Делимость целых чисел и остатки. Число и сумма натуральных делителей натурального числа

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)

Число и сумма натуральных делителей натурального числа
Основная теорема арифметики. Всякое натуральное число п > 1 либо просто, либо может быть представлено, и притом единственным образом - с точностью до порядка следования сомножителей, в виде произведения простых чисел (можно считать, что любое натуральное число, большее 1, можно представить в виде произведения простых чисел, если считать, что это произведение может содержать всего лишь один множитель).
Среди простых сомножителей, присутствующих в разложении `n = p1*p2*...*pk`, могут быть и одинаковые. Например, `24=2*2*2*3`. Их можно объединить, воспользовавшись операцией возведения в степень. Кроме того, простые сомножители можно упорядочить по величине. В результате получается разложение
`n = p_1^(alpha_1)*p_2^(alpha_2)*.......*p_k^(alpha_k)`, где `alpha_1, alpha_2, ......, alpha_k in NN`
(1)
Такое представление числа называется каноническим разложением его на простые сомножители. Например, каноническое представление числа 2 520 имеет вид 2 520 = 2 3 З 2 5 7.
Из канонического разложения числа легко можно вывести следующую лемму: Если n имеет вид (1), то, то все делители этого числа имеют вид:
`d = p_1^(beta_1)*p_2^(beta_2)*......*p_k^(beta^k)`, где `0 <= beta_m <= alpha_m` (`m = 1,2,..., k`)
(2)
В самом деле, очевидно, что всякое d вида (2) делит а. Обратно, пусть d делит а, тогда a=cd, где с - некоторое натуральное число и, следовательно, все простые делители числа d входят в каноническое разложение числа а с показателями, не превышающими соответствующих показателей числа а.
Рассмотрим две функции, заданные на множестве натуральных чисел:
а) τ(n) - число всех натуральных делителей n;
2) σ(n) сумма всех натуральных делителей числа n.
Пусть n имеет каноническое разложение (1). Выведем формулы для числа и суммы его его натуральных делителей.
Теорема 1. Число натуральных делителей числа n
`tau(n) = (alpha_1 + 1)*(alpha_2 + 1)*.....*(alpha_k + 1);`
(3)
Доказательство.

Пример. Число 2 520 = 2 3 З 2 5 7. имеет (3+1)(2+1)(1+1)(1+1) = 48 делителей.
Теорема 2. Пусть n имеет каноническое разложение (1). Тогда сумма натуральных делителей числа n равна
`sigma(n) = (1 + p_1 + p_1^2 + ..... + p_1^(alpha_1))*(1 + p_2 + p_2^2 + ..... + p_2^(alpha_2))* ..............* (1 + p_k + p_k^2 + .....+ p_k^(alpha_k));`
(4)
Доказательство.

Пример. Найти сумму всех делителей числа 90.
90=2 З 2 5. Тогда σ(90)=[(2 2 -1)/(2-1)] [З 3 -1)/(3-1)] [(5 2 -1)/(5-1)]=234
Формула (4) может помочь найти все делители числа.Так, например, чтобы найти все делители числа 90, раскроем скобки в следующем произведении (не производя операцию сложения): (1+2)(1+3+З 2)(1+5)=(1+1*3+1*З 2 +1*2+2*3+2*З 2)(1+5) = 1+3+З 2 +2+2*3+2*З 2 + 5+3*5+З 2 *5+2*5+2*3*5+2*З 2 *5 = 1+3+9+2+6+18+5+15+45+10+30+90 - слагаемыми являются делители числа 90.
Решим несколько задач на тему "Число и сумма натуральных делителей натурального числа"
Задание 1. Найдите натуральное число, зная, что оно имеет только два простых делителя, что число всех делителей равно 6, а сумма всех делителей - 28.

Задания из сборника TTZ - ЕГЭ 2010. Математика. Типовые тестовые задания
Задание 2. TTZ.С6.2 Найдите все натуральные числа, которые делятся на 42 и имеют ровно 42 различных натуральных делителя (включая единицу и само число).

