Двойное лучепреломление в анизотропных средах. Двойное лучепреломление

Явление двойного лучепреломления. Свойства обыкновенного и необыкновенного лучей.

Почти все прозрачные диэлектрики оптически анизотропны, то есть свойства света при прохождении через них зависят от направления. Физическая природа анизотропии связана с особенностями строения молекул диэлектрика или особенностями кристаллической решетки, в узлах которой находятся атомы или ионы.

Вследствие анизотропии кристаллов при прохождении через них света возникает явление, называемое двойным лучепреломлением

Двойное луче­преломление вызвано неодинако­вой скоростью распространения световых волн в различных на­правлениях. В точ­ке падения естественного света, образуется две световых волны. Одна рас­пространяется в кристалле во всех направлениях с одинаковой скоростью - это обыкновенный луч (фронт волны сферической). В другой -скорость по направлению оптичес­кой оси кристалла оди­накова со скоростью в первой волне, а по направ­лению, перпендикулярному оптической оси, - боль­ше. Это необыкновенный луч (фронт волны имеет эллипсои­дальную форму).

Мы остановимся на так называемых одноосных кристаллах. У одноосных кристаллов один из преломленных пучков подчиняется обычному закону преломления. Его называют обыкновенным. Другой пучок называется необыкновенным, он не подчиняется обычному закону преломления. Даже при нормальном падении светового пучка на поверхность кристалла необыкновенный луч может отклоняться от нормали. Как правило, необыкновенный луч не лежит в плоскости падения. Если через такой кристалл посмотреть на окружающие предметы, то каждый предмет будет раздваиваться. При вращении кристалла вокруг направления падающего луча обыкновенный луч остается неподвижным, а необыкновенный будет двигаться вокруг него по окружности.

К одноосным кристаллам относятся, например, кристаллы кальцита или исландского шпата (). В одноосных кристаллах существует выделенное направление, вдоль которого обыкновенная и необыкновенная волна распространяются не разделяясь пространственно и с одинаковой скоростью. Направление, в котором не наблюдается двойного лучепреломления, называетсяоптической осью кристалла . Следует иметь в виду, что оптическая ось – это не прямая линия, проходящая через какую-то точку кристалла, а определенное направление в кристалле. Любая прямая, параллельная данному направлению, является оптической осью.

Исследование обыкновенного и необыкновенного лучей показывает, что оба луча полностью плоскополяризованы во взаимно перпендикулярных направлениях. Колебания вектора напряженности электрического поля в обыкновенной волне совершаются в направлении, перпендикулярном главному сечению кристалла для обыкновенного луча. В необыкновенной волне колебания вектора напряженности совершаются в плоскости, совпадающей с главным сечением для необыкновенного луча.

На рис. 5.15 показаны направления колебаний вектора напряженности в обоих лучах.

Из рисунка видно, что в данном случае плоскости колебаний обыкновенного и необыкновенного лучей взаимно перпендикулярны. Отметим, что это наблюдается практически при любой ориентации оптической оси, поскольку угол между обыкновенным и необыкновенным лучами очень мал.

На выходе из кристалла оба луча отличаются друг от друга только направлением поляризации, так что названия «обыкновенный» и «необыкновенный» имеют смысл только внутри кристалла.

Как известно, показатель преломления . Следовательно, из анизотропности e вытекает, что электромагнитным волнам с различными направлениями колебаний вектора соответствуют разные значения показателя преломления . Поэтому скорость световых волн зависит от направления колебаний светового вектора . В обыкновенном луче колебания светового вектора происходят в направлении, перпендикулярному к главному сечению кристалла, поэтому при любом направлении обыкновенного луча образует с оптической осью кристалла прямой угол и скорость световой волны будет одна и та же, равная .

Одноосные кристаллы характеризуются показателем преломления обыкновенного луча, равным , и показателем преломления необыкновенного луча, перпендикулярного к оптической оси, равным . Последнюю величину называют просто показателем преломления необыкновенного луча. Для исландского шпата , . Заметим, что значения и зависят от длины волны.

