом пропускания называют коэффициент пропускания монохроматического излучения, имеющего длину волны , определенный отношением потока излучения , который прошел через слой вещества толщиной , к падающему на него потоку В таком случае:

где — натуральный показатель поглощения, рассматриваемого вещества, для излучения с длиной волны — толщина слоя вещества; — десятичный показатель поглощения.

Коэффициент внутреннего пропускания () показывает изменение интенсивности излучения, происходящие внутри вещества. Он не учитывает потери, связанные с отражением на поверхностях входа и выхода вещества. Его определение можно записать как:

где — поток, вошедший в среду, — поток излучения, который выходит из вещества.

Спектральный коэффициент внутреннего пропускания (коэффициент внутреннего пропускания для монохроматического света) оптического стекла зависит от поглощения стекла, рассеяния и поглощения примесями, находящимися в стекле. Коэффициент внутреннего пропускания применяют для характеристики оптических свойств материалов.

Интегральный коэффициент внутреннего пропускания () для стандартного белого источника с температурой T=2856 К можно найти как:

где — относительная спектральная эффективность монохроматического излучения адаптированная к дневному свету (относительная чувствительность глаза). нм, нм.

Прошедшее излучение (без учета рассеяния) оценивают при помощи закона Бугера — Ламберта:

где — коэффициент внутреннего пропускания; — коэффициент поглощения для стекла толщиной 1 см; — коэффициент поглощения для стекла 1 см; — толщина стекла (см).

Коэффициент пропускания n последовательно расположенных сред равен произведению коэффициентов пропускания каждой из них.

Единицы измерения

Коэффициент пропускания безразмерная величина. Иногда он выражается в процентах.

Примеры решения задач

ПРИМЕР 1

Задание Естественный свет падает на поляризатор, при этом проходит ) светового потока. Через два таких поляризатора проходит text">Решение Сделаем рисунок.

Так как после прохождения сквозь поляризатор на выходе интенсивность света меньше 50% как следовало бы ожидать при прохождении через поляризатор естественного света, следовательно, происходит поглощение света. Значит, при определении интенсивности света, выходящего из поляризатора () необходимо учесть данное поглощение света:

где — интенсивность света, падающего на поляризатор. После прохождения через второй поляризатор интенсивность света определяется при помощи закона Малюса и учитывая (1.1) она равна:

Выразим из уравнения (1.1) коэффициент пропускания:

Подставим в выражение (1.2), выразим искомый угол:

Ответ

Цвет различных предметов, освещенных одним и тем же источником света (например, солнцем), бывает весьма разнообразен, несмотря на то, что все эти предметы освещены светом одного состава. Основную роль в таких эффектах играют явления отражения и пропускания света. Как уже было выяснено, световой поток, падающий на тело, частично отражается (рассеивается), частично пропускается и частично поглощается телом. Доля светового потока, участвующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения r, пропускания t и поглощения a (см. § 76).

Каждый из указанных коэффициентов (a, r, t) может зависеть от длины волны (цвета), благодаря чему и возникают разнообразные эффекты при освещении тел. Нетрудно видеть, что какое-либо тело, у которого, например, для красного света коэффициент пропускания велик, а коэффициент отражения мал, а для зеленого, наоборот, будет казаться красным в проходящем свете и зеленым в отраженном. Такими свойствами обладает, например, хлорофилл - зеленое вещество, содержащееся в листьях растений и обусловливающее зеленый цвет их. Раствор (вытяжка) хлорофилла в спирту оказывается на просвет красным, а на отражении - зеленым.

Тела, у которых для всех лучей поглощение велико, а отражение и пропускание очень малы, будут черными непрозрачными телами (например, сажа). Для очень белого непрозрачного тела (окись магния) коэффициент r близок к единице для всех длин волн, а коэффициенты a и t очень малы. Вполне прозрачное стекло имеет малые коэффициенты отражения r и поглощения a и коэффициент пропускания t, близкий к единице для всех длин волн; наоборот, у окрашенного стекла для некоторых длин волн коэффициенты t и r равны практически нулю и соответственно значение коэффициента а близко к единице. Различие в значениях коэффициентов a, t и r и их зависимость от цвета (длины волны) обусловливают чрезвычайное разнообразие в цветах и оттенках различных тел.

Опти́ческая пло́тность - мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т.д.).

Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него), т. е. это есть логарифм от величины, обратной к коэффициенту пропускания (отражения).

D = log Ф in / Ф out

К примеру D=4 означает, что свет был ослаблен в 104=10 000 раз, т. е. для человека это полностью чёрный объект, а D=0 означает, что свет прошёл (отразился) полностью.

Коэффицие́нт отраже́ния - безразмерная физическая величина, характеризующая способность тела отражать падающее на него излучение. В качестве буквенного обозначения используется греческая или латинская .

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело :

Сумма коэффициента отражения и коэффициентов поглощения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим, говорят о монохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным .

