Дробно линейная функция определение. Дробно-линейная функция

Дробно-рациональная функция

Формула у = k/ x , графиком является гипербола. В Части 1 ГИА данная функция предлагается без смещений вдоль осей. Поэтому у нее только один параметр k . Самое большое различие во внешнем облике графика зависит от знака k .

Труднее увидеть отличия в графиках, если k одного знака:

Как мы видим, чем больше k , тем выше проходит гипербола.

На рисунке приведены функции, у которых параметр k отличается существенно. Если же отличие не столь велико, то на глаз определить его достаточно сложно.

В этом плане просто «шедевром» является следующее задание, обнаруженное мною в неплохом в целом пособии по подготовке к ГИА:

Мало того, что на довольно мелкой картинке близко расположенные графики просто сливаются. Так еще и гиперболы с положительными и отрицательными kизображены в одной координатной плоскости. Что полностью дезориентирует любого, кто взглянет на этот рисунок. В глаза бросается просто «прикольная звездочка».

Слава Богу, это просто тренировочная задача. В реальных вариантах предлагались более корректные формулировки и очевидные рисунки.

Разберемся, как же определить коэффициент k по графику функции.

Из формулы: у = k / x следует, что k = у·х . То есть мы можем взять любую целочисленную точку с удобными координатами и перемножить их - получим k .

k = 1·(- 3) = - 3.

Следовательно формула этой функции: у = - 3/х .

Интересно рассмотреть ситуацию с дробным k. В этом случае формула может быть записана несколькими способами. Это не должно вводить в заблуждение.

Например,

На данном графике невозможно найти ни одной целочисленной точки. Поэтому значение k можно определить весьма приближенно.

k = 1·0,7≈0,7. Однако можно понять, что 0 < k < 1. Если среди предложенных вариантов есть такое значение, то можно считать, что оно и является ответом.

Итак, обобщим.

k > 0 гипербола располагается в 1-й и 3-ем координатных углах (квадрантах),

k < 0 - во 2-м и 4-ом.

Если k по модулю больше 1 (k = 2 или k = - 2), то график располагается выше 1 (ниже - 1) по оси у, выглядит более широким.

Если k по модулю меньше 1 (k = 1/2 или k = - 1/2), то график располагается ниже 1 (выше - 1) по оси у и выглядит более узким, «прижатым» к нулю:

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Главная > Литература

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №24»

Проблемно – реферативная работа

по алгебре и началам анализа

Графики дробно – рациональной функции

Ученицы 11 класса А Товчегречко Натальи Сергеевны руководитель работы Паршева Валентина Васильевна учитель математики, учитель высшей квалификационной категории

Северодвинск

Содержание 3Введение 4Основная часть. Графики дробно-рациональных функций 6Заключение 17Литература 18

Введение

Построение графиков функций одна из интереснейших тем в школьной математике. Один из крупнейших математиков нашего времени Израиль Моисеевич Гельфанд писал: «Процесс построения графиков является способом превращения формул и описаний в геометрические образы. Это – построение графиков – является средством увидеть формулы и функции и проследить, каким образом эти функции меняются. Например, если написано y=x 2 , то Вы сразу видите параболу; если y=x 2 -4, Вы видите параболу, опущенную на четыре единицы; если же y=4-x 2 , то Вы видите предыдущую параболу, перевернутую вниз. Такое умение видеть сразу и формулу, и ее геометрическую интерпретацию – является важным не только для изучения математики, но и для других предметов. Это умение, которое остается с Вами на всю жизнь, подобно умению ездить на велосипеде, печатать на машинке или водить машину». На уроках математики мы строим в основном простейшие графики – графики элементарных функций. Только в 11 классе с помощью производной научились строить более сложные функции. При чтении книг:
    Н.А. Вирченко, И.И. Ляшко, К.И. Швецов. Справочник. Графики функций. Киев «Наукова Думка» 1979 г. В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начала анализа. Москва «Просвещение» 1990 г. Ю.Н. Макарычев, Н.Г. Миндюк. Алгебра – 8 класс. Дополнительные главы к школьному учебнику. Москва «Просвещение», 1998 г. И.М. Гельфанд, Е.Г. Глаголева, Э.Э. Шноль. Функции и графики (основные приемы). Издательство МЦНМО, Москва 2004 г. С.М. Никольский. М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. Алгебра и начала анализа: учебник для 11 класса.
    я увидела, что графики сложных функций можно строить без использования производной, т.е. элементарными способами. Поэтому тему своего реферата я выбрала: «Графики дробно – рациональной функции».
Цель работы: изучить соответствующие теоретические материалы, выявить алгоритм построения графиков дробно-линейной и дробно-рациональной функций. Задачи: 1. сформировать понятия дробно-линейной и дробно-рациональной функций на основе теоретического материала по данной теме; 2. найти методы построения графиков дробно-линейной и дробно-рациональной функций.

