Аксиоматический метод построения. Классический метод наименьших квадратов для модели множественной регрессии

АКСИОМАТИЧЕСКИЙ МЕТОД - метод построения научной теории, при котором выбирается ряд исходных утверждений, называемых аксиомами, а дальнейшие утверждения (теоремы) получаются из них с помощью чисто логических рассуждений (доказательств). Классический образец применения аксиоматического метода - изложенная в «Началах» Евклида (около 300 года до нашей эры) аксиоматическая система, которая охватывала всю известную в то время математику. Влияние аксиоматического метода распространилось и на другие области знания: физику, биологию, философию, богословие.

На протяжении многих столетий «Начала» Евклида были единственным примером аксиоматической теории. Начиная с 19 века, создаются новые теории, например Лобачевского геометрия, аксиоматические теории действительных и натуральных чисел. В начале 20 века были построены аксиоматические теории множеств, повлиявшие на развитие всей математики.

Формальное определение аксиоматической теории было дано Д. Гильбертом. При формальном описании теории задаётся её язык (правила построения выражений различных типов, в том числе формул, которые соответствуют содержательным утверждениям), выделяется класс формул, называемых аксиомами теории, и описываются правила вывода, позволяющие строить доказательства теорем. Доказательство есть последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих по одному из правил вывода. Теория называется непротиворечивой, если в ней нельзя получить противоречие, т. е. отрицания её теорем не являются теоремами; и полной, если для любой формулы А, либо А, либо отрицание А является теоремой. При построении формальных теорий вопрос о непротиворечивости является ключевым. Для установления непротиворечивости обычно используется метод интерпретаций. При синтаксической интерпретации теории Т выбирается другая теория Т1, непротиворечивость которой предполагается известной; интерпретация переводит формулы Т в формулы Т1, а теоремы Т в теоремы Т1. При семантической интерпретации строится модель теории: теоремы превращаются в истинные содержательные утверждения об объектах некоторого универсума. Если теория имеет модель, то она непротиворечива. Путём интерпретации доказательство непротиворечивости евклидовой геометрии сводится к доказательству непротиворечивости теории действительных чисел, а доказательство непротиворечивости геометрии Лобачевского - к доказательству непротиворечивости евклидовой геометрии.

Вопросы о непротиворечивости стали особенно актуальны в начале 20 века после обнаружения парадоксов множеств теории. В связи с этим в начале 20 века Д. Гильбертом выдвинута программа обоснования математики, целью которой было доказательство непротиворечивости формальных теорий, использующих бесконечные множества. Программа Гильберта существенно переосмыслена после открытий К. Гёделя (1931-32). Для любой непротиворечивой теории S, содержащей арифметику и заданной алгоритмически перечислимым списком аксиом, установлено, что теория S неполна (теорема Гёделя о неполноте) и непротиворечивость теории S нельзя доказать средствами самой теории S (теорема Гёделя о непротиворечивости). Первый результат, по существу, означает, что окончательная формализация научного знания невозможна, и в любой достаточно сильной аксиоматической теории имеются проблемы, которые неразрешимы в самой этой теории. Второй результат показывает, что такой проблемой является непротиворечивость теории S, и для её доказательства требуются неарифметические средства. С помощью дополнительных принципов были получены доказательства непротиворечивости арифметики, анализа и ряда других теорий. Была усилена теорема Гёделя о неполноте: найдены арифметические утверждения, которые истинны, но недоказуемы в формальной арифметике.

Формальная аксиоматическая теория называется алгоритмически разрешимой, если для любой формулы А существует алгоритм, который за конечное число шагов определяет, является ли формула А теоремой. Программа Гильберта подразумевала, что формальное доказательство теорем можно механизировать. Однако неразрешима даже простейшая теория - исчисление предикатов, неразрешима всякая непротиворечивая теория, содержащая арифметику, и многие другие теории. С другой стороны, обнаружены и нетривиальные примеры разрешимых теорий, например евклидова геометрия и теория конечных полей.

Альтернативным аксиоматическим методом является генетический (конструктивный) метод, при котором новые научные законы находятся опытным путём, а не как логические следствия известных результатов. Генетический метод развивался в 20 веке в интуиционистском (французский математик Г. Вейль, голландский математик Л. Брауэр) и конструктивном (А. А. Марков) направлениях математики.

Аксиоматический метод сыграл и продолжает играть важную роль в основаниях математики.

Лит.: Бурбаки Н. Начала математики. М., 1965. Ч. 1. Кн. 1: Теория множеств; Клини С. К. Математическая логика. М., 1973; Новиков П. С. Элементы математической логики. М., 1973; Ефимов Н.В. Высшая геометрия. 6-е изд. М., 1978; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1982; Справочная книга по математической логике: В 3 часть М., 1982; Успенский В. А. Что такое аксиоматический метод? 2-е изд. Ижевск, 2001.

