Что такое множество пример. Понятие о множестве

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.



Задача 1

Сравни элементы множеств в первом и во втором рядах. Есть ли в первом ряду элемент, которого нет во втором ряду? Есть ли во втором ряду элемент, которого нет в первом ряду?

    Решение
  • В первом ряду нет элементов, которых нет во втором ряду
  • Во втором ряду нет элементов, которых нет в первом ряду

Задача 2

Сравни множества в первом и во втором рядах. В каком ряду есть лишний элемент?

Задача 3

Верно ли записано равенство? Почему?


    Решение
  • а) Верно. В этих равенствах одни и теже элементы, только в разном порядке.
  • б) Не верно. В левой части равенства есть треугольник, а в правой нет.
  • в) Верно. Левая часть не равна правой, потому что их элементы отличаются.


Задача 4

Пусть А = {0; 1; 2 }. Какие из множеств В - {2; 0; 1 }, С = { 1; 0 }, D = { 3; 2; 1; 0) равны множеству А, а какие ему не равны? Сделай записи и объясни их.

    Решение
  • A = B: У этих множеств одинаковые элементы, записанные в разном порядке.
  • C не равно A: У множества C отсутствует элемент 2, который есть у множества A.
  • D не равно A: У множества A отсутствует элемент 3, который есть у множества D.

Задача 5

D = { a; ; 5 }. Составь множество А, равное множеству D, и множество В, не равное множеству D.

Задача 6

  • а) Составь все множества» равные множеству { О; /\ };
  • б) Составь все множества, равные множеству {а; б; в).
    Решение
  • а) { О; /\ }, {/\ ; О}.
  • б) {а; б; в), {а; в; б}, {в; а; б}, {б; а; в}.

Задача 7

    Сколько элементов содержит:
  • а) множество дней недели;
  • б) множество парт в первом ряду;
  • в) множество букв русского алфавита;
  • г) множество хвостов у кошки Мурки;
  • д) множество носов у Пети;
  • е) множество лошадей, пасущихся на Луне?
    Решение
  • а) множество дней недели = 7;
  • б) множество парт в первом ряду = 3;
  • в) множество букв русского алфавита = 33;
  • г) множество хвостов у кошки Мурки = 1;
  • д) множество носов у Пети = 1;
  • е) множество лошадей, пасущихся на Луне = 0.


Задача 8

  • а) Растут ли в вашем школьном саду тропические пальмы? Каково множество пальм в школьном саду?
  • б) Каково множество шестиногих лошадей, двухлетних детей в классе, крокодилов в Москве-реке?
  • в) Придумай несколько примеров пустого множества.
    Решение
  • а) Не растут пальмы в школьном саду. Пустое множество Ø
  • б) Пустое множество. Ø
  • в) Двухметровые мухи, деревянные перчатки.

Задача 9

Найди правильное обозначение пустого множества, а остальные зачеркни:

Задача 10

  • а) Во сколько раз 56 больше, чем 8?
  • б) Во сколько раз 8 меньше, чем 56?
  • в) На сколько единиц 56 больше, чем 8?
  • г) На сколько 8 меньше, чем 56?
    Решение
  • а) 56 больше, чем 8 в 7 раз.
  • б) 8 меньше, чем 56 в 7 раз.
  • в) 56 больше, чем 8 на 48 единиц.
  • г) 8 меньше, чем 56 на 48 единиц.

Задача 11

  • а) Шапка стоит а руб., а пальто - в 9 раз дороже. Сколько стоят пальто и шапка вместе?
  • б) Масса арбуза Ь кг, а масса тыквы - на 2 кг меньше. Какова общая масса арбуза и тыквы?
  • в) В ведро входит c л воды, а в кастрюлю - в 7 раз меньше. На сколько объём ведра больше объёма кастрюли?
  • г) В куске было (d м ткани. Из этой ткани сшили 8 одинаковых платьев, расходуя на каждое платье по n м. Сколько метров ткани осталось в куске
    Решение
  • а) (a * 9) + a
  • б) (b - 2) + b
  • в) c - (c: 7)
  • г) d -(8 * n)

Задача 12

Отгадай, кто это?