Задание 3. TTZ.С6.9 Найдите все натуральные числа, последняя десятичная цифра которых 0 и которые имеют ровно 15 различных натуральных делителей(включая единицу и само число).

Задание 4. SPI.С6.9. У натурального числа n ровно 6 делителей. Сумма этих делителей равна 3500. Найти n.
Решение VEk :

Задания для самостоятельной работы
SR1 . Найти все числа, имеющие ровно 2 простых делителя, всего 8 делителей, сумма которых равна 60.
SR2. Найти натуральные числа, которые делятся на 3 и на 4 и имеют ровно 21 натуральный делитель.
SR3. Найти наименьшее натуральное число, имеющее ровно 18 натуральных делителей.
SR4. Найти наименьшее число, кратное 5, имеющее 18 натуральных делителей.
SR5. Некоторое натуральное число имеет два простых делителя. Его квадрат имеет всего 15 делителей. Сколько делителей имеет куб этого числа?
SR6. Некоторое натуральное число имеет два простых делителя. Его квадрат имеет всего 81 делитель. Сколько делителей имеет куб этого числа?
SR7. Найти число вида m = 2 x 3 y 5 z , зная, что половина его имеет на 30 делителей меньше, треть -на 35 и пятая часть - на 42 делителя меньше, чем само число.

Инструкция

Чаще всего, нужно разложить число на простые множители. Это числа, которые делят исходное число без остатка, и при этом сами могут делиться без остатка только на само себя и единицу (к таким числам 2, 3, 5, 7, 11, 13, 17 и т.д.). Причем, закономерности в ряду не найдено. Возьмите их из специальной таблицы или найдите при помощи алгоритма, который называется «решето Эратосфена».

Числа, имеющие более двух делителей, называются составными. Какие же числа могут быть составными?
Так как числа делятся на 2 нацело, то все четные числа , кроме числа 2, будут составными. Действительно, при делении 2:2 двойка делится саму на себя, то есть имеет только два делителя (1 и 2) и является простым числом.

Посмотрим, есть ли у четного числа еще каки-либо делители . Разделим его сначала на 2. Из коммутативности операции умножения очевидно, что получившееся частное также будет делителем числа . Затем, если получившееся частное будет целым, разделим опять на 2 уже это частное. Тогда получившееся в результате новое частное y = (x:2):2 = x:4 тоже будет делителем исходного числа . Аналогично, и 4 будет делителем исходного числа .

Продолжая эту цепочку, обобщим правило: последовательно делим сначала а потом получившееся частные на 2 до тех пор, пока -либо частное не станет равно нечетному числу. При этом все получившиеся частные будут делителями этого числа . Кроме этого делителями этого числа будут и числа 2^k где k = 1...n, где n - число шагов этой цепочки.Пример: 24:2 = 12, 12:2 = 6, 6:2 = 3 - нечетное число. Следовательно, 12, 6 и 3 - делители числа 24. В этой цепочке 3 шага, следовательно, делителями числа 24 будут также числа 2^1 = 2 (уже известно из четности числа 24), 2^2 = 4 и 2^3 = 8. Таким образом, числа 1, 2, 3, 4, 6, 8, 12 и 24 будут делителями числа 24.

Однако не для всех четных чисел эта может дать все делители числа . Рассмотрим, например, число 42. 42:2 = 21. Однако, как известно, числа 3, 6 и 7 также будут делителями числа 42.
Существуют делимости на числа . Рассмотрим важнейшие из них:
Признак делимости на 3: когда сумма цифр числа делится на 3 без остатка.
Признак делимости на 5: когда последняя цифра числа 5 или 0.
Признак делимости на 7: когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.
Признак делимости на 9: когда сумма цифр числа делится на 9 без остатка.
Признак делимости на 11: когда сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо от неё на число, делящееся на 11.
Существуют также признаки делимости на 13, 17, 19, 23 и другие числа .

Как для четных, так и для нечетных чисел нужно использовать признаки деления на то или иное число. Разделив число, следует определить делители получившегося частного и.т.д. (цепочка аналогична цепочки четных чисел при делении их на 2, описанной выше).