Показатель преломления, а, следовательно, и скорость распространения для обыкновенного луча n o не зависит от направления в кристалле. Обыкновенный луч распространяется в кристалле по обычным законам геометрической оптики.

Для необыкновенного луча показатель преломления изменяется от n o в направлении оптической оси до n e в перпендикулярном к ней направлении. Если n e > n o , то кристаллы называют положительными, при обратном соотношении n e < n o – отрицательными.

С точки зрения принципа Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей грани кристалла, возникает не одна, как в обычных средах, вторичная волна, а одновременно две волны, которые и распространяются в кристалле. Скорость распространения обыкновенной волны по всем направлениям одинакова. Скорость распространения необыкновенной волны в направлении оптической оси совпадает со скоростью обыкновенной волны, а по другим направлениям отличается.

Описание

Направление колебания вектора электрического поля необыкновенного луча лежит в плоскости главного сечения (плоскости, проходящей через луч и оптическую ось кристалла). Оптическая ось кристалла - направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления.

Нарушение закона преломления света необыкновенным лучом связанно с тем, что скорость распространения света (а значит и показатель преломления) волн с такой поляризацией , как у необыкновенного луча, зависит от направления. Для обыкновенной волны скорость распространения одинакова во всех направлениях.

Можно подобрать условия, при которых обыкновенный и необыкновенный лучи распространяются по одной траектории, но с разными скоростями. Тогда наблюдается эффект изменения поляризации. Например, линейно поляризованный свет, падающий на пластинку можно представить в виде двух составляющих (обыкновенной и необыкновенной волн), двигающихся с разными скоростями. Из-за разности скоростей этих двух составляющих, на выходе из кристалла между ними будет некоторая разность фаз, и в зависимости от этой разности свет на выходе будет иметь разные поляризации. Если толщина пластинки такова, что на выходе из неё один луч на четверть волны (четверть периода) отстаёт от другого, то поляризация превратится в круговую (такая пластинка называется четвертьволновой), если один луч от другого отстанет на пол волны, то свет останется линейно поляризованным, но плоскость поляризации повернётся на некоторый угол, значение которого зависит от угла между плоскостью поляризации падающего луча и плоскостью главного сечения (такая пластинка называется полуволновой).

Природа явления

Качественно явление можно объяснить следующим образом. Из уравнений Максвелла для материальной среды следует, что фазовая скорость света в среде обратно пропорциональна величине диэлектрической проницаемости ε среды. В некоторых кристаллах диэлектрическая проницаемость - тензорная величина - зависит от направления электрического вектора, то есть от состояния поляризации волны, поэтому и фазовая скорость волны будет зависеть от ее поляризации.

Согласно классической теории света, возникновение эффекта связанно с тем, что переменное электромагнитное поле света заставляет колебаться электроны вещества, и эти колебания влияют на распространение света в среде, а в некоторых веществах заставить электроны колебаться проще в некоторых определённых направлениях.

Помимо кристаллов двойное лучепреломление наблюдается и в изотропных средах, помещённых в электрическое поле (эффект Керра), в магнитное поле (эффект Коттона - Мутона , эффект Фарадея), под действием механических напряжений (фотоупругость). Под действием этих факторов изначально изотропная среда меняет свои свойства и становится анизотропной. В этих случаях оптическая ось среды совпадает с направлением электрического поля, магнитного поля, направлением приложения силы.

Положительные и отрицательные кристаллы

  • Отрицательные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света меньше, чем скорость распространения необыкновенного луча. В кристаллографии Отрицательными кристаллами называют также жидкие включения в кристаллах, имеющие ту же форму, что и сам кристалл.
  • Положительные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света больше, чем скорость распространения необыкновенного луча

См. также

Литература

  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • Ландсберг Г. С., Оптика, 2004

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Двойное лучепреломление" в других словарях:

    Двойное лучепреломление - (схема): MN направление оптической оси; о обыкновенный луч; е необыкновенный луч. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского… … Иллюстрированный энциклопедический словарь

    ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского шпата (CaCO3). В некоторых кристаллах, например турмалине, каждый из раздвоенных… … Современная энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (напр., кристалл), обусловленное зависимостью преломления показателя этой среды от направления электрич. вектора световой волны (см. КРИСТАЛЛООПТИКА, ОПТИЧЕСКАЯ АНИЗОТРОПИЯ). При… … Физическая энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от направления напряженности электрического поля световой волны. Световая волна в анизотропном… … Большой Энциклопедический словарь

    двойное лучепреломление - Раздвоение световых лучей при преломлении на границе с анизотропной средой. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики физическая оптика Обобщающие … Справочник технического переводчика

    Раздвоение лучей света при прохождении через оптически анизотропную среду (напр., большинство кристаллов), происходящее вследствие зависимости показателя преломления от направления электрич. вектора Е световой волны. В одноосном кристалле (см.… … Большой энциклопедический политехнический словарь

    Расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Д. л. впервые обнаружено и описано профессором… … Большая советская энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от поляризации и ориентации волнового вектора относительно кристаллографических осей, то есть… … Энциклопедический словарь

    двойное лучепреломление - Birefringence Двойное лучепреломление Оптическое явление, обусловленное наличием у кристалла различных показателей преломления для двух взаимноперпендикулярных ориентаций плоскости поляризации света. В общем случае, в двулучепреломляющих… … Толковый англо-русский словарь по нанотехнологии. - М.

    двойное лучепреломление - dvejopas spindulių lūžimas statusas T sritis Standartizacija ir metrologija apibrėžtis Anizotropinėje terpėje sklindančio šviesos spindulio skaidymasis į du spindulius. atitikmenys: angl. birefringence; double refraction vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

При прохождении света через некоторые кристаллы световой луч разделяется на два луча. Это явление получило название двойного лучепреломления. Двойное лучепреломление – раздвоение светового луча при прохождении через оптически анизотропную среду, обусловленное зависимостью показателя преломления (а, следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллографических осей. Если на кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенные луча параллельные друг другу и падающему лучу – обыкновенный (о) и необыкновенный (е). Обыкновенный луч удовлетворяет обычному закону преломления и лежит в одной плоскости с падающим лучом и нормалью к границе раздела в точке падения. Для необыкновенного луча отношение зависит от угла падения. Кроме того, необыкновенный луч не лежит, как правило, в одной плоскости с падающим лучом и нормалью к поверхности раздела. Эксперимент показывает, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных направлениях. Явление двойного лучепреломления наблюдается для всех прозрачных кристаллов, кроме кристаллов кубической системы. У одноосных кристаллов имеется направление, вдоль которого свет распространяется, не разделяясь на два луча. Это направление называется оптической осью кристалла. Любая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла. Плоскость, проходящая через луч и пересекающую его оптическую ось, называется главной плоскостью (главным сечением) одноосного кристалла для этого луча. Плоскость колебаний обыкновенного луча перпендикулярна к главному сечению кристалла. Колебания вектора в необыкновенном луче происходят в главной плоскости кристалла. Кроме одноосных, существуют двуосные кристаллы, у которых имеются два направления, вдоль которых свет не разделяется на два луча. В двуосных кристаллах оба луча являются необыкновенными.

Двойное лучепреломление объясняется анизотропией кристаллов. В кристаллах некубической системы диэлектрическая проницаемость зависит от направления. Вектор обыкновенного луча всегда перпендикулярен оптической оси кристалла (перпендикулярен главному сечению). Поэтому при любом направлении распространения обыкновенного луча скорость световой волны будет одна и та же, показатель преломления кристалла для обыкновенного луча не зависит от направления луча в кристалле и равен Вектор необыкновенного луча колеблется в главной плоскости кристалла, он может составлять с оптичесой осью любые углы от 0 до Поэтому скорость распространения света вдоль необыкновенного луча и показатель преломления кристалла для необыкновенного луча зависят от направления этого луча по отношению к оптической оси. При распространении света вдоль оптической оси оба луча совпадают, скорость света не зависит от направления колебаний вектора (в обоих лучах вектор перпендикулярен к оптической оси), показатель преломления необыкновенного луча совпадает с показателем преломления обыкновенного луча: При распространении света в любом другом направлении его скорость и показатель преломления вдоль необыкновенного луча отличаются от соответствующих значений для обыкновенного луча. Наибольшее отличие наблюдается в направлении, перпендикулярном к оптической оси. В этом направлении где – скорость необыкновенного луча в этом направлении. За показатель преломления необыкновенного луча принимают значение для направления распространения, перпендикулярного к оптической оси кристалла. Различают положительные и отрицательные одноосные кристаллы. У положительных кристаллов > ( < ), у отрицательных – < ( > ).