На странице использованы задачи и задания из книги Л. Г. Петерсон «Математика. 3 класс. Часть1.» 2008г.
Ссылка на сайт автора:

Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество - буквой А, то запись будет выглядеть следующим образом:

проговаривается эта запись так: a принадлежит А, или А содержит а, или а - элемент А.

Для перечисления элементов множества используются фигурные скобки - {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:

Виды множеств.

Пустые множества.

Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.

Примером пустого множества может служить любое нелогичное понятие , противоречащее самому себе - «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).

Равные множества.

Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».

Если два множества - А и B - состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.

Подмножества и надмножества.

Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B - надмножеством А. Записывается это следующим образом:

A ⊆ B, B ⊇ A.

Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.

Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.

Понятие множества относится к аксиоматическим понятиям математики.

Определение . Множество – такой набор, группа, коллекция элементов, которые обладают каким-либо общим для них всех свойством или признаком.

Обозначение: A , B .

Определение . Два множества A и B равны тогда и только тогда, когда они состоят из одних и тех же элементов. A = B .

Запись a ∈ A (a ∉ A) означает, что a является (не является) элементом множества A.

Определение . Множество, не содержащее элементов, называется пустым и обозначается ∅.

Обычно в конкретных случаях элементы всех рассматриваемых множеств берутся из одного, достаточно широкого множества U, которое называется уни- версальным множеством .

Мощность множества обозначается как |M| .
Замечание : для конечных множеств мощность множества – это число элементов.

Определение . Если |A| = |B| , то множества называются равномощными .

Для иллюстрации операций над множествами часто используются диаграммы Эйлера – Венна . Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов, представляющих множества.

Над множествами определены следующие операции:

Объединение А∪В: = {х/х∈А∨х∈В}

Пересечение А∩В: = {х/х∈А&х∈В}

Разность А\В: = {х/х∈А&х∈В}

Дополнение A U \ A: = {x / x U & x ∉ A}

Задача1.1. Дано: а)A,B⊆Z, A = {1;3;4;5;9}, B = {2;4;5;10}. б)A,B⊆R, A = [-3;3), B = (2;10].

Решение.

a) A∩B = {4;5}, A∪B = {1;2;3;4;5;9;10}, A \ B = {1;3;9}, B \ A = {2;10}, B = Z \ B ;

б) A∩B = (2;3), A∪B = [-3;10] , A\B = [-3,2], B\A = ,B Z\B = (-∞,2]∪(10,+∞).


1) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = [-3; 7), B = [-4; 4].

Найти: A∩B, A∪B, A\B, B\A, B .


2) Дано: а) A, B ⊆ Z, A = {3;6;7;10}, B = {2;3;10;12}.

б) A, B ⊆ R, A = .

Найти: A∩B, A∪B, A\B, B\A, B .


3) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = .


4) Дано: а) A, B ⊆ Z, A = {0;4;6;7}, B = {-3;3;7}.

б)A,B ⊆ R, A = [-15;0), B = [-2;1].

Найти: A∩B, A∪B, A\B, B\A, A .


5) Дано: а) A, B ⊆ Z, A = {0;9}, B = {-6;0;3;9}.

б) A, B ⊆ R, A = [-10; 5), B = [-1; 6].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


6) Дано: а)A, B ⊆ Z, A = {0;6;9}, B = {-6;0;3;7}.

б) A, B ⊆ R, A = [-8;3), B = .

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


7) Дано: а)A, B ⊆ Z, A = {-1;0;2;10}, B = {-1;2;9;10}.

б)A, B ⊆ R, A = [-10;9), B = [-5;15].

Найти: A∩B, A∪B, A\B, B\A, B .


8) Дано: а) A,B ⊆ Z, A = {1;2;9;37}, B = {-1;1;9;11;15}.

б) A, B ⊆ R, A = [-8;1), B = [-5;7].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


9) Дано: а) A, B ⊆ Z, A = {-1;0;9;17}, B = {-1;1;9;10;25}.

б) A, B ⊆ R, A = [-4;9), B = [-5;7].

Найти: A∩B, A∪B, A\B, B\A, B .