АКСИОМАТИЧЕСКИЙ МЕТОД (от греч. axioma) - принятое положение - способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями. Впервые ярко продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы и постулата упоминаются уже Аристотелем. У древних греков аксиомой называлось ясно сформулированное положение, настолько самоочевидное, что его не доказывают и кладут в основу других доказательств. Постулат - утверждение о возможности выполнить некоторое построение. Поэтому «Целое больше части» - аксиома, а «Из данной точки данным радиусом можно описать окружность» - постулат. В дальнейшем понятие аксиомы поглотило понятие постулата, поскольку не были осознаны понятия дескриптивности и конструктивности (аксиома описывает, постулат строит). Почти все аксиомы эллинской геометрии были сформулированы настолько четко и удачно, что не вызывали сомнений. Однако одно из положений Евклида, а именно пятый постулат, эквивалентный утверждению «Через точку, лежащую вне прямой, можно провести прямую, параллельную данной, и притом только одну», с самого начала вызывало сомнения. Более того, до Евклида эллины исследовали все три возможные гипотезы: 1) нельзя провести ни одной параллельной прямой, 2) можно провести больше одной и 3) можно провести лишь одну параллельную прямую; но Евклид осознанно выбрал одну формулировку, поскольку лишь в таком случае существовал квадрат и понятие подобия фигур. В дальнейшем наличие альтернатив было забыто, и пятый постулат неоднократно пытались доказать. Вплоть до 17 в. А. м. мало развивался. Евклид и Архимед сформулировали аксиомы статики и оптики, а в дальнейшем, в связи с общей тенденцией к комментаторству и канонизации, исследования перелагали, либо, в лучшем случае, анализировали старые системы аксиом. Неудивительно, что новая математика начала с отказа от А. м., и анализ бесконечно малых развивался как неформализованная теория. Была понята сомнительность аксиомы «Целое меньше части», поскольку Николай Кузанский и вслед за ним Галилей показали, что для бесконечных совокупностей целое может быть изоморфно части. Но это открытие было недооценено, потому что слишком хорошо согласовывалось с христианской религией (с концепциями различных ипостасей бесконечного Бога). Далее, неудача Спинозы в попытках вывести геометрическим, чисто рассудочным методом систему этики и метафизики показала неприменимость существующего А. м. к гуманитарным понятиям.

Возвращение к А. м. произошло в 19 в. Оно базировалось на двух открытиях - неевклидовой геометрии (переоткрывшей то, что было известно до Евклида, но потом напрочь забыто), и абстрактной алгебре. В неевклидовой геометрии (Г а у с с, Лобачевский, Бойяи) было показано, что одно из отрицаний пятого постулата - а именно то, что через точку, лежащую вне прямой, можно провести две прямые, параллельные данной - совместимо с остальными аксиомами геометрии. Таким образом, те аксиомы и постулаты, которые создавались, чтобы описать «единственно истинное» пространство, на самом деле описывают целый класс различных пространств. В абстрактной алгебре появились новые числовые системы, причем сразу целые их семейства (напр., р-адические числа) и переменные структуры типа групп. Свойства переменных структур естественно было описывать при помощи аксиом, но теперь уже никто не настаивал на их самоочевидности, а рассматривали их просто как способ описания класса математических объектов. Напр., полугруппа определяется единственной аксиомой - ассоциативности умножения: а° (Ь о с) = (а о Ь) о С. В самой геометрии наступил черед критического переосмысления классических аксиом. Э. Паш показал, что Евклид не усмотрел еще один постулат, столь же интуитивно очевидный, как и описанные им: «Если прямая пересекает одну из сторон треугольника, то она пересечет и другую». Далее было показано, что один из признаков равенства треугольников нужно принять в качестве аксиомы, иначе теряется строгость доказательств, поскольку из остальных аксиом не следует возможность перемещения фигур. Была отброшена аксиома «Целое меньше части», как не имеющая смысла с точки зрения новой математики, и заменена на несколько положений о соотношении мер фигур. И, наконец, Д. Гильберт сформулировал новую аксиоматику геометрии, базирующуюся на высших достижениях математики 19 в.

В эллинские времена и позже понятие числа не описывалось аксиоматически. Только в конце 19 в. Дж. Пеано (Италия) дал аксиоматику натуральных чисел. Аксиоматики Пеано и Гильберта содержат по одному принципу высшего порядка, говорящему не о фиксированных понятиях, а о произвольных понятиях либо совокупностях. Напр., в арифметике - это принцип математической индукции. Без принципов высших порядков однозначное описание стандартных математических структур невозможно.

А. м. был использован для спасения теории множеств после нахождения связанных с нею парадоксов. Спасение само по себе производилось не лучшим способом - латанием парадигмы. Те из принципов теории множеств, которые казались не приводящими к парадоксам и обеспечивали необходимые для математики построения, были приняты в качестве аксиом. Но при этом А. м. был обобщен на логику. Д. Гильберт явно сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс - логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий.

Современный А. м. отличается от традиционного тем, что явно задаются не только аксиомы, но и язык, а в логике - еще и правила вывода описываемой теории либо системы. Пересмотренный и усиленный А. м. стал мощным оружием в таких новых областях знания, как когнитивная наука и математическая лингвистика. Он позволяет низводить семантические проблемы на уровень синтаксических и тем самым помогать их решению.

В последние десятилетия по мере развития теории моделей А. м. стал в обязательном порядке дополняться теоретико-модельным. Формулируя аксиоматическую систему, нужно описать и совокупность ее моделей. Минимально необходимым обоснованием системы аксиом служит ее корректность и полнота на заданном классе моделей. Но для применений недостаточно такого формального обоснования - нужно также показать содержательный смысл построенной системы и ее выразительные возможности.

Основным математическим ограничением А. м. служит то, что логика высших порядков неформализуема и неполна, а без нее описать стандартные математические структуры нельзя. Поэтому в тех областях, где есть конкретные числовые оценки, А. м. не может быть применен к полному математическому языку. В таких областях возможна лишь неполная и непоследовательная, так называемая частичная либо содержательная, аксиоматизация.

Неформализуемость понятий сама по себе, как ни странно, не препятствует применению А. м. к данным понятиям. Все равно при работе в фиксированной обстановке есть смысл переходить к гораздо более эффективным формальным моделям. В данном случае положительной чертой формализмов часто может являться их несоответствие реальной ситуации. Формализмы не могут полностью соответствовать содержанию понятий, но если эти несоответствия спрятаны, то формализмами часто продолжают пользоваться и после того, как обстановка перестала быть подходящей для их применения, и даже в ситуации, с самого начала не подходящей для их использования. Подобные опасности существуют и для частичных формализации.

  • - аксиоматический метод, не фиксирующий жестко применяемого языка и тем самым не фиксирующий границы содержательного понимания предмета, но требующий аксиоматич...

    Математическая энциклопедия

  • - метод математических рассуждений, основанный на логическом выводе из некоторых утверждений...