В некоторых кристаллах один из лучей поглощается сильнее другого. Это явление называется дихроизмом .

Используя принцип Гюйгенса, можно графически построить волновые поверхности обыкновенного и необыкновенного лучей. На рисунке представлены волновые поверхности лучей с центром в точке 2 для момента, когда волновой фронт падающей волны достигает точки1 . Вдоль оптической оси оба луча распространяются с одинаковой скоростью. Волновая поверхность для обыкновенного луча, исходящего из точки 2 , сфера (в сечении плоскостью – окружность), для необыкновенного – эллипсоид (в сечении плоскостью – эллипс). Огибающие всех вторичных волн, центры которых находятся между точками 1 и 2 , представляют собой плоскости. Фронт обыкновенной волны – касательная из точки 1 к окружности; фронт необыкновенной волны – касательная из точки 1 к эллипсу. Для обыкновенного луча направление распространения энергии световой волны совпадает с нормалью к волновой поверхности; обыкновенный луч перпендикулярен к волновой поверхности. Для необыкновенного луча направление распространения энергии не совпадает с нормалью к волновой поверхности; необыкновенный луч проходит через точку касания волнового фронта с эллипсом.

Фундаментальным свойством световых лучей при их прохождении в кристаллах является двойное лучепреломление, открытое в 1670 году Бартолином и подробно исследованное Гюйгенсом, опубликовавшим в 1690 году свой знаменитый “Трактат о свете, в котором изложены причины того, что происходит при отражении и преломлении и, в частности, при необыкновенном преломлении в кристаллах из Исландии.” Явление двойного лучепреломления объясняется особенностями распространения света в анизотропных средах.

Если на кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу.

Даже в том случае, когда первичный пучок света падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется. Со времен Гюйгенса первый луч получил название обыкновенного (), а второй -необыкновенного ()(рис. 6).

Направление в кристалле, по которому луч света распространяется не испытывая двойного лучепреломления, называется оптической осью кристалла. А плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (главным сечением) кристалла. Анализ поляризации света показывает, что на выходе из кристалла лучи оказываются линейно поляризованными во взаимно перпендикулярных плоскостях.

Раздвоение луча в кристалле всегда происходит в главной плоскости. Так как при вращении кристалла вокруг падающего луча главная плоскость поворачивается в пространстве, то одновременно поворачивается и необыкновенный луч. Рассмотрим некоторые наиболее простые случаи распространения света в кристалле.

1. Если луч параллелен оптической оси (рис. 7), то положение главной плоскости не определено. В частности, плоскость рисунка является главной плоскостью, но такой же является, например, и перпендикулярная ей плоскость. Условия распространения лучей с любой поляризацией одинаковы, и они не раздваиваются.

2. Если луч идет перпендикулярно оптической оси (рис. 7), то электрический вектор, лежащий в главной плоскости, параллелен оси. Электрический вектор, перпендикулярный оси, лежит при этом в плоскости, нормальной к главной, так что условия распространения для этих составляющих электрического поля световой волны неодинаковы: лучи не раздваиваются, но имеют различную скорость распространения.

3. Если луч идет под произвольным углом к оптической оси, то условия распространения указанных выше составляющих также неодинаковы: лучи распространяются по различным направлениям и с различными скоростями (рис. 7).

Луч, имеющий электрический вектор, перпендикулярный оптической оси, во всех этих случаях находится в одинаковых условиях, так что законы его распространения не должны зависеть от направления распространения; это и есть обыкновенный луч, подчиняющийся обычным законам преломления.

Второй же, необыкновенный луч во всех трех случаях находится в разных условиях (оптические свойства кристалла неизотропны), а потому и условия распространения могут усложняться ().