Источники:

  • Признаки делимости

Из четырех основных математических действий наиболее ресурсоемкой операцией является деление. Его можно осуществлять вручную (столбиком), на калькуляторах различных конструкций, а также при помощи логарифмической линейки.

Инструкция

Чтобы поделить одно число на другое столбиком, запишите вначале делимое, затем делитель. Между ними расположите вертикальную линию. Под делителем проведите горизонтальную линию. Последовательно как бы удаляя у младшие разряды, получите число, которое больше делителя. Последовательно умножая цифры от 0 до 9 на делитель, найдите наибольшее из чисел , меньших полученного на предыдущем этапе. Запишите эту цифру как первый разряд частного. Результат умножения этой цифры на делитель запишите под делимым со сдвигом на один разряд вправо. Произведите вычитание, а с его результатом осуществите те же действия, пока не найдете все разряды частного. Расположение запятой определите, вычтя порядок делителя из порядка делимого.

Если числа не делятся друг на друга, возможны две ситуации. В первой из них одна цифра или сочетание из нескольких цифр будет повторяться бесконечно. Тогда продолжать вычисление бессмысленно - достаточно взять эту цифру или цепочку из цифр в период. Во второй ситуации какой-либо закономерности в частного не удастся. Тогда прекратите деление, добившись желаемой точности результата, а последний округлите.

Для деления одного числа на другое с использованием калькулятора с арифметической (как простейшего, так и инженерного) нажмите кнопку сброса, введите делимое, нажмите кнопку деления, введите делитель, а затем нажмите кнопку со знаком равенства. На калькуляторе с формульной записью производите деление аналогичным образом, с учетом того, что клавиша со знаком равенства может носить , например, Enter или Exe. Современные приборы этого типа являются двухстрочными: набирается в верхней строке, а результат отображается в нижней более крупными цифрами. Используя клавишу Ans, этот результат можно использовать в следующем вычислении. Во всех случаях результат автоматически округляется в пределах разрядной сетки калькулятора.

На калькуляторе с обратной польской записью вначале нажмите кнопку сброса, затем введите делимое и нажмите клавишу Enter (вместо этой надписи на ней может быть стрелка, направленная вверх). Число окажется в ячейке стека. Теперь введите делитель и нажмите клавишу со знаком деления. Произойдет деление числа из стека на число, которое отображалось до этого на индикаторе.

Логарифмическую линейку используйте в тех случаях, когда точность требуется небольшая. Уберите из обоих чисел , а затем от каждого из них возьмите по два старших разряда. На шкале A найдите делитель, а затем совместите его с делимым на шкале B. Затем найдите на последней единицу - прямо над ней на шкале A будет расположено частное . Местоположение запятой в нем определите тем же способом, что и столбиком.

Источники:

  • Порядок деления столбиком
  • частные числа это

Школьники часто встречают среди заданий по математике такую формулировку: "найдите наименьшее общее кратное чисел". Этому обязательно нужно научиться делать, чтобы выполнять различные действия с дробями с неодинаковыми знаменателями.

Нахождение наименьшего общего кратного: основные понятия

Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина "кратное".


Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.


Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.


Общее кратное натуральных чисел - число, которое делится на них без остатка.


Наименьшее общее кратное (НОК) чисел (двух, трех или больше) - это самое маленькое натурально число, которое делится на все эти числа нацело.


Чтобы найти НОК, можно использовать несколько способов.


Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.


Например, кратные числа 4 можно записать так:


К (4) = {8,12, 16, 20, 24, ...}


К (6) = {12, 18, 24, ...}


Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:


НОК (4, 6) = 24


Наибольший общий делитель - это максимальное число, на которое может делиться каждое из предлагаемых чисел. Часто этот термин используется для сокращения сложных дробей, где и числитель и знаменатель надо разделить на одинаковое число. Иногда можно определить наибольший общий делитель на глаз, однако в большинстве случаев, что того, чтобы его найти потребуется провести ряд математических операций.