    Научно-технический энциклопедический словарь

  • - способ построения науч. теории, при котором в её основу кладутся некоторые исходные положения - аксиомы, или постулаты, из которых все остальные утверждения этой теории должны...

    Философская энциклопедия

  • - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений, из которых затем логическим путем выводятся и доказываются остальные истинные утверждения этой...

    Новейший философский словарь

  • - АКСИОМАТИЧЕСКИЙ МЕТОД - принятое положение - способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями...

    Энциклопедия эпистемологии и философии науки

  • - способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств...

    Словарь логики

  • - см. МЕТОД АКСИОМАТИЧЕСКИЙ...

    Энциклопедия социологии

  • - способ построения науч. теории в виде системы аксиом и правил вывода, позволяющих путём логич. дедукции получать утверждения данной теории...

    Естествознание. Энциклопедический словарь

  • - МЕ́ТОД АКСИОМАТИЧЕСКИЙ способ построения теории, при к-ром в ее основу кладутся нек-рые ее положения – аксиомы или постулаты, – из к-рых все остальные положения теории выводятся путем...

    Философская энциклопедия

  • - способ построения научной теории, при котором в её основу кладутся некоторые исходные положения - аксиомы, или Постулаты, из которых все остальные утверждения этой науки) должны выводиться чисто...
  • - см. Аксиоматический метод...

    Большая Советская энциклопедия

  • - способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются как логические следствия аксиом...

    Современная энциклопедия

  • - способ построения научной теории в виде системы аксиом и правил вывода, позволяющих путем логической дедукции получать утверждения данной теории...

    Большой энциклопедический словарь

  • - то же, что аксиоматичный...

    Толковый переводоведческий словарь

  • - Способ исследования, состоящий в том, что множество элементов или объектов разбивается на части. Одна часть рассматривается как исходные положения – аксиомы, принимаемые без доказательств...

    Словарь лингвистических терминов Т.В. Жеребило

  • - ...

    Орфографический словарь русского языка

"аксиоматический метод" в книгах

Аксиоматический метод

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Аксиоматический метод Первая школьная неприятность была вызвана правилом умножения отрицательных чисел. Я тотчас начал расспрашивать отца, чем объясняется это странное правило. Мой отец, как верный ученик Эмми Нётер (и, следовательно, Гильберта и Дедекинда) стал

1. Этика Б. Спинозы. Аксиоматический метод доказательства морали

Из книги Этика: конспект лекций автора Аникин Даниил Александрович

1. Этика Б. Спинозы. Аксиоматический метод доказательства морали Основная установка мыслителей Нового времени предпо–лагала выведение морали из природы, что часто становилось сведением ее к естественнонаучному знанию. Стремление придать этике статус строгой научной

76. Метод анкетирования, интервьюирование, целевой метод, метод комиссий и конференций

автора Ольшевская Наталья

76. Метод анкетирования, интервьюирование, целевой метод, метод комиссий и конференций При проведении метода анкетирования эксперты заполняют предварительно составленные специалистами анкеты, в которых: формулировки должны исключать смысловую неопределенность;

93. Балансовый метод, метод меньших чисел, метод среднего квадратического

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

93. Балансовый метод, метод меньших чисел, метод среднего квадратического Балансовый метод состоит в сравнении, соизмерении двух комплексов показателей, стремящихся к определенному равновесию. Он позволяет выявить в результате новый аналитический (балансирующий)

Акселерированный метод нейрообучения Эрика Дженсена и ИЛПТ как интенсивный метод обучения

Из книги Психология речи и лингвопедагогическая психология автора Румянцева Ирина Михайловна

Акселерированный метод нейрообучения Эрика Дженсена и ИЛПТ как интенсивный метод обучения Современное образование непрерывно ищет пути своей модернизации и, соответственно, новые методы обучения. Для этих целей оно обращается к различным отраслям науки и на их основе

2.3. Метод датирования царских династий и метод обнаружения фантомных династических дубликатов

Из книги автора

2.3. Метод датирования царских династий и метод обнаружения фантомных династических дубликатов Итак, при помощи коэффициента с(а, b) можно достаточно уверенно различать зависимые и независимые пары летописных династий. Важный экспериментальный факт состоит в том, что

2.5. Метод датирования царских династий и метод обнаружения фантомных династических дубликатов

Из книги автора

2.5. Метод датирования царских династий и метод обнаружения фантомных династических дубликатов Итак, при помощи коэффициента с(а, b) можно достаточно уверенно различать зависимые и независимые пары летописных династий. Важный экспериментальный факт состоит в том, что

Аксиоматический метод

Из книги Большая Советская Энциклопедия (АК) автора БСЭ

Формальный аксиоматический метод

Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

АКСИОМАТИЧЕСКИЙ МЕТОД

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

АКСИОМАТИЧЕСКИЙ МЕТОД (греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные

27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера

Из книги Ответы на экзаменационные билеты по эконометрике автора Яковлева Ангелина Витальевна

27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера В общем виде линейную модель множественной регрессии можно записать следующим образом:yi=?0+?1x1i+…+?mxmi+?i, где yi – значение i-ой результативной переменной,x1i…xmi – значения факторных

25. МОРФОЛОГИЧЕСКИЙ МЕТОД РАЗРАБОТКИ ПРОДУКТА. МЕТОД «МОЗГОВОЙ АТАКИ» И ОЦЕНОЧНОЙ ШКАЛЫ

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

25. МОРФОЛОГИЧЕСКИЙ МЕТОД РАЗРАБОТКИ ПРОДУКТА. МЕТОД «МОЗГОВОЙ АТАКИ» И ОЦЕНОЧНОЙ ШКАЛЫ 1. Описание проблемы без предложения каких-либо решений.2. Разложение проблемы на отдельные компоненты, которые могут влиять на решение.3. Предложение альтернативных решений для

