Фотолюминесценция применение. Люминесценция, виды люминесценции

Фотолюминесценция - свечение, возбуждаемое в среде светом разной длиной волны. В зависимости от способа возбуждения наряду с фотолюминесценцией в оптике широкие исследования проводятся с электролюминесценцией, биолюминесценцией, триболюминесценцией и т. д. По-видимому, понятие флуоресценция описывает то же явление, что и фотолюминесценция. Что касается понятия фосфоресценция , то оно связано в первую очередь с твердотельными средами, носившими ранее название кристаллофосфоров.

Энциклопедичный YouTube

    1 / 3

    Люминесценция - Физика в опытах и экспериментах

    15x4 - 15 минут о люминесценции

    РАДИЙ 226 - Радиоактивный люминофор! Советский СПД на сульфиде радия! ХИМИЯ

    Субтитры

Виды фотолюминесценции

  • Резонансное излучение - простейший случай фотолюминесценции. В этом случае, излучение на выходе среды происходит на той же частоте , что и частота падающего света. Этот случай хорошо иллюстрируют опыты американского оптика Вуда (R.Wood), наблюдавшего резонансное взаимодействие светового излучения с помещенными в кювету атомарными парами натрия .
  • При фотолюминесценции молекулярных и других - атомарных, наноразмерных сред излучение обычно подчиняется правилу Стокса , то есть частота испускаемого света фотолюминесценции обычно меньше, чем частота падающего. Однако, это правило часто нарушается и наряду со стоксовой наблюдается антистоксова часть спектра , то есть происходит излучение частоты, большей, чем частота возбуждающего света. Отметим, что, как правило, в общем случае, в отличие от резонансного излучения, упомянутого в начале статьи, ширина спектра фотолюминесценции оказывается большей, чем ширина спектра возбуждающего фотолюминесценцию излучения.

Эксперименты по фотолюминесценции, выполненные как в случае простых систем - атомарных, так и в ещё более сложных, чем молекулы средах, например, в случае наночастиц , помещенных в аморфную среду (жидкость или стекло) подтверждают правило Стокса в полной мере. Это следует из многочисленных экспериментов, выполненных с использованием лазеров, позволяющих осуществлять возбуждение среды в широком диапазоне частот. В этом случае, как правило, с уменьшением частоты возбуждающего излучения происходит изменение и сдвиг в стоксову область частоты максимального пика спектра фотолюминесценции, что не мешает при соблюдении определенных условий резонанса появлению антистоксовой части спектра. При фотолюминесценции энергия возбуждающего излучения переходит не только в энергию испускаемого излучения, но также и в энергию колебательного, вращательного и поступательного движения молекул или атомов, то есть в тепловую энергию (см. безызлучательная релаксация).

Фотолюминесценция и закон сохранения энергии

Можно показать, что квантовый выход (отношение числа испускаемых световых квантов к числу возбуждающих световых квантов) оказывается меньше единицы.

Для явления фотолюминесценции закон сохранения энергии имеет следующий вид h ν i = 2 h ν − h ν i j {\displaystyle h\nu _{i}=2h\nu -h\nu _{ij}} , где - энергия квантов светового излучения , используемого для возбуждения фотолюминесценции. Величина ν {\displaystyle \nu } - частота этого излучения. Величина соответствует энергии квантов излучения фотолюминесценции, а величина характеризует электронные переходы в атоме , молекуле или иной исследуемой среде, на которых происходит безызлучательная релаксация, вызывающая нагрев фотолюминесцирующей среды. В случае непрерывного спектра частоты h ν i j {\displaystyle h\nu _{ij}} характеризуют гармоники , на которые данный спектр может быть разложен. Этой величине соответствует достаточно широкий спектр частот, включающий всевозможные виды уширения спектральной линии , соответствующей частоте . Если h ν {\displaystyle h\nu } меньше h ν i j {\displaystyle h\nu _{ij}} , то имеет место стоксова фотолюминесценция, и, наоборот, для случая, когда величина h ν {\displaystyle h\nu } больше h ν i j {\displaystyle h\nu _{ij}} - антистоксова. Частота ν {\displaystyle \nu } , по существу, есть среднее арифметическое между частотой ν i j {\displaystyle \nu _{ij}} , на которой происходит поглощение избытка энергии, не преобразованной в излучение фотолюминесценции, и частотой ν i {\displaystyle \nu _{i}} (одной из частотных компонент), присутствующей в спектре излучения фотолюминесценции. Из закона сохранения энергии следует известное в фотолюминесценции правило зеркальной симметрии. Действительно, из закона сохранения энергии для частот, участвующих в процессе фотолюминесценции, мы имеем соотношение симметрии: h ν i j − h ν = h ν − h ν i {\displaystyle h\nu _{ij}-h\nu =h\nu -h\nu _{i}} . Родившееся на частоте фотолюминесценции излучение h ν i {\displaystyle h\nu _{i}} в диспергирующей среде распространяется с замедлением, обусловленным локальными, связанными с электронными переходами (в атоме, молекуле) изменениями показателя преломления среды. По-видимому, с этим обстоятельством связано наблюдаемое при фотолюминесценции запаздывание световых процессов.

