Что такое н мерное пространство. N-мерное арифметическое пространство

Различные способы доказательства теоремы Пифагора

учащаяся 9 «А» класса

МОУ СОШ №8

Научный руководитель:

учитель математики,

МОУ СОШ №8

ст. Новорождественской

Краснодарского края.

Ст. Новорождественская

АННОТАЦИЯ.

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

Введение. Историческая справка 5 Основная часть 8

3. Заключение 19

4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она - навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? - Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

Сказка «Дом».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

1 СПОСОБ.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Доказательство.

а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

Таким образом,

(а + в )² = 2ав + с ²,

с²=а²+в² .

Теорема доказана.
2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

Доказательство.

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС² = АВ * АD, СВ² = АВ * DВ;

АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

АС² + СВ² = АВ * АВ,

АС² + СВ² = АВ².

Доказательство закончено.
3 СПОСОБ.

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Доказательство:

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

По определению косинуса угла:

cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

Аналогично,

cos В = ВD/ВС = ВС/АВ.

Отсюда АВ * ВD = ВС² .

Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

АС ² + ВС ² = АВ (АD + DВ) = АВ ²

Доказательство закончено.
4 СПОСОБ.

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

Докажем, что с²=а²+в².

Доказательство.

sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

sin²В= в²/с²; cos²В = а²/с².

Сложив их, получим:

sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

1= (в²+ а²) / с², следовательно,

с²= а² + в².

Доказательство закончено.

5 СПОСОБ.

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

6 СПОСОБ.

Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

с2 = а2 + b2.

Доказательство закончено.

7 СПОСОБ.

Дано (рис. 7):

ABС, = 90°, ВС = а, АС= b, АВ = с.

Доказать: с2 = а2 + b2 .

Доказательство.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

(a+b)(a+b)

Разделив все члены неравенства на , получим

а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

с2 = а2 + b2.

Доказательство закончено.

8 СПОСОБ.

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

Доказательство.

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC, значит, FBC = DBA.

Таким образом, FBC =ABD (по двум сторонам и углу между ними).

2) , где AL DE, так как BD - общее основание, DL - общая высота.

3) , так как FB –снование, АВ - общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС2 = АВ2 + АС2 . Доказательство закончено.

9 СПОСОБ.

Доказательство.

1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

Доказательство закончено.

10 СПОСОБ.

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

История теоремы Пифагора насчитывает несколько тысячелетий. Утверждение, гласящее, что было известно еще задолго до рождения греческого математика. Однако теорема Пифагора, история создания и доказательства ее связываются для большинства именно с этим ученым. Согласно некоторым источникам, причиной тому послужило первое доказательство теоремы, которое было приведено Пифагором. Однако часть исследователей опровергает этот факт.

Музыка и логика

Прежде чем рассказать, как складывалась история теоремы Пифагора, кратко остановимся на биографии математика. Жил он в VI веке до нашей эры. Датой рождения Пифагора считается 570 год до н. э., местом — остров Самос. О жизни ученого достоверно известно немного. Биографические данные в древнегреческих источниках переплетаются с явным вымыслом. На страницах трактатов он предстает великим мудрецом, великолепно владеющим словом и умением убеждать. Кстати, именно поэтому греческого математика и прозвали Пифагором, то есть «убеждающим речью». По другой версии, рождение будущего мудреца предсказала Пифия. Отец в ее честь назвал мальчика Пифагором.

Мудрец учился у великих умов того времени. Среди преподавателей молодого Пифагора значатся Гермодамант и Ферекид Сиросский. Первый привил ему любовь к музыке, второй обучил философии. Обе эти науки останутся в центре внимания ученого на протяжении всей его жизни.

Обучение длиной в 30 лет

По одной из версий, будучи пытливым юношей, Пифагор покинул родину. Он отправился искать знаний в Египет, где пробыл, согласно разным источникам, от 11 до 22 лет, а затем попал в плен и был отправлен в Вавилон. Пифагор смог извлечь пользу из своего положения. В течение 12 лет он изучал математику, геометрию и магию в древнем государстве. На Самос Пифагор вернулся только в 56 лет. Здесь в то время правил тиран Поликрат. Пифагор не смог принять такую политическую систему и вскоре отправился на юг Италии, где располагалась греческая колония Кротон.