Вам понадобится

  • Для этого вам понадобится листок бумаги или калькулятор.

Инструкция

Разложите каждое сложное число на произведение простых или множителей. Например, 60 и 80, где 60 - равно 2*2*3*5, а 80 - 2*2*2*2*5, проще это можно записать с помощью . В данном случае будет выглядеть как два во второй , умноженное на пять и три, а второй - произведение двух в четвертой и пяти.

Теперь выпишите общие для обоих чисел . В нашем варианте - это два и пять. Однако в других случаях это число может быть одно, два или три цифры и даже . Далее нужно поработать . Выберите наименьшую у каждого из множителей. В примере это два во второй степени и пять в первой.

В завершении просто нужно перемножить получившиеся цифры. В нашем случае все предельно просто: два в , умноженное на пять, равно 20. Таким образом, число 20 можно назвать наибольшим общим делителем для 60 и 80.

Видео по теме

Обратите внимание

Помните, что простым множителем является число, которое имеет только 2 делителя: единица и само это число.

Полезный совет

Кроме данного метода можно также пользоваться алгоритмом Евклида. Полное его описание, представленное в геометрической форме, можно найти в книге Евклида "Начала".

Связанная статья

Нередко можно встретить такие уравнения, в которых неизвестен . Например 350: Х = 50, где 350 - делимое, Х - делитель, а 50 - частное. Для решения этих примеров необходимо произвести определенный набор действий с теми числами, которые известны.

Вам понадобится

  • - карандаш или ручка;
  • - лист бумаги или тетрадь.

Инструкция

Составьте простое уравнение, где неизвестное, т.е. Х - это количество детей, 5 - это число конфет, полученных каждым ребенком, а 30 - это количество сладостей, которое было куплено. Таким образом вы должны получить : 30: Х = 5. В этом математическом выражении 30 называется делимым, Х - делителем, а получившееся частное равно 5.

Теперь приступайте к решению. Известно: чтобы найти делитель, нужно делимое разделить на частное. Получается:Х = 30: 5;30: 5 = 6;Х = 6.

Сделайте проверку, подставив в уравнение получившееся число. Итак, 30: Х = 5, вы нашли неизвестный делитель, т.е. Х = 6, таким образом: 30: 6 = 5. Выражение верно, а из этого следует, что уравнение решено . Разумеется, при решении примеров, в которых фигурируют простые числа, проверку выполнять необязательно. Но когда уравнения из , трехзначных, четырехзначных и т.д. чисел, обязательно проверяйте себя. Ведь это не отнимает много времени, но дает абсолютную уверенность в полученном результате.

Обратите внимание

АРИФМЕТИКА

Арифметика – царица математики, и подходящие задачи здесь найдёт для себя каждый – от первоклассника до академика.

Замечательные числа

Назовем натуральное число «замечательным», если оно самое маленькое среди всех натуральных чисел с такой же суммой цифр. Например, число 1 замечательное, потому что оно самое маленькое из чисел 1, 10, 100, 1000 и так далее. 1 – это первое замечательное число. Найдите второе замечательное число. Опишите все числа, у которых сумма цифр такая же. То же для третьего, десятого, 2010-го замечательного числа.

Найдите самое большое двузначное замечательное число. Какой у него номер?

Прямоугольники с заданной площадью

На клетчатой бумаге нарисуйте все прямоугольники, у которых площадь равна 24 клеткам. (Стороны должны идти по границам клеток.) Сколько получится таких прямоугольников?

Для каких площадей бывает только один прямоугольник? Для каких – два разных прямоугольника? Три разных прямоугольника? Как зависит количество вариантов от площади?

Найдите из всех прямоугольников с одинаковой площадью тот, у которого периметр наименьший.

Разложение числа

Число 15 можно тремя способами представить в виде суммы последовательных натуральных чисел: 15 = 7 + 8 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5. А сколько таких способов для числа 115? Как найти количество способов для произвольного числа?