Фотолюминесценция и аксионы

Поиск кандидата на роль элементарной частицы - аксиона осуществляется на разных участках спектра (от единиц электрон-вольт до 1 МэВ). Заслуживает внимания обстоятельство, согласно которому наблюдаемое излучение фотолюминесценции удовлетворяет необходимому и достаточному условию присутствия аксионов в случае почти резонансного взаимодействия оптического излучения и барионного вещества. В электрическом (магнитном) поле ядра атомов (молекул) за счет слияния пар фотонов действующего на атомы среды излучения возможно появление аксионов. Согласно существующим теоретическим представлениям их распад на новую пару фотонов на частотах, отсутствующих в действующем на барионное вещество излучении, может свидетельствовать о присутствии аксионов. Закон сохранения энергии для явления фотолюминесценции, рассмотренный выше, такое перераспределение энергии между исходной парой фотонов −2 h ν {\displaystyle h\nu } и фотонами, вновь появившимися h ν i j {\displaystyle h\nu _{ij}} и h ν i {\displaystyle h\nu _{i}} подтверждает. Наблюдателю доступным оказывается излучение на частоте h ν i {\displaystyle h\nu _{i}} , в то время как фотоны, энергия которых равна

  • Оглуздин В. Е. Явление люминесценции и замедление света//Известия РАН. Серия физическая.-2006 Год.-Т.70.-С.418-421.
  • Оглуздин В. Е. Роль аксионов в оптических экспериментах.- Инженерная физика.- 2015, № 9
  • Свечение вещества (т. е. испускание видимого света), обусловленное переходами атомов и молекул вещества с высших энергетических уровней на низшие, называется люминесценцией, или холодным

    свечением. Люминесценции должно предшествовать возбуждение атомов и молекул вещества. После устранения возбудителя люминесценция продолжается в течение некоторого промежутка времени, зависящего от природы люминесцирующего вещества и изменяющегося в широких пределах: от миллиардных долей секунды до многих часов и даже суток. По продолжительности «послесвечения» люминесценция подразделяется на флуоресценцию (кратковременное «послесвечение») и фосфоресценцию (длительное «послесвечение»). Впрочем, это подразделение весьма условно.

    Свечение, обусловленное тепловым движением атомов и молекул (т. е. тепловое излучение), не относится к люминесценции. К ней не относятся также отражение и рассеяние света и некоторые другие виды свечения тела, прекращающиеся одновременно с устранением причины, вызвавшей их.

    Чтобы отличить люминесценцию от этих видов свечения, ей можно дать следующее определение: люминесценция есть свечение вещества, являющееся избытком над тепловым излучением этого вещества при данной температуре и имеющее конечную длительность (т. е. не прекращающееся одновременно с устранением вызвавшей его причины).

    Вещества, обладающие ярко выраженной способностью люминесцировать, называются люминофорами.

    В зависимости от способа возбуждения люминесценции различают несколько ее видов.

    1. Фотолюминесценция возбуждается видимым и ультрафиолетовым излучением. Примером фотолюминесценции может служить свечение часового циферблата и стрелок, окрашенных соответствующим люминофором.