Глава 1 Аксиоматический метод

Из книги Том. 22. Сон разума. Математическая логика и ее парадоксы автора Фресан Хавьер

Глава 1 Аксиоматический метод Со времен греков говорить «математика» - значит говорить «доказательство». Николя Бурбаки Энтузиазм, с которым адвокат Тауринус разорвал конверт, не теряя времени на поиски ножа, сменялся разочарованием по мере того, как он строчка за

3. АКСИОМАТИЧЕСКИЙ РАЗУМ

Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

3. АКСИОМАТИЧЕСКИЙ РАЗУМ.... машина мира слишком сложна для человеческого разума X. Л.Борхес. Ад В мире нет ничего более удивительного, чем сознание, разум человека; тем большее удивление вызывает то, что в своей глубинной основе оно обусловлено весьма простыми

12.9. Аксиоматический метод

Из книги Феномен науки. Кибернетический подход к эволюции автора Турчин Валентин Фёдорович

12.9. Аксиоматический метод Для древних греков объекты математики имели реальное существование в «мире идей». Некоторые свойства этих объектов представлялись умственному взору совершенно неоспоримыми и объявлялись аксиомами, другие - неочевидные - следовало

способ построения теории, при котором в ее основу кладутся некоторые исходные положения - аксиомы или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем.

Отличное определение

Неполное определение

Аксиоматический метод

от греч. axioma – принятое положение) – способ построения научной теории, в качестве ее основы априори принимающий положения, из которых все остальные утверждения теории выводятся логическим путем. Полная аксиоматизация теорий невозможна (К.Гедель, 1931).

Отличное определение

Неполное определение ↓

Аксиоматический метод

от греч. axi?ma - принятое положение) - способ построения теории, основанный на принятых (или доказанных ранее) исходных положениях (аксиомах и постулатах), из которых логическим путем, посредством доказательств выводятся остальные знания. Философскую интерпретацию аксиоматический метод как применение дедукции получил в учении Р. Декарта. В той или иной степени аксиоматический метод был использован в различных науках - в философии (Б. Спиноза), социологии (Дж. Вико), биологии (Дж. Вуджер) и др. Однако основной сферой его применения остаются математика и символическая логика, а также ряд областей физики (механика, термодинамика, электродинамика и др.).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения (аксиомы), или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем посредством доказательства. Построение науки на основе аксиоматического метода обычно называют дедуктивным. Этот метод начали использовать при построении геометрии в Древней Греции. Наиболее успешно он реализуется для организации математического знания, где огромный вес в познании принадлежит конструктивно-созидательной деятельности разума. В естествознании, социально-гуманитарных и инженерно-технических науках этот метод занимает подчиненное положение по сравнению с другими когнитивными методами.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ организации научного (в особенности, теоретического) знания, сущность которого состоит в выделении среди всего множества истинных высказываний об определенной предметной области такого его подмножества (аксиом), из которого логически следовали бы все остальные истинные высказывания (теоремы и единичные истинные высказывания). Идеал аксиоматического построения научного знания, начало реализации которого было положено построением геометрии в Древней Греции (VII - IV вв. до н. э.), оказался наиболее подходящим для организации систем математического знания, где огромный вес в познании принадлежит не только эмпирически-абстрагирующей деятельности рассудка, но и конструктивно-созидательной деятельности разума. В естествознании, социально-гуманитарных и инженерно-технических науках аксиоматический метод организации знания занимает подчиненное положение по сравнению с другими формами когнитивной организации. (См. доказательство, дедукция, теория, метод).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения науч. теории, при к-ром в ее основе лежат нек-рые исходные положения (суждения) - аксиомы, или постулаты, из к-рых все остальные утверждения этой науки (теоремы) должны выводиться логич. путем, посредством доказательства. Назначение А.м. состоит в ограничении произвола при принятии науч. суждений в кач-ве истин данной теории. Построение науки на основе А.м. обычно называется дедуктивным (см. Дедукция). Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих (или разъясняющих) их через ранее введенные понятия. В той или иной мере дедуктивные доказательства, характерные для А.м., применяются во мн. науках. Но несмотря на попытки систематич. применения А.м. в философии (Спиноза), социологии (Вико), политэкономии (Родбертус-Ягецов), биологии (Вуджер) и др. науках, гл. обл. его приложения остаются математика и символич. логика, а также нек-рые разделы физики (механика, термодинамика, электродинамика и др.). Одним из первых примеров применения А.м. явл. «Начала» Евклида (около 300 г. до н.э.). Б.Н.Махутов

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.

А. м. - особый способ определения объектов и отношений между ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др.

А. м. зародился еще в античности и приобрел большую известность благодаря "Началам" Евклида, появившимся около 330 - 320 гг. до н. э. Евклиду не удалось, однако, описать в его "аксиомах и постулатах" все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. "Скрытые" допущения геометрии Евклида были выявлены только в новейшее время Д. Гильбертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.

К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д.

A.M. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории.

Как показал известный математик и логик К. Гедель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности A.M. и невозможности полной формализации научного знания (см.: Геделя теорема).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения науч. теории, при к-ром в ее основу кладутся нек-рые исходные положения (суждения) - аксиомы, или постулаты, из к-рых все остальные утверждения этой теории должны выводиться чисто логич. путем, посредством доказательств. Построение науки на основе А. м. обычно наз. дедуктивным (см. Дедукция). Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих их через ранее введенные понятия. В той или иной мере дедуктивные доказательства, характерные для А. м., применяются во мн. науках, однако гл. область его приложения - математика, логика, а также нек-рые разделы физики.