Основная часть. Графики дробно-рациональных функций

1. Дробно – линейная функция и ее график

С функцией вида y=k/x, где k≠0, ее свойствами и графиком мы уже познакомились. Обратим внимание на одну особенность этой функции. Функция y=k/x на множестве положительных чисел обладает тем свойством, что при неограниченном возрастании значений аргумента (когда x стремится к плюс бесконечности) значения функций, оставаясь положительными, стремятся к нулю. При убывании положительных значений аргумента (когда x стремится к нулю) значения функции неограниченно возрастают (y стремится к плюс бесконечности). Аналогичная картина наблюдается и на множестве отрицательных чисел. На графике (рис. 1) это свойство выражается в том, что точки гиперболы по мере их удаления в бесконечность (вправо или влево, вверх или вниз) от начала координат неограниченно приближаются к прямой: к оси x, когда │x│ стремится к плюс бесконечности, или к оси y, когда │x│ стремится к нулю. Такую прямую называют асимптотами кривой.
Рис. 1
Гипербола y=k/x имеет две асимптоты: ось x и ось y. Понятие асимптоты играет важную роль при построении графиков многих функций. Используя известные нам преобразования графиков функций, мы можем гиперболу y=k/x перемещать в координатной плоскости вправо или влево, вверх или вниз. В результате будем получать новые графики функций. Пример 1. Пусть y=6/x. Выполним сдвиг этой гиперболы вправо на 1,5 единицы, а затем полученный график сдвинем на 3,5 единицы вверх. При этом преобразовании сдвинутся и асимптоты гиперболы y=6/x: ось x перейдет в прямую y=3,5, ось y – в прямую y=1,5 (рис. 2). Функцию, график которой мы построили, можно задать формулой

.

Представим выражение в правой части этой формулы в виде дроби:

Значит, на рисунке 2 изображен график функции, заданной формулой

.

У этой дроби числитель и знаменатель - линейные двучлены относительно х. Такие функции называют дробно-линейными функциями.

Вообще функцию, заданную формулой вида
, где
х – переменная, а,
b , c , d заданные числа, причем с≠0 и
bc - ad ≠0, называют дробно-линейной функцией. Заметим, что требование в определении о том, что с≠0 и
bc-ad≠0, существенно. При с=0 и d≠0 или при bc-ad=0 мы получаем линейную функцию. Действительно, если с=0 и d≠0, то

.

Если же bc-ad=0, с≠0, выразив из этого равенства b через a, c и d и подставив его в формулу, получим:

Итак, в первом случае мы получили линейную функцию общего вида
, во втором случае – константу
. Покажем теперь, как строить график дробно-линейной функции, если она задана формулой вида
Пример 2. Построим график функции
, т.е. представим ее в виде
: выделим целую часть дроби, разделив числитель на знаменатель, мы получим:

Итак,
. Мы видим, что график этой функции может быть получен из графика функции у=5/х с помощью двух последовательных сдвигов: сдвига гиперболы у=5/х вправо на 3 единицы, а затем сдвига полученной гиперболы
вверх на 2 единицы.При этих сдвигах асимптоты гиперболы у=5/х также переместятся: ось х на 2 единицы вверх, а ось у на 3 единицы вправо. Для построения графика проведем в координатной плоскости пунктиром асимптоты: прямую у=2 и прямую х=3. Так как гипербола состоит из двух ветвей, то для построения каждой из них составим две таблицы: одну для х<3, а другую для x>3 (т. е. первую слева от точки пересечения асимптот, а вторую справа от нее):

Отметив в координатной плоскости точки, координаты которых указаны в первой таблице, и соединив их плавной линией, получим одну ветвь гиперболы. Аналогично (используя вторую таблицу) получим вторую ветвь гиперболы. График функции изображен на рисунке 3.