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

Раздвоение световых лучей при прохождении через анизотропную среду (напр., кристалл), обусловленное зависимостью преломления показателя этой среды от направления электрич. вектора световой (см. КРИСТАЛЛООПТИКА , ОПТИЧЕСКАЯ АНИЗОТРОПИЯ). При падении световой волны на анизотропную среду в ней возникают две волны с взаимно перпендикулярными плоскостями поляризации (см. ПОЛЯРИЗАЦИЯ СВЕТА). В одноосных кристаллах одна из волн имеет плоскость поляривации, перпендикулярную гл. сечению, т. е. плоскости, проходящей через направление луча света и оптическую ось кристалла (обыкновенный луч), а другая - плоскость, параллельную главному сечению (необыкновенный луч). Скорость распространения обыкновенной волны и, следовательно, для неё n0 не зависят от направления её распространения, а распространения и показатель преломления nе необыкновенной волны - зависят. Для необыкновенного луча обычные законы преломления изменяются; в частности, он может не лежать в плоскости падения. При распространении вдоль оптич. оси n0=nе и Д. л. отсутствует. Одноосные наз. положительными или отрицательными в зависимости от знака разности nе - n0. Макс. абс. величина этой разности служит числовой хар-кой Д. л. В двуосных кристаллах показатели преломления обоих лучей, возникающих при Д. л., зависят от направления распространения. Д. л. двуосных кристаллов можно характеризовать тремя главными показателями преломления.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусственно вызванной анизотропией, напр. при наложении внеш. поля - электрического (см. КЕРРА ЭФФЕКТ), магнитного (см. КОТТОНА - МУТОНА ЭФФЕКТ), поля упругих сил (см. ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ НАПРЯЖЕНИЙ, ФОТОУПРУГОСТЬ).

Явление, аналогичное Д. л., наблюдается и в др. диапазонах эл.-магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. (а следовательно, анизотропной); (см. В ИОНОСФЕРЕ).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

Раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллографич. осей, т. е. от направления распространения (см. Кристаллооптика, Оптическая анизотропия). При падении световой волны на анизотропной среды в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляризации падающей волны. Различают линейное и эллиптическое Д. л. в зависимости от свойств и симметрии кристаллов.

В прозрачных немагн. кристаллах без дисперсии пространственной происходит линейное Д. л. - возникают две линейно поляризов. волны, векторы индукции к-рых D 1 и D 2 взаимно ортогональны и соответственно ортогональны векторам магн. поля H 1 и H 2 . Д. л. в кристаллах можно описать, приведя диэлектрической проницаемости . к главным осям и задав значения: - "главные показатели преломления"; величину Д. л. обычно описывают макс. разностью этих показателей преломления. При прохождении света через границу двух анизотропных сред происходит более сложное преобразование двух падающих волн в две преломлённые.

В прозрачных магн. кристаллах без пространств. дисперсии также имеет место линейное Д. л., однако векторы индукций (электрической D и магнитной В )в двух волнах не ортогональны ( ).

Д. л. в этом случае является следствием того, что электрич. и магн. проницаемости описываются разл. тензорами; в гипотетич. среде, где ( -скаляр), Д. л. отсутствовало бы (но скорости волн зависели бы от направления).

В прозрачных немагн. кристаллах с пространств. дисперсией первого порядка - гиротропией - падающая волна распадается на две волны (идущие по разным направлениям с разными скоростями), поляризованные эллиптически, причём соответственные оси эллипсов D 1 и D 2 ортогональны, а направления обхода этих эллипсов противоположны - происходит эллиптическое Д. л. В нек-рой области частот возможно появление даже большего числа волн - 3 или 4.

В кристаллах, обладающих поглощением, картина Д. л. более сложна. Как известно, волны в поглощающих средах неоднородны; векторы E, D и H, В в общем случае поляризованы эллиптически, причём эллипсы различны и ориентированы по-разному. Поэтому в общем случае имеет место эллиптическое Д. л.; эллипсы векторов двух волн D 1 и D 2 подобны, ортогональны и имеют одно направление обхода, но разные размеры вследствие анизотропии поглощения (см. Дихроизм). То же имеет место для векторов B 1 и B 2 , но эллипсы их отличаются от первых формой и ориентацией (ориентации совпадают лишь при круговой поляризации).