Сегодня нельзя точно утверждать, был ли Пифагор в Египте и Вавилоне. Возможно, он покинул Самос позже и отправился сразу в Кротон.

Пифагорейцы

История теоремы Пифагора связана с развитием созданной греческим философом школы. Это религиозно-этическое братство проповедовало соблюдение особого образа жизни, изучало арифметику, геометрию и астрономию, занималось исследованием философской и мистической стороны чисел.

Все открытия учеников греческого математика приписывались ему. Однако история возникновения теоремы Пифагора связывается древними биографами только с самим философом. Предполагается, что он передал грекам знания, полученные в Вавилоне и Египте. Есть также версия, что он действительно открыл теорему о соотношениях катетов и гипотенузы, не зная о достижениях других народов.

Теорема Пифагора: история открытия

В некоторых древнегреческих источниках описывается радость Пифагора, когда ему удалось доказать теорему. В честь такого события он приказал принести жертву богам в виде сотни быков и устроил пир. Некоторые ученые, однако, указывают на невозможность такого поступка из-за особенностей воззрений пифагорейцев.

Считается, что в трактате «Начала», созданном Евклидом, автор приводит доказательство теоремы, автором которого и был великий греческий математик. Однако подобную точку зрения поддерживали не все. Так, еще античный философ-неоплатоник Прокл указывал, что автором приведенного в «Началах» доказательства является сам Евклид.

Как бы то ни было, но первым, кто сформулировал теорему, все-таки был не Пифагор.

Древний Египет и Вавилон

Теорема Пифагора, история создания которой рассматривается в статье, согласно немецкому математику Кантору, была известна еще в 2300 году до н. э. в Египте. Древние жители долины Нила во времена правления фараона Аменемхета I знали равенство 3 2 + 4 ² = 5 ² . Предполагается, что с помощью треугольников со сторонами 3, 4 и 5 египетские «натягиватели веревок» выстраивали прямые углы.

Знали теорему Пифагора и в Вавилоне. На глиняных табличках, датируемых 2000 годом до н.э. и относимых ко времени правления обнаружен приблизительный расчет гипотенузы прямоугольного треугольника.

Индия и Китай

История теоремы Пифагора связана и с древними цивилизациями Индии и Китая. Трактат «Чжоу-би суань цзинь» содержит указания, что (его стороны соотносятся как 3:4:5) был известен в Китае еще в XII в. до н. э., а к VI в. до н. э. математики этого государства знали общий вид теоремы.

Построение прямого угла при помощи египетского треугольника было изложено и в индийском трактате «Сульва сутра», датируемом VII-V вв. до н. э.

Таким образом, история теоремы Пифагора к моменту рождения греческого математика и философа насчитывала уже несколько сотен лет.

Доказательство

За время своего существования теорема стала одной из основополагающих в геометрии. История доказательства теоремы Пифагора, вероятно, началась с рассмотрения равностороннего На его гипотенузе и катетах строятся квадраты. Тот, что «вырос» на гипотенузе, будет состоять из четырех треугольников, равных первому. Квадраты на катетах при этом состоят из двух таких треугольников. Простое графическое изображение наглядно показывает справедливость утверждения, сформулированного в виде знаменитой теоремы.

Еще одно простое доказательство сочетает геометрию с алгеброй. Четыре одинаковых прямоугольных треугольника со сторонами а, в, с вычерчиваются так, что образуют два квадрата: внешний со стороной (а + в) и внутренний со стороной с. При этом площадь меньшего квадрата будет равна с 2 . Площадь большого вычисляется из суммы площадей маленького квадрата и всех треугольников (площадь прямоугольного треугольника, напомним, вычисляется по формуле (а * в) / 2), то есть с 2 + 4 * ((а * в) / 2), что равно с 2 + 2ав. Площадь большого квадрата можно вычислить и иначе — как произведение двух сторон, то есть (а + в) 2 , что равно а 2 + 2ав + в 2 . Получается:

а 2 + 2ав + в 2 = с 2 + 2ав,

а 2 + в 2 = с 2 .