Идея А. м. впервые была высказана в связи с построением геометрии в Др. Греции (Пифагор, Платон, Аристотель, Евклид). Для совр. стадии развития А. м. характерна выдвинутая Гильбертом концепция формального А. м., к-рая ставит задачу точного описания логич. средств вывода теорем из аксиом. Осн. идея Гильберта - полная формализация языка науки, при к-рой ее суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь при нек-рой конкретной интерпретации. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются спец. правила вывода. Доказательство в такой теории (исчислении, или формальной системе) - это нек-рая последовательность формул, каждая из к-рых либо есть аксиома, либо получается из предыдущих формул последовательности по к.-л. правилу вывода. В отличие от таких формальных доказательств, свойства самой формальной системы в целом изучаются содержат. средствами метатеории. Осн. требования, предъявляемые к аксиоматич. формальным системам - непротиворечивость, полнота, независимость аксиом. Гильбертовская программа, предполагавшая возможность доказать непротиворечивость и полноту всей классич. математики, в целом оказалась невыполнимой. В 1931 Геделъ доказал невозможность полной аксиоматизации достаточно развитых науч. теорий (напр., арифметики натуральных чисел), что свидетельствовало об ограниченности А. м. Осн. принципы А. м. были подвергнуты критике сторонниками интуиционизма и конструктивного направления. См. также Формализм в математике и логике, Теория.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без доказательства предложений определенной теории (аксиом); 2) входящие в них понятия явно не определяются в рамках данной теории; 3) фиксируются правила определения и правила вывода данной теории, позволяющие вводить новые термины (понятия) в теорию и логически выводить одни предложения из других; 4) все остальные предложения данной теории (теоремы) выводятся из (1) на основе (3). Первые представления об А. м. возникли в Древн. Греции (Элеаты, Платон. Аристотель, Евклид). В дальнейшем делались попытки аксиоматического изложения различных разделов философии и науки (Спиноза, Ньютон и др) Для этих исследований было характерно содержательное аксиоматическое построение определенной теории (и только ее одной), при этом осн внимание уделялось определению и выбору интуитивно очевидных аксиом Начиная со второй половины 19 в, в связи с интенсивной разработкой проблем обоснования математики и математической логики, аксиоматическую теорию стали рассматривать как формальную (а с 20-30-х гг. 20 в - как формализованную) систему, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, к-рые ей удовлетворяют. При этом осн. внимание стали обращать на установление непротиворечивости системы, ее полноты, независимости системы аксиом и т д В связи с тем что знаковые системы могут рассматриваться или вне зависимости от содержания, к-рое может быть в них представлено, или с его учетом, различаются синтаксические и семантические аксиоматические системы (лишь вторые представляют собой собственно научные знания) Это различение вызвало необходимость формулирования осн. требований, предъявляемых к ним, в двух планах синтаксическом и семантическом (синтаксическая и семантическая непротиворечивость, полнота, независимость аксиом и т д) Анализ формализованных аксиоматических систем привел к установлению их принципиальных ограниченностей, гл из к-рых является доказанная Геделем невозможность полной аксиоматизации достаточно развитых научных теорий (напр, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания Аксиоматизация является лишь одним из методов построения научного знания, но ее использование в качестве средства научного открытия весьма ограниченно. Аксиоматизация осуществляется обычно после того, как содержательно теория уже в достаточной мере построена, и служит целям более точного ее представления, в частности строгого выведения всех следствий из принятых посылок В последние 30-40 лет большое внимание уделяется аксиоматизации не только математических дисциплин, но и определенных разделов физики, биологии, психологии, экономики, лингвистики и др, включая теории структуры и динамики научного знания. При исследовании естественнонаучного (вообще любого нематематического) знания А. м. выступает в форме гипотетико-дедуктивно-го метода (см. также Формализация)

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные ("принципы") и требующие доказательства ("доказываемые"). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат "Начала" Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие "аксиома". Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как "полуаксиоматический") и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики "во всех мирах"; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями. Основания для применения аксиоматического метода могут быть разными, что обычно приводит к различению аксиом не только по их формулировкам, но и по их методологическим (прагматическим) статусам. Например, аксиома может иметь статус утверждения, или статус предположения, или статус лингвистического соглашения о желаемом употреблении терминов. Иногда это различие в статусах отражается в названиях аксиом (в современных аксиоматиках для эмпирических теорий среди всех аксиом выделяют часто т. и. постулаты значения, выражающие лингвистические соглашения, а древние греки делили геометрические аксиомы на общие понятия и постулаты, полагая, что первые описывают, вторые строят). Вообще говоря, учет статусов аксиом обязателен, так как можно, например, изменить содержание аксиоматической теории, не изменив при этом ни формулировку, ни семантику аксиом, а поменяв лишь их статус, объявив, скажем, одну из них новым постулатом значения. Аксиоматический метод был впервые продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы, постулата и определения рассматривались уже Аристотелем. В частности, к нему восходит толкование аксиом как необходимых общих начал доказательства. Понимание аксиом как истин самоочевидных сложилось позднее, став основным с появлением школьной логики Пор-Рояяя, для авторов которой очевидность означает особую способность души осознавать некоторые истины непосредственно (в чистом созерцании, или интуиции). Между прочим, убеждение Канта в априорном синтетическом характере геометрии Евклида зависит от этой традиции не считать аксиомы лингвистическими соглашениями или предположениями. Открытие неевклидовой геометрии (Гаусс, Лобачевский, Бойяи); появление в абстрактной алгебре новых числовых систем, причем сразу целых их семейств (напр., /»-адические числа); появление переменных структур вроде групп; наконец, обсуждение вопросов типа «какая геометрия истинна?» - все это способствовало осознанию двух новых, по сравнению с античным, статусов аксиом: аксиом как описаний (классов возможных универсумов рассуждений) и аксиом как предположений, а не самоочевидных утверждений. Так сформировались основы современного понимания аксиоматического метода. Это развитие аксиоматического метода становится особенно наглядным при сопоставлении «Начал» Евклида с «Основаниями геометрии» Д. Гильберта-новой аксиоматики геометрии, базирующейся на высших достижениях математики 19 в. К концу того же века Дж. Пеано дал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс -логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. В последние десятилетия по мере развития моделей теории аксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.