    2. Рентгенолюминесценция возбуждается рентгеновскими лучами; ее можно наблюдать, например, на экране рентгеновского аппарата.

    3. Радиолюминесценция возбуждается радиоактивным излучением (см. § 139); наблюдается, например, на экране сцинтилляционных счетчиков (см. § 140).

    4. Катодолюминесценция возбуждается электронным лучом; наблюдается на экранах осциллографа, телевизора, радиолокатора и других электроннолучевых приборов. В качестве люминофора, покрывающего экран, используются главным образом сульфиды и селениды цинка и кадмия.

    5. Электролюминесценция возбуждается электрическим полем; имеет место, например, в газоразрядных трубках.

    6. Хемилюминесценция возбуждается химическими процессами в веществе. Таковы, например, свечение белого фосфора, гниющей древесины, а также свечения некоторых споровых растений, насекомых, морских животных и бактерий.

    Таким образом, люминесценция является своеобразным генератором (квантовым генератором), непосредственно преобразующим энергию электромагнитных волн различной длины, а также механическую, электрическую и химическую энергию в энергию видимого света.

    Степень преобразования поглощаемой энергии в энергию люминесценции характеризуется энергетическим выходом люминесценции:

    Спектр люминесценции зависит от природы люминесцирующего вещества и вида люминесценции.

    Из всех перечисленных видов люминесценции рассмотрим подробнее только фотолюминесценцию, имеющую большое практическое применение.

    Экспериментальное изучение спектров фотолюминесценции показало, что они, как правило, отличаются от спектров возбуждающего излучения.

    Спектр люминесценции и его максимум сдвинуты в сторону более длинных волн относительно спектра, использованного для возбуждения.

    Эту закономерность, называемую правилом Стокса, легко объяснить на основе квантовой теории. Энергия поглощаемого кванта частично переходит в другие виды энергии, например в теплоту. Поэтому энергия кванта люминесценции должна быть меньше Следовательно, где длины волн, соответствующие излученному и поглощенному квантам.

    Иногда может иметь место так называемая антистоксовская люминесценция, при которой Это бывает в случае, когда квант поглощался уже возбужденной молекулой. Тогда в квант люминесценции входит не только часть энергии поглощенного кванта, но и энергия возбуждения молекулы. Понятно, что в этом случае

    Существенной особенностью жидких и твердых люминофоров является независимость их спектра люминесценции от длины волны возбуждающего света. Благодаря этому по спектру фотолюминесценции можно судить о природе вещества жидких и твердых люминофоров.

    Энергетический выход люминесценции может при некоторых условиях быть очень большим, достигающим 0,8; у жидких и твердых тел он зависит от длины волны возбуждающего света. Согласно закону Вавилова,

    энергетический выход люминесценции сначала растет пропорционально длине волны возбуждающего света а затем (достигнув максимума) резко падает до нуля.

    На рис. 365 приведен график зависимости от полученный Вавиловым для раствора флуоресцеина.

    Как и правило Стокса, закон Вавилова объясняется квантовыми свойствами света. Действительно, представим себе наиболее благоприятный случай, когда каждый квант возбуждающего света приводит к образованию кванта люминесценции Тогда

    энергетический выход люминесценции, очевидно, равен отношению этих квантов:

    Но X не зависит от (у жидких и твердых люминофоров). Следовательно, в последней формуле при изменении будет изменяться только т. е. энергетический выход будет пропорционален Срыв кривой энергетического выхода происходит при больших длинах волн которым соответствуют слишком малые кванты уже не способные возбуждать люминесценцию.

    Люминесценция находит широкое применение в осветительной технике: на ней, например, основана люминесцентная лампа. Люминесцентная лампа состоит из стеклянной трубки, у которой внутренняя поверхность стенок покрыта тонким слоем люминофора (рис. 366). В торцы трубки впаяны электроды. Трубка наполнена парами ртути и аргоном; парциальное давление паров ртути составляет около 1 Па, парциальное давление аргона - 400 Па.

    Люминесцентная лампа включается в электросеть последовательно с дросселем и стартером (служащим для предварительного разогрева электродов).