В зависимости от свойств симметрии анизотропной среды в ней имеется несколько избранных направлений, в к-рых Д. л. отсутствует; эти направления наз. оптич. осями. Могут быть оси изотропные, вдоль к-рых волны любой поляризации распространяются с одинаковой скоростью, и оси круговые, вдоль к-рых без Д. л. может распространяться лишь волна определ. знака круговой поляризации. Прозрачные кристаллы низших сингоний обычно имеют две изотропные оси, при симметрии выше 222 D 2 (см. Симметрия кристаллов )они сливаются в одну. При наличии поглощения кристаллы низших сингоний имеют одну изотропную ось (в частном случае ромбич. сингоний - две) и (или) несколько круговых.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусств. анизотропией, вызванной асимметричными деформациями, внутр. натяжениями (см. Фотоупругость), приложением акустич. поля (см. Акустооптика), приложением электрических (см. Керра эффект )или магнитных (см. Коттона - Мутона эффект )полей, анизотропным нагревом. В жидкостях возможно создание Д. л. в потоке, если жидкости или растворённого вещества обладают несферич. формой и анизотропной поляризуемостью.

Явление, аналогичное Д. л, наблюдается и в др. диапазонах эл.-магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. поле (а следовательно, анизотропной); см. Волны в плазме.

Лит.: Федоров Ф. И., Оптика анизотропных сред. Минск, 1958, Кизель В. А., Отражение света, M , 1973, гл. 1, 2; Федоров Ф. И., Филиппов В. В., Отражение и прозрачными кристаллами, Минск. 1976; Дорожкин Л. M. и др., Измерение показателей преломления монокристаллов методом равных отклонений, "Краткие сообщения по физике", 1977, № 3, с. 8; Stаmnеs J., Shеrman G., Reflection and refraction of an arbitrary wave at a plane interface separating two uniaxial crystals, "J. Opt. Soc. Amer.", 1977, v. 67, p. 683; Halevi P., Mendoza-Hernfindez A., Temporal and spatial behavior of the Poynting vector in dissepative media refraction from vacuum into a medium, "J. Opt. Soc. Amer.", 1981, v. 71, p. 1238.

В. А. Кизель.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ" в других словарях:

    Двойное лучепреломление - (схема): MN направление оптической оси; о обыкновенный луч; е необыкновенный луч. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского… … Иллюстрированный энциклопедический словарь

    ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского шпата (CaCO3). В некоторых кристаллах, например турмалине, каждый из раздвоенных… … Современная энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от направления напряженности электрического поля световой волны. Световая волна в анизотропном… … Большой Энциклопедический словарь

    двойное лучепреломление - Раздвоение световых лучей при преломлении на границе с анизотропной средой. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики физическая оптика Обобщающие … Справочник технического переводчика

    Оптические свойства галита и кальцита … Википедия

    Раздвоение лучей света при прохождении через оптически анизотропную среду (напр., большинство кристаллов), происходящее вследствие зависимости показателя преломления от направления электрич. вектора Е световой волны. В одноосном кристалле (см.… … Большой энциклопедический политехнический словарь

    Расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Д. л. впервые обнаружено и описано профессором… … Большая советская энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от поляризации и ориентации волнового вектора относительно кристаллографических осей, то есть… … Энциклопедический словарь

    двойное лучепреломление - Birefringence Двойное лучепреломление Оптическое явление, обусловленное наличием у кристалла различных показателей преломления для двух взаимноперпендикулярных ориентаций плоскости поляризации света. В общем случае, в двулучепреломляющих… … Толковый англо-русский словарь по нанотехнологии. - М.

    двойное лучепреломление - dvejopas spindulių lūžimas statusas T sritis Standartizacija ir metrologija apibrėžtis Anizotropinėje terpėje sklindančio šviesos spindulio skaidymasis į du spindulius. atitikmenys: angl. birefringence; double refraction vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas



Понравилась статья? Поделитесь с друзьями!