Известно множество вариантов доказательства этой теоремы. Над ними трудился и Евклид, и индийские ученые, и Леонардо да Винчи. Часто древние мудрецы приводили чертежи, примеры которых расположены выше, и не сопровождали их никакими объяснениями, кроме пометки «Смотри!» Простота геометрического доказательства при условии наличия некоторых знаний комментариев и не требовала.

История теоремы Пифагора, кратко изложенная в статье, развенчивает миф о ее происхождении. Однако трудно даже представить, что имя великого греческого математика и философа когда-нибудь перестанет ассоциироваться с ней.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты - стороны, пересекающиеся под прямым углом), а гипотенузу - как «с» (гипотенуза - самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b - это катеты, а с - гипотенуза.

    • В нашем примере напишите: 3² + b² = 5² .
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени - вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения. На данном этапе на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне - свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4 .
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни - в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров .
  • В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

    Краткий обзор биографии

    Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

    Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

    Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

    Рождение теоремы

    В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

    Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

    Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

    Теорема Пифагора

    Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

    Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

    Способ первый

    Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

    Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

    Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

    Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

    На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

    Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

    Отсюда (а+в) 2 =2ав+с 2

    И, следовательно, с 2 =а 2 +в 2

    Теорема доказана.

    Способ два: подобные треугольники

    Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

    Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

    АС=√АВ*АД, СВ=√АВ*ДВ.

    Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

    АС 2 =АВ*АД и СВ 2 =АВ*ДВ

    Теперь нужно сложить получившиеся неравенства.

    АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

    Получается, что:

    АС 2 + СВ 2 =АВ*АВ

    И, следовательно:

    АС 2 + СВ 2 =АВ 2

    Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

    Еще одна методика расчетов

    Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

    В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

    Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

    S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

    S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

    с 2 -в 2 =а 2

    с 2 =а 2 +в 2

    Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

    Самый простой способ доказать теорему Пифагора. Отзывы

    Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

    Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

    Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

    К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

    Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

    Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

    Доказательство Дж. Гарфилда

    Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

    В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

    Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

    Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

    S=а+в/2 * (а+в)

    Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

    S=ав/2 *2 + с 2 /2

    Теперь необходимо уравнять два исходных выражения

    2ав/2 + с/2=(а+в) 2 /2

    с 2 =а 2 +в 2

    О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

    Практическое применение теоремы Пифагора

    К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

    На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

    Связь теоремы и астрономии

    Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

    Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

    Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

    Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

    А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

    Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

    Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

    Радиус передачи мобильного сигнала

    Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

    Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

    Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

    АВ (высота вышки) = х;

    ВС (радиус передачи сигнала) = 200 км;

    ОС (радиус земного шара) = 6380 км;

    ОВ=ОА+АВОВ=r+х

    Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

    Теорема Пифагора в быту

    Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

    Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

    Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

    При идеальных габаритах шкафа проверим действие теоремы Пифагора:

    АС=√АВ 2 +√ВС 2

    АС=√2474 2 +800 2 =2600 мм - все сходится.

    Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

    АС=√2505 2 +√800 2 =2629 мм.

    Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

    Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

    Построение

    Преобразование 1-тетраэдра в 2-тетраэдр

    Преобразование 2-тетраэдра в 3-тетраэдр

    Как известно, через любые N точек можно провести (N–1)–плоскость и существуют множества из N+1 точек, через которые (N–1)–плоскость провести нельзя. Таким образом, N+1 – минимальное число точек в N–пространстве, которое не лежит в одной (N–1)–плоскости, и может служить вершинами N–многогранника.

    Простейший N–многогранник с количеством вершин N+1 называется N–тетраэдром по названию трёхмерного члена этого семейства. В литературе принято также название «симплекс». В пространствах низшей размерности этому определению соответствуют 4 фигуры:

    • 0-тетраэдр (точка) – 1 вершина;
    • 1–тетраэдр (отрезок) – 2 вершины;
    • 2–тетраэдр (треугольник) – 3 вершины;
    • 3–тетраэдр (собственно тетраэдр) – 4 вершины.