Суперкомпьютер

Суперкомпьютер умеет выполнять только одну операцию- операцию смешивания двух чисел: из чисел m, n компьютер получает число (m+n) /2. Если m+n – нечетное, то компьютер зависает. Все полученные числа хранятся в памяти. Пусть нам даны три числа, одно из которых ноль, а два другие натуральные и не равны друг другу. Для каких чисел m и n на суперкомпьютере можно получить единицу?

Диагонали прямоугольников

На листе бумаги в клеточку обвели прямоугольник размером 199 х 991 клеток. Через сколько узлов (т.е. вершин клеточек) проходит диагональ? Сколько клеток пересекает диагональ этого прямоугольника? Попробуйте дать ответ для произвольного размера прямоугольника – размером M x N клеток.

Примечание . Диагональ пересекает клетку, если она заходит «внутрь» этой клетки, а не просто проходит через вершину.

Задача о размене

Какие суммы можно уплатить монетами по 3 и 5 рублей? Обобщение: какие числа выражаются комбинацией ax+by, где a и b – данные натуральные числа, x и y – произвольные целые неотрицательные числа.

7. Скла дные квадраты

Скла дные числа – это числа, квадрат которых оканчивается на это же число. Например:

5 2 =25 ; 6 2 =36 ; 25 2 = 625 .

«Пятью пять – двадцать пять », «шестью шесть – тридцать шесть ».


Найдите как можно больше складных чисел; найдите способ нахождения всех таких чисел.

Поиск чисел с заданным количеством делителей

Есть только одно число, имеющее ровно один делитель, - это единица. Ровно два делителя имеют все простые числа. Ровно три делителя имеют, например, числа 4 и 9, являющиеся квадратами простых чисел. Все ли числа, имеющие ровно три делителя, обладают этим свойством? Каким может быть вид числа, имеющего ровно 4 делителя? 5 делителей? Для данного натурального числа N опишите все натуральные числа, имеющие ровно N делителей.

Разложения дробей

, , , …

Для числа 1/7 разложение в десятичную дробь периодично и состоит из шести цифр, а для 2/7, 3/7, …, 6/7 - из тех же шести цифр в другом порядке (проверьте!). А вот для числа 1/13 и 2/13 наборы цифр разные. Исследуйте разложения этих чисел и чисел вида 1/p, 2/p, …, (p-1)/p, для p = 17, 19, 41, 47 и другим простым числам, и разберитесь, какие бывают циклы.

В разнообразных задачах про целые числа используются основные понятия и теоремы, связанные с делимостью. Приведём некоторые из них.


Задачи с решениями

1. Сколько существует натуральных чисел, меньших 1000, которые не делятся ни на 5, ни на 7?

Вычёркиваем из 999 чисел, меньших 1000, числа, кратные 5: их =199. Далее вычёркиваем числа, кратные 7: их =142. Но среди чисел, кратных 7, имеется =28 чисел, одновременно кратных 5; они будут вычеркнуты дважды. Итого, нами должно быть вычеркнуто 199+142–28=313 чисел. Остаётся 999–313=686.

Ответ: 686 чисел.

2. Номер автобусного билета – шестизначное число. Билет называется счастливым, если сумма трёх первых цифр номера равна сумме последних трёх цифр. Докажите, что сумма всех номеров счастливых билетов делится на 13.

Если счастливый билет имеет номер А, то билет с номером В=999999–А также счастливый, при этом А и В различны. Поскольку А+В=999999=1001·999=13·77·99 делится на 13, то и сумма номеров всех счастливых билетов делится на 13.

3. Докажите, что сумма квадратов трёх целых чисел не может при делении на 8 дать в остатке 7.

Любое целое число при делении на 8 имеет остатком одно из следующих восьми чисел 0, 1, 2, 3, 4, 5, 6, 7, поэтому квадрат целого числа имеет остатком при делении на 8 одно из трёх чисел 0, 1, 4. Чтобы при делении на 8 сумма квадратов трёх чисел имела остаток 7, необходимо, чтобы выполнялся один из двух случаев: либо один из квадратов, либо все три при делении на 8 имеют нечётные остатки.