    Возникающий в лампе газовый разряд вызывает электролюминесценцию паров ртути. В спектре этой люминесценции наряду с видимым светом имеется ультрафиолетовое излучение (длиной волны оно возбуждает фотолюминесценцию люминофора, нанесенного на стенки лампы. Таким образом, в люминесцентной лампе совершается двойное преобразование энергии: электрическая энергия превращается в энергию ультрафиолетового излучения паров ртути, которая в свою очередь превращается в энергию видимого излучения люминофора.

    Изменяя состав люминофора, можно изготовлять лампы требуемым спектром фотолюминесценции. Таким путем изготовляются люминесцентные лампы белого света, тепло-белого света, холодно-белого сгета и дневного света.

    Спектральный состав излучения ламп дневного света близок к рассеянному евету северной части небосвода; лампа холодно-белого света имеет спектр, подобный спектру прямой солнечной радиации.

    В связи с этим люминесцентные лампы успешно применяются для «досвечивания» сельскохозяйственных культур, выращиваемых на защищенном грунте.

    Распределение энергии в спектре излучения лампы дневного света показано на рис. 367.

    Люминесцентные лампы экономичны (их световой коэффициент полезного действия в 10-20 раз больше, чем у ламп накаливания) и весьма долговечны (срок службы доходит до 10 000 часов).

    Другим важным применением люминесценции является люминесцентный анализ - метод определения состава вещества по спектру его фотолюминесценции, возбуждаемой ультрафиолетовыми лучами. Будучи очень чувствительным, люминесцентный анализ позволяет обнаружить малейшие изменения в химическом составе вещества и тем самым выявлять различие между объектами, кажущимися совершенно одинаковыми. Этим методом можно, например, выявлять самые начальные стадии загнивания пищевых продуктов (люминесцентный контроль свежести продуктов), обнаруживать следы нефти в пробах почвы, извлеченных из буровых скважин (люминесцентная разведка нефти), и т. п.

    С помощью фотолюминесценции можно обнаружить тончайшие трещины на поверхности деталей машин и других изделий (люминесцентная дефектоскопия). Для этого поверхность исследуемого изделия смазывают жидким люминофором. Через 15-20 мин поверхность обмывают и вытирают. Однако в трещинах поверхности люминофор остается. Свечение этого люминофора (при ультрафиолетовом облучении изделия) отчетливо обрисует конфигурацию трещин.

    Укажем, наконец, на использование фотолюминесценции для маскировочного освещения и декоративных целей (применение флуоресцирующих и фосфоресцирующих красок).

    При фотолюминесценции атомы люминесцирующего вещества излучают совершенно несогласованно (беспорядочно): их излучения разновременны, имеют различные частоты и разности фаз, распространяются по всевозможным направлениям. Поэтому яркость фотолюминесценции оказывается незначительной. Однако в последние годы удалось найти способ искусственно вызывать когерентное одинаково направленное излучение множества атомов, создающее узкий пучок монохроматического света, превосходящего по яркости обычную люминесценцию в миллионы раз. Прибор, в котором осуществляется такое излучение, назван оптическим квантовым генератором, или лазером.

    Название «лазер» образовано из первых букв английских слов: Light Amplification by Stimylated Emission of Radiation (усиление света посредством вынужденного излучения). В зависимости от применяемого рабочего вещества различают кристаллические, газовые и жидкостные лазеры.

    Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в одинаковые возбужденные состояния, так называемые метастабильные состояния, в которых атом пребывает сравнительно долгое

    время (значительно превышающее Для этого рабочему веществу передается достаточная электромагнитная энергия от специального источника (метод «накачки»). Теперь в рабочем веществе лазера (имеющем форму тонкого длинного цилиндра, одним основанием которого является зеркало, другим - частично прозрачное зеркало) начнутся почти одновременные вынужденные переходы всех возбужденных атомов в нормальное состояние. Эти переходы сопровождаются почти одновременным испусканием множества световых квантов (фотонов) , имеющих одинаковую частоту и фазу и движущихся по одному направлению - вдоль оси лазера. Поток этих фотонов и образует узкий, мощный пучок монохроматического света, выходящий из лазера.