10) Дано: а)A,B⊆Z, A = {1;7;9;17}, B = {-2;1;9;10;25}.

б) A,B⊆R, A = .

Найти: A ∩ B, A ∪ B, A\B, B\A, A .

Задача1.1. Используя диаграммы Эйлера-Венна доказать тождество:

A\ (B\C) = (A\B) ∪ (A ∩ C).

Решение.

Построим диаграммы Венна.

Левая часть равенства представлена на рисунке а), правая – на рисунке б). Из диаграмм очевидно равенство левой и правой частей данного соотношения.


Задачи для самостоятельного решения

Используя диаграммы Эйлера-Венна доказать тождества:

1) A\(B ∪ C) = (A\B) ∩ (A\C);

2) A ∪ (B\C) = (A ∩ B)\C;

3) A ∪ (B \ C) = (A ∩ B) \ (A ∩ C);

4) (A\B) \C = (A\B) \ (B\C);

5) (A\B) \C = (A\B) ∪ (A∩C);

6) A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

7) (A ∩ B) \ (A ∩ C) = (A ∩ B) \C;

8) A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

9) (A ∪ B) \C = (A\C) ∪ (B\C)

10) A∪ (A ∩ B) = A ∪ B

Задача 1.3. На уроке литературы учитель решил узнать, кто из 40 учеников класса читал книги A, B, C. Результаты опроса оказались таковы: книгу A читали 25 учеников; книгу B читали 22 ученика; книгу C читали 22 ученика; книги A или B читали 33 ученика; книги A или C читали 32 ученика; книги B или C читали 31 ученик; все книги читали 10 учеников. Определите: 1) Сколько учеников прочли только книгу A?

2) Сколько учеников прочли только книгу B?

3) Сколько учеников прочли только книгу C?

4) Сколько учеников прочли только по одной книге?

5) Сколько учеников прочли хотя бы одну книгу?

6) Сколько учеников не прочитали ни одной книги?

Решение.

Пусть U - множество учеников в классе. Тогда

|U| = 40, |A| = 25, |B| = 22, |C| = 22, |A ∪ B| = 33, |A ∪ C| = 32, |B ∪ C| = 31, |A ∩ B ∩ C| = 10

Попробуем проиллюстрировать задачу.

Разобьём множество учеников, прочитавших хотя бы одну книгу, на семь подмножеств k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 , где

k 1 - множество учеников, прочитавших только книгу A;

k 3 - множество учеников, прочитавших только книгу B;

k 7 - множество учеников, прочитавших только книгу C;

k 2 - множество учеников, прочитавших книги A и B и не читавших книгу C;

k 4 - множество учеников, прочитавших книги A и C и не читавших книгу B;

k 6 - множество учеников, прочитавших книги B и C и не читавших книгу A;

k 5 - множество учеников, прочитавших книги A, B и C.

Вычислим мощность каждого из этих подмножеств.

|k 2 | = |A ∩ B|-|A ∩ B ∩ C|; |k 4 | = |A ∩ C|-|A ∩ B ∩ C|;

|k 6 | = |B ∩ C| - |A ∩ B ∩ C|; |k 5 | = |A ∩ B ∩ C|.

Тогда |k 1 | = |A| - |k 2 | - |k 4 | - |k 5 |, |k 3 | = |B| - |k 2 | - |k 6 | - |k 5 |, |k 7 | = |C| - |k 6 | - |k | - |k 5 |.

Найдём |A ∩ B|, |A ∩ C|, |B ∩ C|.

|A ∩ B| = | A| +| B| - |A ∩ B| = 25 + 22 - 33 = 14 ,

|A ∩ C| = |A| + |C| - |A ∩ C| = 25 + 22 - 32 = 15 ,

|B ∩ C| = |B| + |C| - |B ∩ C| = 22 + 22 - 31 = 13 .

Тогда k 1 = 25-4-5-10 = 6; k 3 = 22-4-3-10 = 5; k 7 = 22-5-3-10 = 4;

|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∪ C| .