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

Коэффицие́нт пропуска́ния - безразмерная физическая величина, равная отношению потока излучения , прошедшего через среду, к потоку излучения , упавшего на её поверхность:

В общем случае значение коэффициента пропускания тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения.

Коэффициент пропускания связан с оптической плотностью соотношением:

Сумма коэффициента пропускания и коэффициентов отражения, поглощения и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

Коэффициент поглощения - доля поглощения объектом взаимодействующего с ним другого объекта. Взаимодействующим объектом может быть электромагнитное излучение, энергия звуковых волн, ионизирующее или проникающее излучение, вещество (например, газообразный водород).

- отношениепотока излучения, поглощённого данным телом, к потоку излучения, <упавшему на это тело. Если падающий поток имеет широкий спектр, указанноеотношение характеризует т. н. интегральный П. к.; если же диапазон частотпадающего света узок, то говорят о монохроматическом П. к. - поглощателънойспособности тела. В соответствии с законом сохранения энергии для монохроматпч. <излучения сумма П. к., отражения коэффициента и пропускания коэффициента равнаединице. В отличие от поглощения показателя, характеризующего свойствавещества, П. к. зависит от толщины слоя, сквозь к-рый проходит свет, т. <е. от размеров тела, от темп-ры, от состояния отражающей поверхности. Вспектроскопии иногда под термином "П. к." понимают показатель поглощения.

Опти́ческая пло́тность - мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.).

Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него), то есть это есть логарифм от величины, обратной к коэффициенту пропускания (отражения) :

К примеру D=4 означает, что свет был ослаблен в 10 4 =10 000 раз, то есть для человека это полностью чёрный объект, а D=0 означает, что свет прошёл (отразился) полностью.

В терминах оптической плотности задаются требования к выдержке негативов.

Прибор для измерения оптической плотности называется денситометром. В рентгеновских методах неразрушающего контроля оптическая плотность рентгеновского снимка является параметром оценки пригодности снимка к дальнейшей расшифровке. Допустимые значения оптической плотности в рентгеновских методах неразрушающего контроля регламентируются в соответствии с требованиями ГОСТ.

Оптическая плотность

D , мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения (См. Поток излучения) F 0 , падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F , прошедшему через этот слой: D = lg (F 0 /F ), иначе, О. п. есть логарифм величины, обратной Пропускания коэффициенту слоя вещества: D = lg (1/τ). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзеном; оно привлекается для характеристики ослабления оптического излучения (См. Оптическое излучение) (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в Светофильтрах и иных оптических изделиях. Особенно широко О. п. пользуются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии (См. Денситометрия). Различают несколько типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис. ).

О. п. зависит от набора частот ν (длин волн λ), характеризующего исходный поток; её значение для предельного случая одной единственной ν называется монохроматической О. п. Регулярная (рис. , а)монохроматическая О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 k ν l , где k ν - натуральный Поглощения показатель среды, l - толщина слоя (k ν l = κcl - показатель в уравнении Бугера - Ламберта - Бера закона; если рассеянием в среде нельзя пренебречь, k ν заменяется на натуральный Ослабления показатель). Для смеси нереагирующих веществ или совокупносги расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отдельных веществ или отдельных сред соответственно. То же справедливо и для регулярной немонохроматической О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от ν) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр, Микрофотометр, Спектрозональная аэрофотосъёмка, Спектросенситометр, Спектрофотометр, Фотометр.)

Сегодня мы расскажем о коэффициенте пропускания и связанных с ним понятиях. Все эти величины относятся к разделу линейной оптики.

Свет в древнем мире

Раньше люди считали, что мир наполнен загадками. Даже человеческое тело несло в себе немало непознанного. Например, древним грекам было непонятно, как видит глаз, почему существует цвет, почему наступает ночь. Но в то же время их мир был проще: свет, падая на препятствие, создавал тень. Это все, что нужно было знать даже самому образованному ученому. О коэффициенте пропускания света и нагревании никто не задумывался. А сегодня это изучают в школе.

Свет встречает препятствие

Когда поток света падает на объект, он может вести себя четырьмя различными способами:

  • поглотиться;
  • рассеяться;
  • отразиться;
  • пройти дальше.

Соответственно, любое вещество имеет коэффициенты поглощения отражения пропускания и рассеяния.

Поглощенный свет разными способами изменяет свойства самого материала: нагревает его, изменяет его электронную структуру. Рассеянный и отраженный свет похожи, но все же отличаются. При меняет направление распространения, а при рассеянии изменяется еще и его длина волны.

Прозрачный объект, который пропускает свет, и его свойства

Коэффициенты отражения и пропускания зависят от двух факторов - от характеристик света и свойств самого объекта. При этом имеет значение:

  1. Агрегатное состояние вещества. Лед преломляет иначе, чем пар.
  2. Строение кристаллической решетки. Этот пункт относится к твердым телам. Например, коэффициент пропускания угля видимой части спектра стремится к нулю, а вот бриллиант - другое дело. Именно плоскости его отражения и преломления создают волшебную игру света и тени, за которую люди готовы платить баснословные деньги. А ведь оба эти вещества - углероды. И алмаз сгорит в огне ничуть не хуже угля.
  3. Температура вещества. Как ни странно, но при высокой температуре некоторые тела становятся сами источником света, поэтому с электромагнитным излучением они взаимодействуют несколько иначе.
  4. пучка света на объект.