    Лазер дает световой пучок очень малой расходимости. Будучи, например, направлен на Луну, такой пучок создает на ее поверхности световое пятно диаметром всего лишь в (луч обычного прожектора создал бы на таком же расстоянии световое пятно диаметром в Плотность энергии в луче лазера исключительно велика - тысячи и десятки тысяч ; причем расчеты показывают, что это еще далеко не предельные значения возможных плотностей. С помощью линзы можно сфокусировать свет лазера так, что он мгновенно расплавит и испарит освещенный участок любого материала.

    Все это делает лазер исключительно перспективным прибором, уже сейчас широко используемым во многих областях науки и техники. Сварка микрообъектов, сверление и резка сверхтвердых материалов, ускорение хода химических реакций, передача световых сигналов на сверхдальние расстояния (космическая связь), глазная хирургия (разрушение опухолей на сетчатке) - таков далеко не полный перечень применений лазера.

    Отметим, что наряду с оптическими квантовыми генераторами созданы квантовые генераторы в диапазоне коротких радиоволн - мазеры

    В физике свечение люминесценции определяется как излуче-ние, избыточное над тепловым излучением тела.

    Длительность лю-минесцентного свечения значительно превышает период колебаний световой электромагнитной волны. Вещества, способные генерировать свечение люминесценции («холодный свет»), называют люминофорами. Свечение люминофоров возникает без наг-рева, длительность отличает люминесценцию от других видов хо-лодного излучения (отражение и рассеяние света, свечение Вавилова-Черенкова и др. )

    В техническом применении люминесценцию разделяют на два типа: фосфорес-ценцию и флуоресценцию.

    Первый вид представляет собой длительное "послесвечение", второй - свечение непосредственно при возбуждении. Резкой гра-ницы между ними нет; так, экран телевизора ярко светится при воз-действии на него электронного луча (флуоресценция) и слабо све-рится еще некоторое время после выключения телевизора (фосфо-ресценция); в абсолютной темноте человеческий глаз способен заметить фосфоресценцию «телевизионного» люминофора через нес-колько часов после выключения.

    В физике виды люминесценции различают по способу возбуж-дения люминофора, то есть того вещества, которое мы хотим заставить светиться.

    Катодолюминесценция: люминофор возбуждается под действием ударов электронов, сформированных в пучок. Используется она в осциллографических и радиолокационных трубках. Под воздействием управляемого электронного луча светятся экраны наших телевизоров и компьютерных мониторов. Эти же люминофоры реагируют на воздействие «бета-излучение», то есть на электроны, испускаемые радиоактивными веществами при бета-распаде ядер. Люминофоры, чувствительные к электронным ударам, обычно светятся также и под действием альфа-частиц. Следовательно, явление катодолюминесценции может использоваться в технических устройствах для обнаружения ядерных излучений (радиолюминесценция).

    Рентгенолюминесценция и Радиолюминесценция. Уже сравнительно давно выпускаются не требующие внешнего питания автономные люминесцентные светильники. Они сделаны в виде запаянных отрезков стеклянных трубок, внутренняя поверхность которых покрыта радиолюминофором , а сама трубка заполнена радиоактивным изотопом водорода - тритием. Тритий испускает электроны с энергией примерно в 5000 электронвольт, которые очень быстро поглощаются воздухом. Поэтому тритиевые светознаки относительно безопасны (пока не нарушена герметичность трубки), а служить могут свыше 10 лет.

    Фотолюминесценция. В данном случае люминофор возбуждается:

    а) видимым (дневным) светом (наблюдается самостоятельное длительное послесвечение в условиях отсутствия любого излучения, т.е. в условиях темноты),

    б) ультрафиолетовым (УФ) светом (флуоресценция - постоянное свечение в видимом диапазоне наблюдается, пока действует источник ультрафиолетового света),

    в) инфракрасным (ИК) излучением (фотолюминесцентное свечение в видимом диапазоне наблюдается пока действует источник инфракрасного излучения - например светодиода от дистанционного телевизионного пульта). Одно из технических применений этого эффекта известно всем - это люминесцентные лампы дневного света. Фотолюминесценция при ИК-излучении составляет физическую основу приборов ночного видения, систем для защиты ценных бумаг, а также индикаторов ИК, УФ и рентгеновского излучения.