Отличное определение

Неполное определение ↓

аксиоматический метод

АКСИОМАТИЧЕСКИЙ МЕТОД (от греч. axioma) - принятое положение - способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями. Впервые ярко продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы и постулата упоминаются уже Аристотелем. У древних греков аксиомой называлось ясно сформулированное положение, настолько самоочевидное, что его не доказывают и кладут в основу других доказательств. Постулат - утверждение о возможности выполнить некоторое построение. Поэтому «Целое больше части» - аксиома, а «Из данной точки данным радиусом можно описать окружность» - постулат. В дальнейшем понятие аксиомы поглотило понятие постулата, поскольку не были осознаны понятия дескриптивности и конструктивности (аксиома описывает, постулат строит). Почти все аксиомы эллинской геометрии были сформулированы настолько четко и удачно, что не вызывали сомнений. Однако одно из положений Евклида, а именно пятый постулат, эквивалентный утверждению «Через точку, лежащую вне прямой, можно провести прямую, параллельную данной, и притом только одну», с самого начала вызывало сомнения. Более того, до Евклида эллины исследовали все три возможные гипотезы: 1) нельзя провести ни одной параллельной прямой, 2) можно провести больше одной и 3) можно провести лишь одну параллельную прямую; но Евклид осознанно выбрал одну формулировку, поскольку лишь в таком случае существовал квадрат и понятие подобия фигур. В дальнейшем наличие альтернатив было забыто, и пятый постулат неоднократно пытались доказать. Вплоть до 17 в. А. м. мало развивался. Евклид и Архимед сформулировали аксиомы статики и оптики, а в дальнейшем, в связи с общей тенденцией к комментаторству и канонизации, исследования перелагали, либо, в лучшем случае, анализировали старые системы аксиом. Неудивительно, что новая математика начала с отказа от А. м., и анализ бесконечно малых развивался как неформализованная теория. Была понята сомнительность аксиомы «Целое меньше части», поскольку Николай Кузанский и вслед за ним Галилей показали, что для бесконечных совокупностей целое может быть изоморфно части. Но это открытие было недооценено, потому что слишком хорошо согласовывалось с христианской религией (с концепциями различных ипостасей бесконечного Бога). Далее, неудача Спинозы в попытках вывести геометрическим, чисто рассудочным методом систему этики и метафизики показала неприменимость существующего А. м. к гуманитарным понятиям. Возвращение к А. м. произошло в 19 в. Оно базировалось на двух открытиях - неевклидовой геометрии (переоткрывшей то, что было известно до Евклида, но потом напрочь забыто), и абстрактной алгебре. В неевклидовой геометрии (Г а у с с, Лобачевский, Бойяи) было показано, что одно из отрицаний пятого постулата - а именно то, что через точку, лежащую вне прямой, можно провести две прямые, параллельные данной - совместимо с остальными аксиомами геометрии. Таким образом, те аксиомы и постулаты, которые создавались, чтобы описать «единственно истинное» пространство, на самом деле описывают целый класс различных пространств. В абстрактной алгебре появились новые числовые системы, причем сразу целые их семейства (напр., р-адические числа) и переменные структуры типа групп. Свойства переменных структур естественно было описывать при помощи аксиом, но теперь уже никто не настаивал на их самоочевидности, а рассматривали их просто как способ описания класса математических объектов. Напр., полугруппа определяется единственной аксиомой - ассоциативности умножения: а° (Ь о с) = (а о Ь) о С. В самой геометрии наступил черед критического переосмысления классических аксиом. Э. Паш показал, что Евклид не усмотрел еще один постулат, столь же интуитивно очевидный, как и описанные им: «Если прямая пересекает одну из сторон треугольника, то она пересечет и другую». Далее было показано, что один из признаков равенства треугольников нужно принять в качестве аксиомы, иначе теряется строгость доказательств, поскольку из остальных аксиом не следует возможность перемещения фигур. Была отброшена аксиома «Целое меньше части», как не имеющая смысла с точки зрения новой математики, и заменена на несколько положений о соотношении мер фигур. И, наконец, Д. Гильберт сформулировал новую аксиоматику геометрии, базирующуюся на высших достижениях математики 19 в. В эллинские времена и позже понятие числа не описывалось аксиоматически. Только в конце 19 в. Дж. Пеано (Италия) дал аксиоматику натуральных чисел. Аксиоматики Пеано и Гильберта содержат по одному принципу высшего порядка, говорящему не о фиксированных понятиях, а о произвольных понятиях либо совокупностях. Напр., в арифметике - это принцип математической индукции. Без принципов высших порядков однозначное описание стандартных математических структур невозможно. А. м. был использован для спасения теории множеств после нахождения связанных с нею парадоксов. Спасение само по себе производилось не лучшим способом - латанием парадигмы. Те из принципов теории множеств, которые казались не приводящими к парадоксам и обеспечивали необходимые для математики построения, были приняты в качестве аксиом. Но при этом А. м. был обобщен на логику. Д. Гильберт явно сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс - логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. Современный А. м. отличается от традиционного тем, что явно задаются не только аксиомы, но и язык, а в логике - еще и правила вывода описываемой теории либо системы. Пересмотренный и усиленный А. м. стал мощным оружием в таких новых областях знания, как когнитивная наука и математическая лингвистика. Он позволяет низводить семантические проблемы на уровень синтаксических и тем самым помогать их решению. В последние десятилетия по мере развития теории моделей А. м. стал в обязательном порядке дополняться теоретико-модельным. Формулируя аксиоматическую систему, нужно описать и совокупность ее моделей. Минимально необходимым обоснованием системы аксиом служит ее корректность и полнота на заданном классе моделей. Но для применений недостаточно такого формального обоснования - нужно также показать содержательный смысл построенной системы и ее выразительные возможности. Основным математическим ограничением А. м. служит то, что логика высших порядков неформализуема и неполна, а без нее описать стандартные математические структуры нельзя. Поэтому в тех областях, где есть конкретные числовые оценки, А. м. не может быть применен к полному математическому языку. В таких областях возможна лишь неполная и непоследовательная, так называемая частичная либо содержательная, аксиоматизация. Неформализуемость понятий сама по себе, как ни странно, не препятствует применению А. м. к данным понятиям. Все равно при работе в фиксированной обстановке есть смысл переходить к гораздо более эффективным формальным моделям. В данном случае положительной чертой формализмов часто может являться их несоответствие реальной ситуации. Формализмы не могут полностью соответствовать содержанию понятий, но если эти несоответствия спрятаны, то формализмами часто продолжают пользоваться и после того, как обстановка перестала быть подходящей для их применения, и даже в ситуации, с самого начала не подходящей для их использования. Подобные опасности существуют и для частичных формализации. Я Н. Непейвода