    Все эти фигуры обладают тремя общими свойствами:

    1. В соответствии с определением, число вершин у каждой фигуры на единицу больше размерности пространства;

    2. Существует общее правило преобразования фигур низшей размерности в фигуры высшей размерности. Оно заключается в том, что из геометрического центра фигуры строится перпендикуляр в следующее измерение, на этом перпендикуляре строится новая вершина и соединяется рёбрами со всеми вершинами исходного тетраэдра;

    3. Как следует из описанной в п. 2 процедуры, любая вершина тетраэдра соединена рёбрами со всеми остальными вершинами.

    Описанная сфера

    Вокруг любого N-тетраэдра можно описать N-сферу.

    Для 1-тетраэдра это утверждение очевидно. Описанная 1-сфера будет представлять собой отрезок, совпадающий с самим 1-тетраэдром, и её радиус будет составлять R = a/2. Добавим к 1-тетраэдру ещё одну точку и попробуем описать вокруг них 2-сферу.

    Построим 2-сферу s 0 радиусом a/2 таким образом, чтобы отрезок AB был её диаметром. Если точка С находится за пределами окружности s 0 , то увеличивая радиус окружности и смещая её в сторону точки С можно добиться того, что все три точки окажутся на окружности. Если же точка С лежит внутри окружности s 0 , то подогнать окружность под эту точку можно увеличивая её радиус и смещая в сторону, противоположную точке С. Как видно из рисунка, сделать это можно в любом случае, когда точка С не лежит на одной прямой с точками АВ. Не является помехой и несимметричное расположение точки С относительно АВ.

    Рассматривая общий случай, предположим, что существует (N–1)-сфера S N-1 радиуса r, описанная вокруг некоторой (N–1)-мерной фигуры. Поместим центр сферы в начало координат. Уравнение сферы будет иметь вид

    Построим N-сферу с центром в точке (0, 0, 0, ... 0, h S) и радиусом R, причём

    Уравнение этой сферы

    Подставив в уравнение (1) x N = 0, получим уравнение (2). Таким образом, при любом h S сфера S N-1 является подмножеством сферы S N , а именно – её сечением плоскостью x N = 0.

    Предположим, что точка С имеет координаты (X 1 , X 2 , X 3 , ..., X N). Преобразуем уравнение (2) к виду

    и подставим в него координаты точки С:

    Выражение в левой части представляет собой квадрат расстояния R C от начала координат до точки C, что позволяет привести последнее уравнение к виду

    откуда можно выразить параметр h S:

    Очевидно, что h S существует при любых R C , X N и r, кроме X N = 0. Это значит, что если точка С не лежит в плоскости сферы S N–1 , всегда можно найти такой параметр h S , что на сфере S N c центром (0, 0, 0, ..., h S) будет лежать и сфера S N–1 , и точка С. Таким образом, вокруг любых N+1 точек можно описать N–сферу, если N из этих точек лежат на одной (N–1)–сфере, и последняя точка не лежит с ними в одной (N–1)–плоскости.

    Применяя последнее по индукции, можно утверждать, что N–сферу можно описать вокруг любых N+1 точек, если они не лежат в одной (N–1)–плоскости.

    Число граней N-тетраэдра

    Тетраэдр имеет N+1 вершин, каждая из которых соединена рёбрами со всеми остальными вершинами.

    Поскольку все вершины тетраэдра соединены между собой, то тем же свойством обладает и любое подмножество его вершин. Это значит, что любое подмножество из L+1 вершин тетраэдра определяют его L–мерную грань, и эта грань сама является L–тетраэдром. Тогда для тетраэдра число L-мерных граней равно числу способов выбрать L+1 вершину из полного набора N+1 вершин.

    Обозначим символом К(L,N) число L–мерных граней в N–многограннике, тогда для N-тетраэдра

    где – число сочетаний из n по m.

    В частности, число граней старшей размерности равно числу вершин и равно N+1:

    Формулы для правильного N-тетраэдра

    Число L-мерных граней
    Высота
    Объём
    Радиус описанной сферы
    Радиус вписанной сферы
    Двугранный угол

    Несколько полезных соотношений


    Wikimedia Foundation . 2010 .



    Понравилась статья? Поделитесь с друзьями!