К тому же надо помнить, что свет, который вышел из объекта, может быть поляризованным.

Длина волны и спектр пропускания

Как мы уже упоминали выше, коэффициент пропускания зависит от длины волны падающего света. Вещество, непрозрачное для желтых и зеленых лучей, кажется прозрачным для инфракрасного спектра. Для маленьких частиц под названием «нейтрино» прозрачна и Земля. Поэтому несмотря на то что их генерирует Солнце в очень больших количествах, ученым так сложно их засечь. Вероятность столкновения нейтрино с веществом исчезающе мала.

Но чаще всего речь идет о видимой части спектра электромагнитного излучения. Если же в книге или задаче присутствует несколько отрезков шкалы, то коэффициент оптического пропускания будет относиться к тому ее участку, который доступен человеческому глазу.

Формула коэффициента

Теперь читатель уже достаточно подготовлен, чтобы увидеть и понять формулу, которая определяет пропускание вещества. Она выглядит так: Т=Ф/Ф 0 .

Итак, коэффициент пропускания Т - это соотношение потока излучения определенной длины волны, который прошел сквозь тело (Ф) к первоначальному потоку излучения (Ф 0).

Величина Т не имеет размерности, так как обозначается как деление друг на друга одинаковых понятий. Тем не менее, этот коэффициент не лишен физического смысла. Он показывает, какую долю электромагнитного излучения данное вещество пропускает.

«Поток излучения»

Это не просто словосочетание, а конкретный термин. Поток излучения - это мощность, которую электромагнитное излучение проносит сквозь единицу поверхности. Более подробно данная величина вычисляется как энергия, которую перемещает излучение сквозь единичную площадь за единичное время. Под площадью чаще всего подразумевается квадратный метр, а под временем - секунды. Но в зависимости от конкретной задачи эти условия можно и поменять. Например, для красного гиганта, который в тысячу раз больше нашего Солнца, можно смело применять квадратные километры. А для крошечного светлячка - квадратные миллиметры.

Конечно, для того чтобы иметь возможность сравнивать, и были введены единые системы измерения. Но любую величину можно к ним привести, если, конечно, не напутать с количеством нулей.

Связанной с этими понятиями также является величина коэффициента направленного пропускания. Она определяет, сколько и какого света проходит сквозь стекло. Это понятие не найти в учебниках по физике. Оно скрыто в технических условиях и правилах производителей окон.

Закон сохранения энергии

Этот закон - причина, по которой невозможно существование вечного двигателя и философского камня. Зато существуют водяная и ветряная мельницы. Закон гласит, что энергия не берется ниоткуда и не растворяется без следа. Свет, падающий на препятствие, не является исключением. Из физического смысла коэффициента пропускания не следует, что раз часть света не прошла сквозь материал, то она испарилась. На самом деле падающий пучок равен сумме поглощенного, рассеянного, отраженного и прошедшего света. Таким образом, сумма этих коэффициентов для данного вещества должна равняться единице.

Вообще, закон сохранения энергии можно применять ко всем сферам физики. В школьных задачах часто бывает, что веревка не растягивается, штырь не нагревается, а трение в системе отсутствует. Но в реальности такое невозможно. Кроме того, всегда стоит помнить, что люди знают не все. Например, при бета-распаде была потеряна какая-то часть энергии. Ученые не понимали, куда она девается. Сам Нильс Бор высказывал предположения, что на этом уровне закон сохранения может не соблюдаться.

Но потом была открыта очень маленькая и хитрая элементарная частица - лептон нейтрино. И все встало на свои места. Так что если читателю при решении какой-то задачи непонятно, куда девается энергия, то надо помнить: иногда ответ просто неизвестен.

Применение законов пропускания и преломления света

Чуть выше мы говорили, что все эти коэффициенты зависят от того, какое вещество встает на пути пучка электромагнитного излучения. Но этот факт можно использовать и в обратную сторону. Снятие спектра пропускания - один из наиболее простых и действенных способов узнать свойства вещества. Чем же этот метод так хорош?

Он отличается меньшей точностью, чем другие оптические способы. Гораздо больше можно узнать, если заставить вещество испускать свет. Но в этом-то и состоит главное преимущество метода оптического пропускания - никого не надо ни к чему принуждать. Вещество не требуется нагревать, сжигать или облучать лазером. Сложные системы оптических линз и призм не потребуются, так как пучок света проходит прямо сквозь изучаемый образец.

Кроме того, этот метод относится к неинвазивным и неразрушающим. Образец остается в прежнем виде и состоянии. Это бывает важным, когда вещества мало, или когда оно уникально. Мы уверены, что кольцо Тутанхамона не стоит сжигать, чтобы узнать точнее состав эмали на нем.



Понравилась статья? Поделитесь с друзьями!