Из рисунка ясно, что |C| - |(A ∪ B) ∪ C| = |k 7 | = 4, тогда |A ∪ B ∪ C| = 33+4 = 37 – число учеников, прочитавших хотя бы одну книгу.

Так как в классе 40 учеников, то 3 ученика не прочитали ни одной книги.

Ответ:
  1. 6 учеников прочли только книгу A.
  2. 5 учеников прочли только книгу B.
  3. 4 ученика прочли только книгу C.
  4. 15 учеников прочли только по одной книге.
  5. 37 учеников прочли хотя бы одну книгу из A, B, C.
  6. 3 ученика не прочитали ни одной книги.

Задачи для самостоятельного решения

1) В течение недели в кинотеатре шли фильмы A, B, C . Каждый из 40 школьни- ков видел либо все 3 фильма, либо один из трёх. Фильм A видели 13 школьников. Фильм B видели 16 школьников. Фильм C видели 19 школьников. Сколько школьников видели только по одному фильму?

2) В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и английским, 19 – английским и немецким, 15 – русским и немецким, а 10 человек владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

3) В спортивных соревнованиях участвует школьная команда из 20 человек, каждый из которых имеет спортивный разряд по одному или нескольким из трёх видов спорта: лёгкой атлетике, плаванию и гимнастике. Известно, что 12 из них имеют разряды по лёгкой атлетике, 10 – по гимнастике и 5 – по плаванию. Определите количество школьников из этой команды, имеющих разряды по всем видам спорта, если по лёгкой атлетике и плаванию разряды имеют 2 человека, по лёгкой атлетике и гимнастике – 4 человека, по плаванию и гимнастике – 2 человека.

4) Опрос 100 студентов дал следующие результаты о количестве студентов, изучающих различные иностранные языки: испанский – 28; немецкий – 30; французский – 42; испанский и немецкий – 8; испанскии и французский – 10; немецкий и французский – 5; все три языка – 3. Сколько студентов изучает немецкий язык в том и только том случае, если они изучают французский язык? 5) Опрос 100 студентов выявил следующие данные о числе студентов, изучающих различные иностранные языки: только немецкий – 18; немецкий, но не испанский – 23; немецкий и французский – 8; немецкий – 26; французский – 48; французский и испанский – 8; никакого языка – 24. Сколько студентов изучают немецкий и испанский язык?

6) В отчёте об опросе 100 студентов сообщалось, что количество студентов, изучающих различные языки, таково: все три языка – 5; немецкий и испанский – 10; французский и испанский – 8; немецкий и французский – 20; испанский – 30; немецкий – 23; французский – 50. Инспектор, представивший этот отчёт, был уволен. Почему?

7) В международной конференции участвовало 100 человек. Из них 42 владеют французским языком, 28 – английским, 30 – немецким, 10 – французским и английским, 8 – английским и немецким, 5 – французским и немецким, а 3 чело- века владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

8) Студенты 1 курса, изучающие информатику в университете, могут посещать и дополнительные дисциплины. В этом году 25 из них предпочли изучать бухгалтерию, 27 выбрали бизнес, а 12 решили заниматься туризмом. Кроме того, было 20 студентов, слушающих курс бухгалтерии и бизнеса, 5 изучали бухгалтерию и туризм, а 3 – туризм и бизнес. Известно, что никто из студентов не отважился посещать сразу 3 дополнительных курса. Сколько студентов посещали, по крайней мере, 1 дополнительный курс?
9) В олимпиаде по математике для абитуриентов приняло участие 40 учащихся. Им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. Задачу по алгебре решили 20 человек, по геометрии – 18, по тригонометрии – 18 человек. Задачи по алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 8 человек, по геометрии и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека. Сколько учащихся решили толь- ко две задачи?

10) В классе 40 учеников. Из них по русскому языку имеют тройки 19 человек, по математике – 17 человек и по физике – 22 человека. 4 ученика имеют тройки только по одному русскому языку, 4 – только по математике и 11 – только по физике. По русскому, математике и физике имеют тройки 5 учащихся. 7 человек имеют тройки по математике и физике. Сколько учеников имеют тройки по двум из трёх предметов?

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,



Понравилась статья? Поделитесь с друзьями!