Любую дробь
можно записать аналогичным образом, выделив ее целую часть. Следовательно, графики всех дробно-линейных функций являются гиперболами, различным образом сдвинутыми параллельно координатным осям и растянутыми по оси Оу.

Пример 3.

Построим график функции
.Поскольку мы знаем, что график есть гипербола, достаточно найти прямые, к которым приближаются ее ветви (асимптоты), и еще несколько точек. Найдем сначала вертикальную асимптоту. Функция не определена там, где 2х+2=0, т.е. при х=-1. Стало быть, вертикальной асимптотой служит прямая х=-1. Чтобы найти горизонтальную асимптоту, надо посмотреть, к чему приближаются значения функций, когда аргумент возрастает (по абсолютной величине), вторые слагаемые в числителе и знаменателе дроби
относительно малы. Поэтому

.

Стало быть, горизонтальная асимптота – прямая у=3/2. Определим точки пересечения нашей гиперболы с осями координат. При х=0 имеем у=5/2. Функция равна нулю, когда 3х+5=0, т.е. при х=-5/3.Отметив на чертеже точки (-5/3;0) и (0;5/2) и проведя найденные горизонтальную и вертикальную асимптоты, построим график (рис.4).

Вообще, чтобы найти горизонтальную асимптоту, надо разделить числитель на знаменатель, тогда y=3/2+1/(x+1), y=3/2 – горизонтальная асимптота.

2. Дробно-рациональная функция

Рассмотрим дробную рациональную функцию

,

У которой числитель и знаменатель - многочлены соответственно n-й и m-й степени. Пусть дробь - правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и при том единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:Если:

Где k 1 ... k s – корни многочлена Q (x), имеющие соответственно кратности m 1 ... m s , а трёхчлены соответствуют парам сопряжения комплексных корней Q (x) кратности m 1 ... m t дроби вида

Называют элементарными рациональными дробями соответственно первого, второго, третьего и четвёртого типа. Тут A, B, C, к – действительные числа; m и м - натуральные числа, m, м>1; трёхчлен с действительными коэффициентами x 2 +px+q имеет мнимые корни.Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей. График функции

Получаем из графика функции 1/x m (m~1, 2, …) с помощью параллельного переноса вдоль оси абсцисс на │k│ единиц масштаба вправо. График функции вида

Легко построить, если в знаменателе выделить полный квадрат, а затем осуществить соответствующее образование графика функции 1/x 2 . Построение графика функции

сводится к построению произведения графиков двух функций:

y = Bx + C и

Замечание . Построение графиков функции

где a d-b c 0 ,
,

где n - натуральное число, можно выполнять по общей схеме исследования функции и построения графика в некоторых конкретных примерах с успехом можно построить график, выполняя соответствующие преобразования графика; наилучший способ дают методы высшей математики. Пример 1. Построить график функции

.

Выделив целую часть, будем иметь

.

Дробь
изобразим в виде суммы элементарных дробей:

.

Построим графики функций:

После сложения этих графиков получаем график заданной функции:

Рисунки 6, 7, 8 представляют примеры построения графиков функций
и
. Пример 2. Построение графика функции
:

(1);
(2);
(3); (4)

Пример 3. Построение графика графика функции
:

(1);
(2);
(3); (4)

Заключение

При выполнении реферативной работы:- уточнила свои понятия дробно-линейной и дробно-рациональной функций:Определение 1. Дробно-линейная функция – это функция вида , где х – переменная, a, b, c, и d – заданные числа, причем с≠0 и bc-ad≠0. Определение 2. Дробно-рациональная функция – это функция вида

Где n

Сформировала алгоритм построения графиков этих функций;

Приобрела опыт построения графиков таких функций, как:

;

Научилась работать с дополнительной литературой и материалами, производить отбор научных сведений;- приобрела опыт выполнения графических работ на компьютере;- научилась составлять проблемно – реферативную работу.

