Электрический ток в полупроводниках определение. Прямой p-n переход

Ерюткин Евгений Сергеевич
учитель физики высшей квалификационной категории ГОУ СОШ №1360, г. Москва

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда.

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличии от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например германий.

Одним из таких приборов является диод – прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа.

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования.

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используются множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) М.: Мнемозина. 2012 г.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. М.: Илекса. 2005 г.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика М.:2010 г.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().
  1. В следствии чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой .

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называются донорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.

Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим .

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Полупроводниками называют вещества, занимающие в отношении электропроводности промежуточное положение между хорошими проводниками и хорошими изоляторами (диэлектриками).

Полупроводниками являются и химические элементы (германий Ge, кремний Si, селен Se, теллур Te), и соединения химических элементов (PbS, CdS, и др.).

Природа носителей тока в различных полупроводниках различна. В некоторых из них носителями зарядов являются ионы; в других носителями зарядов являются электроны .

Собственная проводимость полупроводников

Существует два вида собственной проводимости полупроводников: электронная проводимость и дырочная проводимость полупроводников.

1. Электронная проводимость полупроводников.

Электронная проводимость осуществляется направленным перемещением в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешних воздействий.

2. Дырочная проводимость полупроводников.

Дырочная проводимость осуществляется при направленном перемещении валентных электронов на вакантные места в парно-электронных связях - дырки. Валентный электрон нейтрального атома, находящегося в непосредственной близости к положительному иону (дырке) притягиваясь к дырке, перескакивает в неё. При этом на месте нейтрального атома образуется положительный ион (дырка), а на месте положительного иона (дырки) образуется нейтральный атом.

В идеально чистом полупроводнике без каких - либо чужеродных примесей каждому свободному электрону соответствует образование одной дырки, т.е. число участвующих в создании тока электронов и дырок одинаково.

Проводимость, при которой возникает одинаковое число носителей заряда (электронов и дырок), называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Малейшие следы примесей коренным образом меняют свойства полупроводников.

Электрическая проводимость полупроводников при наличии примесей

Примесями в полупроводнике считают атомы посторонних химических элементов, не содержащиеся в основном полупроводнике.

Примесная проводимость - это проводимость полупроводников, обусловленная внесением в их кристаллические решётки примесей.

В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется в основном движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n - типа (от латинского слова negativus - отрицательный). Основными носителями заряда являются электроны, а не основными - дырки. Полупроводники n - типа - это полупроводники с донорными примесями.


1. Донорные примеси.

Донорными называют примеси, легко отдающие электроны, и, следовательно, увеличивающие число свободных электронов. Донорные примеси поставляют электроны проводимости без возникновения такого же числа дырок.

Типичным примером донорной примеси в четырёхвалентном германии Ge являются пятивалентные атомы мышьяка As.

В других случаях практически невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками p - типа (от латинского слова positivus - положительный). Основными носителями заряда являются дырки, а не основными - электроны. . Полупроводники р - типа - это полу-проводники с акцепторными примесями.

Акцепторными называют примеси в которых для образования нормальных парноэлектронных связей недостаёт электронов.

Примером акцепторной примеси в германии Ge являются трёхвалентные атомы галлия Ga

Электрический ток через контакт полупроводников р- типа и n- типа p-n переход - это контактный слой двух примесных полупроводников p-типа и n-типа; p-n переход является границей, разделяющей области с дырочной (p) проводимостью и электронной (n) проводимостью в одном и том же монокристалле.

Прямой p-n переход

Если n-полупроводник подключён к отрицательному полюсу источника питания, а положительный полюс источника питания соединён с р-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в р-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников. Электроны, переходя границу, «заполняют» дырки, ток через р-n-переход осуществляется основными носителями заряда. Вследствие этого проводимость всего образца возрастает. При таком прямом (пропускном) направлении внешнего электрического поля толщина запирающего слоя и его сопротивление уменьшаются.

В этом направлении ток проходит через границу двух полупроводников.


Обратный р-n-переход

Если n-полупроводник соединён с положительным полюсом источника питания, а р-полупроводник соединён с отрицательным полюсом источника питания, то электроны в n-полупроводнике и дырки в р-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны, ток через р-n-переход осуществляется неосновными носителями заряда. Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Вследствие этого проводимость образца оказывается незначительной, а сопротивление - большим.

Образуется так называемый запирающий слой. При таком направлении внешнего поля электрический ток через контакт р- и n-полупроводников практически не проходит.

Таким образом электронно-дырочный переход обладает одно-сторонней проводимостью.

Зависимость силы тока от напряжения - вольт - амперная характеристика р-n перехода изображена на рисунке (вольт - амперная характеристика прямого р-n перехода изображена сплошной линией, вольт - амперная характеристика обратного р-n перехода изображена пунктирной линией).

Полупроводниковые приборы:

Полупроводниковый диод - для выпрямления переменного тока, в нем используют один р - n - переход с разными сопротивлениями: в прямом направлении сопротивление р - n - перехода значительно меньше, чем в обратном.

Фоторезисторы - для регистрации и измерения слабых световых потоков. С их помощью определяют качество поверхностей, контролируют размеры изделий.