В первом случае нечётный остаток есть 1, а сумма двух чётных остатков равна 0, 2, 4, то есть сумма всех остатков равна 1, 3, 5. Остатка 7 в этом случае получить нельзя. Во втором случае три нечётных остатка это три 1, и остаток всей суммы равен 3. Итак, 7 не может быть остатком при делении на 8 суммы квадратов трёх целых чисел.

4. Докажите, что при любом натуральном n:

а) число 5 5n+1 + 4 5n+2 + 3 5n делится на 11.

б) число 2 5n+3 + 5 n ·3 n+2 делится на 17.

а) Первоначально выполним следующее преобразование заданного выражения:

5 5n+1 +4 5n+2 +3 5n = 5(3125) n + 16(1024) n + (243) n = 5(11·284+1) n + 16(11·93+1) n + (11·22+1) n .

Принимая во внимание бином Ньютона n-й степени, можно записать: (х+1) n = Ах+1, где А – некоторое целое число при целых х. Тогда приведённое выше выражение принимает вид 11В+5+16+1 = 11С, очевидно делящееся на 11, где В и С – некоторые целые числа.

б) Выполним следующие преобразования, из которых следует доказываемое утверждение:

2 5n+3 + 5 n ·3 n+2 = 8·32 n + 9·15 n = 8(17+15) n + 9·15 n = 17А + 8·15 n + 9·15 n = 17А + 17·15 n = 17В,

где А, В – целые положительные числа.

5. Докажите, что:

а) если х 2 +у 2 делится на 3 и числа х, у целые, то х и у делятся на 3;

б) если сумма трёх целых чисел делится на 6, то и сумма кубов этих чисел делится на 6;

в) если p и q простые числа и p>3, q>3, то p 2 –q 2 делится на 24;

г) если a, b, c – любые целые числа, то найдутся такие взаимно простые k и t, что ak+bt делится на c.

а) Пусть х=3а+r 1 , у=3b+r 2 , где r 1 и r 2 – остатки от деления на 3, то есть какие-то из чисел 0, 1, 2. Тогда х 2 +у 2 =3(3а 2 +3b 2 +2аr 1 +2br 2)+(r 1) 2 +(r 2) 2 . Так как х 2 +у 2 делится на 3, первое слагаемое последней суммы делится на 3, то (r 1) 2 +(r 2) 2 делится на 3, что возможно, с учётом вышесказанного, только при r 1 =r 2 =0.

Таким образом, х=3а и у=3b, то есть х и у делятся на 3, что и требовалось доказать.

б) Достаточно показать, что x 3 +y 3 +z 3 –(x+y+z) делится на 6. Это так и есть, ведь каждое из слагаемых x 3 –x, y 3 –y и z 3 –z делится на 6, поскольку а 3 –а=а(а–1)(а+1) – произведение трёх последовательных целых чисел, которое обязательно делится на 2, 3, а, значит, и 6.

в) Кратность p 2 –q 2 числу 3 можно доказать так. При делении на 3 квадраты целых чисел дают остатки 0 или 1. Так как p и q простые числа больше 3, то это p 2 и q 2 при делении на 3 имеют одинаковые остатки – единицу. Тогда p 2 –q 2 делится на 3.

С другой стороны, p 2 –q 2 =(p+q)(p–q). Так как p и q нечётные и при делении на 4 имеют остатки 1 или 3, то выражение в одних скобках делится на 4, а в других – на 2, а разность квадратов p и q – на 8.

Так как p 2 –q 2 делится на взаимно простые числа 3 и 8, то p 2 –q 2 делится на 3·8=24, что и требовалось доказать.

г) Пусть наибольший общий делитель чисел b и c–a равен d, b=k·d и c–a=t·d. Тогда числа k и t взаимно просты.

Итак, a·k+b·t делится на c.

6. Найдите:

а) наибольший общий делитель чисел 2n+3 и n+7;

б) все пары натуральных чисел х, у таких, что 2х+1 делится на у и 2у+1 делится на х;

в) все целые k, для которых k 5 +3 делится на k 2 +1;

г) хотя бы одно натуральное число n такое, что каждое из чисел n, n+1, n+2, ... , n+20 имеет с числом 30030=2·3·5·7·11·13 общий делитель, больший единицы.