Отличное определение

Неполное определение ↓

Аксиоматический метод – способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, которые называют аксиомами теории, а все остальные положения теории вытекают как логические следствия аксиом. Большинство направлений современной математики, теоретическая механика, ряд разделов физики построены на основе аксиоматического метода. В математике аксиоматический метод дает возможность создания законченных, логичнозавершиних научных теорий. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, часто находит применение в других науках.
В математике аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом его применения вплоть до XIX в. была геометрическая система, известная под названием «Начала» Евклида (ок. 300 до н.э.). Хотя в то время не стоял еще вопрос об описании логических средств, применяемых для получения содержательных последствий из аксиом, в системе Евклида уже достаточно четко прослеживается идея получения всего основного содержания геометрической теории чисто дедуктивным путем, с определенного, относительно небольшого, числа утверждений – аксиом, истинность которых представлялась наглядно очевидной.
Открытие в начале XIX в. неевклидовой геометрии Н. И. Лобачевским и Я. Бойяи стало толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный и, казалось бы, единственно «объективно истинный» V постулат Евклида о параллельных прямых его отрицанием, можно развивать чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков XIX в. обратить особое внимание на дедуктивный способ построения математических теорий, что привело к возникновению связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла так называемая теория доказательств как основной раздел современной математической логики.
Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в XIX в. Уточнение основных понятий анализа и сведения сложных понятий к простейшему на точной и логически все более прочной основе, а также открытие неевклидовых геометрий стимулировали развитие аксиоматического метода и возникновения проблем общего математического характера, таких, как непротиворечивость, полнота и независимость той или системы аксиом.
Первые результаты в этой области принес метод интерпретаций, который может быть описан следующим образом. Пусть каждому выходному понятию и соотношению данной аксиоматической теории Т поставлен в соответствие определенный конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению U теории Т естественным образом ставится в соответствие определенное высказывание U * об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждения U теории Т соответствии истинное или ложное в данной интерпретации. Поле интерпретации и его свойства обычно сами являются объектом рассмотрения определенной математической теории T 1, которая, в частности, может быть тоже аксиоматической.
Метод интерпретаций позволяет устанавливать факт относительной непротиворечивости, то есть доказать утверждения типа: «если теория T 1 непротиворечива, то непротиворечивая и теория Т». Пусть теория Т проинтерпретированы в теории T 1 таким образом, что все аксиомы А и теории Т интерпретируются истинными утверждениями А и * теории Т 1. Тогда всякая теорема теории Т, то есть всякое утверждение А, логически выведено из аксиом А и в Т, интерпретируется в T 1 определенным утверждением А *, которое можно вывести в Т из интерпретаций А * и аксиом А и, и следовательно истинным. Последнее утверждение опирается на еще одно предположение, что делается неявно нами, определенного сходства логических средств, применяемых в теориях Т и Т 1. Практически это условие обычно выполняется. Пусть теперь теория Т противоречива, то есть некое утверждение А этой теории выведено в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждение А * и «не А *» будут одновременно истинными утверждениями теории Т 1, т.е. теория Т 1 противоречива. Этим методом была, например, доказано (Ф. Клейн, А. Пуанкаре) непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечивая геометрия Евклида, а вопрос о непротиворечивость гильбертово аксиоматизациы евклидовой геометрии был возведен (Д. Гильберт) к проблеме непротиворечивости арифметики.
Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома А теории Т не виводима из других аксиом этой теории и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в которой аксиома А была бы ошибочна, а все остальные аксиомы данной теории истинны. Вышеупомянутое возведения проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней – к вопросу о непротиворечивость арифметики имеет своим следствием утверждение, что V постулат Евклида не виводимий из других аксиом геометрии, если только непротиворечивой является арифметика натуральных чисел.
Слабая сторона метода интерпретаций заключается в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать только результаты, носят относительный характер. Важным достижением этого метода стал тот факт, что с его помощью была обнаружена особая роль арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.
Дальнейшее развитие – в известном смысле это была вершина – аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было произведено дальнейшее уточнение понятия аксиоматической теории, а само понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. При этом привлекательной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Всякая формальная система строится как точно очерченное класс выражений формул, в котором определенным точным образом выделяется подкласс формул, называют теоремами данной формальной системы. При этом формулы формальной системы сами не несут в себе никакой смысловой смысла, их можно строить по произвольным знаков или элементарных символов, руководствуясь только соображениями технической удобства. На самом деле способ построения формул и понятия теоремы той или формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для как можно более адекватного и полного выражения той или конкретной математической (или не математической) теории, точнее, как ее фактического содержания, так и ее дедуктивной структуры. Всякую конкретную математическую теорию Т можно перевести на язык пригодной формальной системы S таким образом, что каждое осмысленное (ложное или истинное) выражения теории Т выражается известной формулой системы S.
Естественно ожидать, что метод формализации позволит строить весь положительный смысл математических теорий на такой точной и, казалось бы, надежной основе, как понятие выведенной формулы (теоремы формальной системы), а принципиальные вопросы типа проблемы непротиворечивости математических теорий решать форме доказательств соответствующих утверждений формальных систем, которые формализуют эти теории. Чтобы получить доказательства утверждений о непротиворечивость, не зависящих от тех мощных средств, которые в классических математических теориях раз и является причиной осложнений их обоснования, Д. Гильберт предлагал исследовать формальные системы т.н. финитными методами (см. метаматематики).
Однако результаты К. Геделя начале 30-х г. XX в. привели к краху основных надежд, что связывались с этой программой. К. Гедель показал следующее.
1) Всякая естественная, непротиворечивая формализация S арифметики или любой другой математической теории, содержащей арифметику (напр., теории множеств), неполная и непополняемые в том смысле, что: а) в S содержатся (содержательно истинные неразрешимые формулы, есть такие формулы А, ни А, ни отрицания А не виводими в S (неполнота формализованной арифметикы), б) какой бы конечным множеством дополнительных аксиом (напр., неразрешимыми в S формулам) расширять систему S, в новой, усиленной таким образом формальной системе неизбежно появятся свои неразрешимые формулы (непоповнюванисть; см. также Геделя теорема о неполноте).
2) Если формализованная арифметика действительности непротиворечива, то, хотя утверждение о ее непротиворечивость может быть выражено ее собственным языком, доведение этого утверждения невозможно провести средствами, формализуются в ней самой.
Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом виводимих формул какой бы формальной системой и что нет никакой надежды получить какое-либо финитных доведение непротиворечивости арифметики, потому что, очевидно, всякое разумное уточнение понятия финитного доведение оказывается формализуемим в формальной арифметике.
Все это ставит определенные границы можливстям А. м. в том его виде, который он приобрел в рамках гильбертовського формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основании математики. Так, например, уже после описанных результатов К. Геделя им же в 1938-40 гг, а затем П. Коэном в 1963 г. на основе аксиоматического подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости (т.е. относительную непротиворечивость) и независимость аксиомы выбора и континуум-гипотезы в теории множеств. Что касается такого основного вопроса основ математики, как проблема непротиворечивости, и после результатов К. Геделя стало ясно, что для его решения, очевидно, не обойтись без других, отличных от финитистських, средств и идей. Здесь оказались возможными различные подходы, учитывая существование различных взглядов на допустимость тех или иных логических средств.
Из результатов о непротиворечивость формальных систем следует указать на доведение непротиворечивости формализованной арифметики, опирающегося на бесконечную индукцию к определенному счетно трансфинитной числа.
По П. С. Новиковым.

(греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются...

(греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные (“принципы”) и требующие доказательства (“доказываемые”). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат “Начала” Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие “аксиома”. Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как “полуаксиоматический”) и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики “во всех мирах”; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

В.Л. Абушенко

Аксиоматический Метод

Один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без...

Один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без доказательства предложений определенной теории (аксиом); 2) входящие в них понятия явно не определяются в рамках данной теории; 3) фиксируются правила определения и правила вывода данной теории, позволяющие вводить новые термины (понятия) в теорию и логически выводить одни предложения из других; 4) все остальные предложения данной теории (теоремы) выводятся из (1) на основе (3). Первые представления об А. м. возникли в Древн. Греции (Элеаты, Платон. Аристотель, Евклид). В дальнейшем делались попытки аксиоматического изложения различных разделов философии и науки (Спиноза, Ньютон и др) Для этих исследований было характерно содержательное аксиоматическое построение определенной теории (и только ее одной), при этом осн внимание уделялось определению и выбору интуитивно очевидных аксиом Начиная со второй половины 19 в, в связи с интенсивной разработкой проблем обоснования математики и математической логики, аксиоматическую теорию стали рассматривать как формальную (а с 20-30-х гг. 20 в - как формализованную) систему, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, к-рые ей удовлетворяют. При этом осн. внимание стали обращать на установление непротиворечивости системы, ее полноты, независимости системы аксиом и т д В связи с тем что знаковые системы могут рассматриваться или вне зависимости от содержания, к-рое может быть в них представлено, или с его учетом, различаются синтаксические и семантические аксиоматические системы (лишь вторые представляют собой собственно научные знания) Это различение вызвало необходимость формулирования осн. требований, предъявляемых к ним, в двух планах синтаксическом и семантическом (синтаксическая и семантическая непротиворечивость, полнота, независимость аксиом и т д) Анализ формализованных аксиоматических систем привел к установлению их принципиальных ограниченностей, гл из к-рых является доказанная Гёделем невозможность полной аксиоматизации достаточно развитых научных теорий (напр, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания Аксиоматизация является лишь одним из методов построения научного знания, но ее использование в качестве средства научного открытия весьма ограниченно. Аксиоматизация осуществляется обычно после того, как содержательно теория уже в достаточной мере построена, и служит целям более точного ее представления, в частности строгого выведения всех следствий из принятых посылок В последние 30-40 лет большое внимание уделяется аксиоматизации не только математических дисциплин, но и определенных разделов физики, биологии, психологии, экономики, лингвистики и др, включая теории структуры и динамики научного знания. При исследовании естественнонаучного (вообще любого нематематического) знания А. м. выступает в форме гипотетико-дедуктивно-го метода (см. также Формализация)

Аксиоматический Метод

Способ построения теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы или постулаты,...

Способ построения теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем.

Аксиоматический Метод

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные...

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.

А. м. – особый способ определения объектов и отношений между ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др. А. м. зародился еще в античности и приобрел большую известность благодаря “Началам” Евклида, появившимся около 330 – 320 гг. до н. э. Евклиду не удалось, однако, описать в его “аксиомах и постулатах” все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. “Скрытые” допущения геометрии Евклида были выявлены только в новейшее время Д. Гильбертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.

К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д.

A.M. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории.

Как показал известный математик и логик К. Гёдель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности A.M. и невозможности полной формализации научного знания (см.: Гёделя теорема).



Понравилась статья? Поделитесь с друзьями!