    Электролюминесценция: люминофор возбуждается под дей-ствием постоянного и переменного электрического поля (электролюминесцентные конденсаторы и панели, индикаторы электрическо-го поля). Очень близко по физической сути к явлению электролю-минесценции примыкает излучение светодиодов, так называемая инжекционная электролюминесценция. Светодиоды - полупроводни-ковые точечные источники света, используемые в цифровых инди-каторах и устройствах для воспроизведения изображения. Они дают довольно яркое свечение в красной и зеленой областях спектра.

    Другие. Существует еще целый ряд специфических видов люминесценции: хеми-трибо-кандо (пламя), ионо, термолюминесценция. Их физическая сущность ясна из названий. Не опи-сывая их подробно (это сделано в «Физико-энциклопедическом словаре» и подробно - в «Физической энциклопедии» ), отметим лишь, что многие виды люминесценции уси-ливаются при воздействии электрического поля.

    Во многих слу-чаях интенсивность люминесценции повышается при применении комбинированных способов возбуждения, как, например, в слу-чае радиотермолюминесценции и электролюминесценции. А инфракрасное излучение (ИК) в момент светоотдачи фотолюминофоров способно значительно повысить затухание их послесвечения.

    Биолюминесценция получила свое название не по виду возбуждения, а по самим светящимся объектам. Биолюминесценция - это свечение биологических объектов: светляч-ков, растений и т.д.. Во многих случаях это свечение бактерий. Некоторые типы бактерий светятся за счет хемилюминесценции (в результате естественных процессов окисления); отдельные классы обладают своего рода фотолюминесценцией, при-чем каждый класс характеризуется собственным спектром излуча-емого света, по которому их можно определить.

    На этом свой-стве основаны, например, способ и устройство для обнаружения бактерий в атмосфере при облучении ультрафиолетовым светом.

    Очень характерно также для практических приложений биолюминесценции изобретение по а.с. № 559695 «Способ диагностики инфекционного гепатита путем исследования сыворотки крови, отличающийся тем, что, с целью повышения точности и сокращения времени исследования, сыворотку крови облучают светом с длиной вол-н 306-315 нм (УФ-диапазон), и регистрируют люминесценцию в области длин волн 320-600 нм (видимый диапазон), и по положению длинноволнового максимума в интервале 485-605 нм устанавливают наличие патологии» (БИ, 1977, № 20). Очевидно, при патологических изменениях в сыворотке крови образуются какие-то микробы (вирусы), излучающие свет с определенной длиной волны; этот факт и использован для и экспресс-анализа.

    В технике и лакокрасочной промышленности в основном применяются синтетические (неорганические) люминофоры - синтезированные лабораторным путем вещества, свойства которых наиболее удовлетворяют каким-либо техничес-ким функциям.

    Например, для синтеза некоторых видов фотолюминофоров применяются галофосфаты, активированные сурьмой и марганцем . Атомы этих элементов, внедренные в кристаллическую решетку галофосфатов, образуют так называемые люминесцентные центры. Поглощение и излучение энергии, то есть возбуждение и последующее высвечивание связаны с электронными переходами в пределах люминесцентного центра. Соответственно, изменение цвета свечения таких характеристических люмино-форов можно получить, варьируя вид и количество активатора.

    Поскольку при возбуждении люминесценции электронами, рентгеновским излучением, альфа-излучением энергия в основном поглощается кристаллической решеткой, то для соот-ветствующих устройств синтезируются такие люминофоры, кристал-лическая решетка которых обладает свойством передавать погло-щенную энергию к люминесцентному центру (рекомбинационные люминофоры). Как правило, в качестве таких люминофоров использу-ются халькогениды металлов второй группы менделеевской табли-цы (халькогениды - химические соединения, имеющие в составе молекулы атомы серы, селена или теллура ).