а) Заметим, что если m > n, то НОД (m; n) = НОД (m – n; n).

Иначе говоря, наибольший общий делитель двух натуральных чисел равен наибольшему общему делителю модуля их разности и меньшего числа. Легко доказать это свойство.

Пусть k – общий делитель m u n (m > n). Это значит, что m = ak, n = bk, где a, b – натуральные числа, причем a > b. Тогда m – n = k(a – b), откуда следует, что k – делитель числа m – n. Значит, все общие делители чисел m и n являются делителями их разности m – n, в том числе и наибольший общий делитель.

Воспользуемся вышесказанным:

НОД (2n+3; n+7) = НОД (n+7; 2n+3 – (n+7)) = НОД (n+7; n–4) = НОД (n–4; 11).

Так как 11 – простое число, то искомый наибольший общий делитель равен 1 либо 11. Если n–4 = 11d, то есть n = 4+11d, то наибольший общий делитель равен 11, в противном случае – 1.

Ответ: НОД (2n+3; n+7) = 11, при n равных 4+11d; НОД (2n+3; n+7) = 1, при n не равных 4+11d.

б) Число 2х+1 нечётное и делится на у, поэтому у тоже нечётное. Аналогично х – нечётное.

Числа х и у взаимно простые. Действительно, пусть k – общий делитель х и у, тогда 2х делится на k, и (2х+1) тоже делится на k (k – делитель у, а у – делитель 2х+1). Значит, 1 делится на k, то есть k=1.

Число 2х+2у+1 делится и на х и на у, а значит, – на ху. Тогда 2х+2у+1 не меньше ху.

Ответ: (1; 1), (1; 3), (3; 1), (3; 7), (7; 3).

в) Так как k 5 +3 = (k 3 –k)(k 2 +1) + (k+3), то k 5 +3 делится на k 2 +1, если k+3 делится на k 2 +1. Когда это возможно? Рассмотрим варианты:

1) k+3 = 0, а значит k = –3;

2) k+3 = k 2 +1; решая, находим k = –1, k = 2;

3) проверим целые k при которых k+3 > k 2 +1; после проверки: k = 0, k = 1.

Ответ: –3, –1, 0, 1, 2.

г) пусть m = 2·3·5·7·k. Подбирая k так, чтобы m–1 делилось на 11, а m+1 – на 13, получим, что число n = m–10 удовлетворяет условию задачи.

Ответ: например,9440.

7. Существует ли десятизначное число, делящееся на 11, в записи которого каждая цифра встречается по одному разу?

I способ. Выписывая трёхзначные числа, делящиеся на 11, можно среди них найти три числа, в записи которых участвуют все цифры от 0 до 9. Например, 275, 396,418. С их помощью можно составить десятизначное число, делящееся на 11. Например:

2753964180 = 275·10 7 + 396·10 7 + 418·10 = 11·(25·10 7 + 36·10 4 + 38·10).

II способ. Для нахождения требуемого числа воспользуемся признаком делимости на 11, согласно которому числа n=a 1 a 2 a 3 …a 10 (в данном случае а i не множители, а цифры в записи числа n) и S(n)=a 1 –a 2 +a 3 –…–a 10 одновременно делятся на 11.

Пусть А – сумма цифр, входящая в S(n) со знаком «+», В – сумма цифр, входящая в S(n) со знаком «–». Число А–В, согласно условию задачи, должно делиться на 11. Положим В–А=11, кроме того, очевидно, А+В=1+2+3+…+9=45. Решая полученную систему В–А=11, А+В=45, находим, А=17, В=28. Подберём группу из пяти различных цифр с суммой 17. Например, 1+2+3+5+6=17. Эти цифры возьмём в качестве цифр с нечётными номерами. В качестве цифр с чётными номерами возьмём оставшиеся – 4, 7, 8, 9, 0.