Термисторы - для дистанционного измерения температуры, противопожарной сигнализации.

В полупроводниках - это направленное движение дырок и электронов, на которое оказывает влияние электрическое поле.

В результате экспериментов было отмечено, что электрическому току в полупроводниках не сопутствует перенос вещества - в них не происходят какие-либо химические изменения. Таким образом, носителями тока в полупроводниках можно считать электроны.

Способность материала к формированию в нём электрического тока может быть определена По данному показателю проводники занимают промежуточную позицию между проводниками и диэлектриками. Полупроводники - это различные виды минералов, некоторые металлы, сульфиды металлов и т.д. Электрический ток в полупроводниках возникает из-за концентрации свободных электронов, которые могут направленно передвигаться в веществе. Сравнивая металлы и проводники, можно отметить, что существует различие между температурным влиянием на их проводимость. Повышение температуры ведёт к уменьшению У полупроводников показатель проводимости увеличивается. Если в полупроводнике увеличится температура, то движение свободных электронов будет более хаотичным. Это связано с повышением числа столкновений. Однако в полупроводниках, по сравнению с металлами, существенно повышается показатель концентрации свободных электронов. Данные факторы оказывают противоположное влияние на проводимость: чем больше столкновений, тем меньше проводимость, чем больше концентрация, тем она выше. В металлах нет зависимости между температурой и концентрацией свободных электронов, так что с изменением проводимости при повышении температуры только понижается возможность упорядоченного перемещения свободных электронов. Что касается полупроводников, то показатель влияния повышения концентрации более высокий. Таким образом, чем больше будет расти температура, тем большей будет проводимость.

Существует взаимосвязь между движением носителей заряда и таким понятием, как электрический ток в полупроводниках. В полупроводниках появление носителей зарядов характеризуется различными факторами, среди которых особо важными являются температура и чистота материала. По чистоте полупроводники делятся на примесные и собственные.

Что касается собственного проводника, то влияние примесей при определённой температуре не может считаться для них существенным. Поскольку в полупроводниках ширина запрещённой зоны невелика, в собственном полупроводнике, когда температура достигает происходит полное заполнение валентной зоны электронами. Но зона проводимости является полностью свободной: в ней нет электропроводимости, и она функционирует как идеальный диэлектрик. При других температурах существует вероятность того, что при тепловых флуктуациях определённые электроны могут преодолеть потенциальный барьер и оказаться в зоне проводимости.

Эффект Томсона

Принцип термоэлектрического эффекта Томсона: когда пропускают электрический ток в полупроводниках, вдоль которых существует температурный градиент, в них, кроме джоулева тепла, будет происходить выделение или поглощение дополнительных количеств тепла в зависимости от того, в каком направлении будет течь ток.

Недостаточно равномерное нагревание образца, имеющего однородную структуру, оказывает влияние на его свойства, в результате чего вещество становится неоднородным. Таким образом, явление Томсона является специфическим явлением Пельте. Единственная разница заключается в том, что различный не химический состав образца, а неординарность температуры вызывает эту неоднородность.

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)

Зонная модель электронно-дырочной проводимости полупроводников

При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны Е V промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Е g .Выше запрещенной зоны расположена зона разрешенных для электронов энергетических состояний – зона проводимости Е c .


Зона проводимости при 0 К полностью свободна, а валентная зона полностью занята. Подобные зонные структуры характерны для кремния, германия, арсенида галлия (GaAs), фосфида индия (InP) и многих других твердых тел, являющихся полупроводниками.

При повышении температуры полупроводников и диэлектриков электроны способны получать дополнительную энергию, связанную с тепловым движением kT . У части электронов энергии теплового движения оказывается достаточно для перехода из валентной зоны в зону проводимости, где электроны под действием внешнего электрического поля могут перемещаться практически свободно.

В этом случае, в цепи с полупроводниковым материалом по мере повышения температуры полупроводника будет нарастать электрический ток. Этот ток связан не только с движением электронов в зоне проводимости, но и с появлением вакантных мест от ушедших в зону проводимости электронов в валентной зоне, так называемых дырок . Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Электроны забрасываются в зону проводимости с уровня Ферми , который оказывается в собственном полупроводнике расположенным посередине запрещенной зоны (рис. 9.4).

Существенно изменить проводимость полупроводников можно, введя в них очень небольшие количества примесей. В металлах примесь всегда уменьшает проводимость. Так, добавление в чистый кремний 3 % атомов фосфора увеличивает электропроводность кристалла в 10 5 раз.

Небольшое добавление примеси к полупроводнику называется легированием.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью .

Различают два типа примесной проводимости электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.

Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)

На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Электронно-дырочный переход. Диоды и транзисторы

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n p -переход) – это область контакта двух полупроводников с разными типами проводимости.

На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Способность n p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

На рисунке 9.8 приведена типичная вольт - амперная характеристика кремниевого диода.

Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами . Транзисторы бывают двух типов: p n p -транзисторы и n p n -транзисторы. В транзисторе n p n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа (рис.9.9).


В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).



Понравилась статья? Поделитесь с друзьями!