Аннотация. Накануне 21-го века на нас обрушился нескончаемый поток разговоров и рассуждений на тему информационной магистрали (information highway) и наступающей эры технологии.

Накануне 21-го века на нас обрушился нескончаемый поток разговоров и рассуждений на тему информационной магистрали (information highway) и наступающей эры технологии.

  • Курсы по выбору одна из форм организации учебно-познавательной и учебно-исследовательской деятельности гимназистов

    Документ

    Настоящий сборник представляет собой пятый выпуск, подготовленный коллективом Московской городской педагогической гимназии-лаборатории №1505 при поддержке…….

  • Математика и опыт

    Книга

    В работе предпринята попытка масштабного сравнения различных под­ходов к соотношению математики и опыта, сложившихся главным образом в рамках априоризма и эмпиризма.

  • Здесь коэффициенты при х и свободные члены в числителе и знаменателе - заданные действительные числа. Графиком дробно-линейной функции в общем случае является гипербола.

    Наиболее простая дробно-линейная функция у = - вы-

    ражает обратную пропорциональную зависимость ; представляющая ее гипербола хорошо известна из курса средней школы (рис. 5.5).

    Рис. 5.5

    Пример. 5.3

    Построить график дробно-линейной функции:

    • 1. Так как эта дробь не имеет смысла при х = 3 , то область определения функции X состоит из двух бесконечных интервалов:
    • 3) и (3; +°°).

    2. Для того чтобы изучить поведение функции на границе области определения (т.е. при х -»3 и при х -> ±°°), полезно преобразовать данное выражение в сумму двух слагаемых следующим образом:

    Поскольку первое слагаемое - постоянное, то поведение функции на границе фактически определяется вторым, переменным слагаемым. Изучив процесс его изменения, при х ->3 и х ->±°°, делаем следующие выводы относительно заданной функции:

    • а) при х->3 справа (т.е. при *>3) значение функции неограниченно возрастает: у -> +°°: при х->3 слева (т.е. при х у-Таким образом, искомая гипербола неограниченно приближается к прямой с уравнением х = 3 (слева снизу и справа сверху) и тем самым эта прямая является вертикальной асимптотой гиперболы;
    • б) при х -> ±°° второе слагаемое неограниченно убывает, поэтому значение функции неограниченно приближается к первому, постоянному слагаемому, т.е. к значению у = 2. При этом график функции неограниченно приближается (слева снизу и справа сверху ) к прямой, задаваемой уравнением у = 2; тем самым эта прямая является горизонтальной асимптотой гиперболы.

    Замечание. Полученные в этом пункте сведения являются важнейшими для характеристики поведения графика функции в удаленной части плоскости (фигурально выражаясь, на бесконечности).

    • 3. Полагая л =0, находим у = ~. Поэтому искомая ги-

    пербола пересекает ось Оу в точке М х = (0;-^).

    • 4. Нуль функции (у = 0) будет при х = -2; следовательно, эта гипербола пересекает ось Ох в точке М 2 (-2; 0).
    • 5. Дробь положительна, если числитель и знаменатель одного и того же знака, и отрицательна, если они разных знаков. Решая соответствующие системы неравенств, находим, что функция имеет два интервала положительности: (-°°; -2) и (3; +°°) и один интервал отрицательности: (-2; 3).
    • 6. Представление функции в виде суммы двух слагаемых (см. н. 2) позволяет достаточно легко обнаружить два интервала убывания: (-°°; 3) и (3; +°°).
    • 7. Очевидно, что экстремумов у данной функции нет.
    • 8. Множество У значений этой функции: (-°°; 2) и (2; +°°).
    • 9. Четности, нечетности, периодичности также нет. Собранной информации достаточно, чтобы схематично

    изобразить гиперболу, графически отражающую свойства данной функции (рис. 5.6).


    Рис. 5.6

    Функции, рассмотренные до этого момента, носят названия алгебраических. Перейдем теперь к рассмотрению трансцендентных функций.



    Понравилась статья? Поделитесь с друзьями!