    Например, основу телевизионных лю-минофоров составляют соединения типа сернистого кадмия и сернистого цинка с соответствующими добавками . Этот же тип люминофоров используется и в электролюминесцентных панелях. Цинкосульфидные люминофоры, активированные кобальтом и медью , обла-дают длительным послесвечением (фосфоресценцией), применяются они в различных сигнальных устройствах, указателях, на шкалах приборов и на экранах запоминающих трубок. В светодиодах в основном используются фосфид и арсенид галлия, активированные селеном, теллуром, цинком, кадмием и др.

    Особый класс образуют цинкосульфидные и цинк-кадмий-сульфидные люминофоры, активированные серебром . Эти люминофоры в сме-си с прозрачными лаками служат основой люминесцентных самосве-тящихся красок, в последнее время они почти целиком вытеснили недостаточно устойчивые флуоресцентные органические красители типа родамина.

    Весьма важны для практических целей антистоксовские лю-минофоры , состоящие из фторидов и окси-хлоридов редкоземельных элементов, активированных ионами эрбия и иттербия. Эти люминофо-ры способны преобразовывать невидимое глазом инфракрасное излучение в видимое разных цветов, например, в зе-леное, красное, голубое и даже близкое ультрафиолетовое излуче-ние. При большой плотности инфракрасного излучения энергети-ческая эффективность преобразования может достигать 90%. Антистоксовские люминофоры составляют основу устройств, предназначенных для визуали-зации инфракрасного излучения, в том числе для визуализации излучения лазеров, работающих в ближней инфракрасной области.

    Конечно, запомнить все классы люминофоров вместе с их характерными функциями практически невозможно. Но для этого есть справочники. При анализе задачи важно сформулировать идеальную функцию.

    На основании вышеизложенного можно выделить три основных направления практического использования явления люминесценции и люминофоров различного вида.

    1. Люминесцентные источники света (например люминесцентные лампы, светодиоды).

    2. Индикация различного рода излучений (жидкокристаллические экраны и кинескопы, регистрирующие экраны и т.д.).

    3. Использование люминесцирующих добавок для обнаружения различного рода неоднородностей, прежде всего, дефектов типа утечек, методы неразрушающего контроля в металлургии и т.п.

    4. Изготовление фотолюминесцентных элементов безопасности (ФЭС).

    5. Производство фотолюминесцентных декоративных красящих составов и композиций.

    Рассмотрим задачу. Требуется контролировать герметичность сварных изделий. Для определенности допустим, что речь идет о сварке баков, в которых потом будет находиться горячий ядовитый газ. Такие емкости широко применяются в современной химической технологии. Существует множество способов проверки качества швов. Как правило, все они связаны с опрессовкой готовых изде-лий и тем или иным способом визуализации имеющихся дефектов сварки.

    Не разбирая их подробно, введем ограничение: контроль герметичности нужен непосредственно в процессе сварки. Достоинства такого способа очевидны, поскольку дефект может быть исправлен сразу же по ходу сварки. Будем считать, что нам уже известна сущность изобретения по а.с. № 277805г. «Способ обнаружения неплотностей в холодиль-ных агрегатах, заполненных фреоном и маслом, преимущественно домашних холодильниках, отличающийся тем, что, с целью повыше-ния точности определения мест утечек, в агрегат вместе с мас-лом вводят УФ-люминофор (флуоресцент), освещают агрегат в полузатененном помещении ультрафиолетовыми лучами и определяют место утечек по свечению люминофора в просачивающемся через неплотности масле» (БИ, 1970, № 25).

    Изобретение довольно старое и хорошо известное. Попробуем перенести его идею на решение разбираемой задачи. Технические трудности очевидны: шов еще целиком не заварен, поэтому ни о какой опрессовке и речи быть не может.

    Контрольный ответ по этой задаче: а.с. № 331271 «Спо-соб контроля герметичности сварных изделий с помощью люмино-фора, при котором на изделие направляют ультрафиолетовые лучи и судят о герметичности по свечению люминофора, отличающихся тем, что с целью повышения производительности путем осуществле-ния контроля непосредственно в процессе сварки, люминофорную суспензию наносят на внутреннюю поверхность свариваемых дета-лей перед сваркой, а в качестве источника ультрафиолетовых лучей используют сварочную дугу».