Мы видим, что условию задачи удовлетворяет, например, число 1427385960.

8. Два двузначных числа, записанных одно за другим, образуют четырёхзначное число, которое делится на их произведение. Найти эти числа.

Пусть a и b – два двузначных числа, тогда 100a+b – четырёхзначное число. По условию 100a+b = k·ab, отсюда b = a(kb–100), то есть b делится на a.

Итак, b = ma, но a и b двузначные числа, поэтому m однозначное.

Так как 100a+b = 100a+ ma = а(100+m) и 100a+b = kab, то а(100+m) = kab,

то есть 100+m = kb или 100+m = kma, откуда 100 = m(ka–1).

Таким образом, m – делитель числа 100, кроме того, m – однозначное число, значит, m = 1, 2, 4, 5.

Так как ka = 1+100/m, причём а двузначно, то отпадают для m значения 1 и 5, ибо

при m = 1 число 100/1+1 = 101 не делится ни на какое двузначное число а;

при m = 5 число 100/5+1 = 21 и имеем а=21, при котором b = ma = 5·21 – трёхзначное число.

При m = 2 имеем, ka = 51, a = 17, b = 17·2 = 34;

при m = 4 имеем, ka = 26, a = 13, b = 13·4 = 52.

Ответ: 17 и 34, 13 и 52.

9. Докажите, что при любых натуральных k и n число 1 2k+1 + 2 2k+1 + . . . + n 2k+1 не делится на n + 2.

Воспользуемся тем, что сумма одинаковых нечётных степеней двух чисел делится на сумму этих чисел, что следует из . Можно записать:

2 2k+1 + n 2k+1 = (2 + n)·А 1 ,

3 2k+1 + (n – 1) 2k+1 = (3 + (n – 1))·А 2 = (2 + n)·А 2 ,

4 2k+1 + (n – 2) 2k+1 = (4 + (n – 2))·А 3 = (2 + n)·А 3 и так далее, где А i – некоторые целые числа.

В зависимости от чётности n возможна нехватка числа для образования последней пары, избежать этого позволит умножение на 2, рассматриваемой в условии суммы. Итак,

2(1 2k+1 + 2 2k+1 +...+n 2k+1) = 2·1 2k+1 + (2 2k+1 + n 2k+1) + (3 2k+1 + (n – 1) 2k+1) +...+ (n 2k+1 + 2 2k+1) =

2 + (n + 2)·А, где А – некоторое целое число.

Одно из слагаемых последней суммы делится на n + 2, другое при любых натуральных n – нет. Итак, рассматриваемая в условии сумма не делится на n при любых натуральных n и k.

10. Докажите, что для любого простого числа р > 2 числитель m дроби

делится на p.

Заметим, что число р–1 чётное, и преобразуем дробь m/n к виду

Приводя полученное выражение к общему знаменателю

получаем соотношение

из которого вытекает равенство m(p–1)!=pqn. Поскольку ни одно из чисел 1, 2, 3, … , р–1 не делится на простое число р, то последнее равенство возможно лишь в случае, если m делится на р, что и требовалось доказать.

Задачи без решений

1. Докажите, что при любом натуральном n:

а) число 4 n + 15n – 1 делится на 9;

б) число 3 2n+3 + 40n – 27 делится на 64;

в) число 5 n (5 n + 1) – 6 n (3 n + 2 n) делится на 91.

2. Найдите:

а) натуральные значения n такие, что n 5 – n делится на 120;

б) наименьшее натуральное число n такое, что n делится на 19, а n + 2 делится на 82.

3. Пусть m, n – различные натуральные числа, причём m – нечётное. Докажите, что 2 m –1 и 2 n +1 взаимно простые.

4. Четыре различных целых трёхзначных числа, начинающиеся с одной и той же цифры, обладают тем свойством, что их сумма делится на три из них без остатка. Найдите эти числа.

5. Докажите, что для каждого натурального n > 1 число n n – n 2 + n – 1 делится на (n – 1) 2 .



Понравилась статья? Поделитесь с друзьями!