    Идея люминесцирующих добавок позволила улучшить и тра-диционные виды дефектоскопии.

    Так, известен способ определения повреждений поверхности (в виде микротрещин) при помощи флу-оресцентного магнитного порошка; порошок концентрируется около краев трещины и после облучения ультрафиолетовым излучением «высвечивает» местонахождение трещины. Та же идея лежит в основе изобретения способа неразрушающего обнаружения дефектов и трещин на поверхности образца путем выявления агломератов частиц, состоящих из органического флуоресцирующего вещества и магнитного порошка.

    В заключение этого раздела приведем несколько примеров, иллюстрирующих техническое применение различных видов люми-несценции.

    Радиационный дозиметр , который содержит порошок из мате-риала, обладающего термолюминесцентными свойствами, укреплен-ный на основании из графита или другого материала, способного нагреваться (т.е. поглощать энергию) под действием излучения в диапазоне радиочастот.

    В а.с. № 459802 предлагается запоминающий элемент , обеспечивающий оптическое считывание ин-формации. Элемент состоит из слоев проводника (электрода), полупроводника, диэлектрика с остаточной поляризацией (электрета) и слоя электролюминофора, покрытого вторым полупрозрачным электродом. Электрический сигнал, приходящий на элемент, вызывает изменение в полупроводнике, которые, в свою очередь, изменяют поляризацию в диэлектрике. Соответствующие изменения электрического поля визуализируются люминофором.

    Интересно также а.с.№636513 « Способ определения интен-сивности собственного свечения воздуха, обусловленного хемилюминесценцией веществ, входящих в его состав, отличающийся тем, что, с целью определения токсичности загрязненного воз-духа, регистрируют спектр свечения в области, где хемилюминесценция обуславливается токсичными веществами, входящими в его состав» (БИ, 1978, № 45) .

    Эффект электролюминесценции как эффект индикации напряженнос-ти переменного электрического поля использован при разработке принципиально новой конструкции вольтметра для измерения высоких напряжений. Сильная зависимость яркости свечения электролюминофоров (сульфид цинка, активированный медью) от приложенного напряже-ния обеспечивает весьма высокую чувствительность прибора, а ста-бильность характеристик люминофора - рекордную точность измерения (около 0,1 %) даже на верхних пределах измерения.

    Люминесценция - это излучение света определенными материалами в относительно холодном состоянии. Она отличается от излучения раскаленных тел, например или угля, расплавленного железа и проволоки, нагреваемой электрическим током. Излучение люминесценции наблюдается:

    • в неоновых и люминесцентных лампах, телевизорах, радарах и экранах флюороскопов;
    • в органических веществах, таких как люминол или люциферин в светлячках;
    • в некоторых пигментах, используемых в наружной рекламе;
    • при молнии и северном сиянии.

    Во всех этих явлениях световое излучение не является результатом нагревания материала выше комнатной температуры, поэтому его называют холодным светом. Практическая ценность люминесцентных материалов заключается в их способности трансформировать невидимые формы энергии в

    Источники и процесс

    Явление люминесценции происходит в результате поглощения материалом энергии, например, от источника ультрафиолетового или рентгеновского излучения, пучков электронов, химических реакций и т. д. Это приводит атомы вещества в возбужденное состояние. Так как оно неустойчиво, материал возвращается в свое исходное состояние, а поглощенная энергия выделяется в виде света и/или тепла. В процессе задействованы только внешние электроны. Эффективность люминесценции зависит от степени превращения энергии возбуждения в свет. Число материалов, обладающих достаточной для практического применения эффективностью, относительно небольшое.

    Люминесценция и накаливание

    Возбуждение люминесценции не связано с возбуждением атомов. Когда горячие материалы начинают светиться в результате накаливания, их атомы находятся в возбужденном состоянии. Хотя они вибрируют уже при комнатной температуре, этого достаточно, чтобы излучение происходило в дальней инфракрасной области спектра. С повышением температуры частота электромагнитного излучения смещается в видимую область. С другой стороны, при очень высоких температурах, которые создаются, например, в ударных трубах, столкновения атомов могут быть настолько сильными, что электроны отделяются от них и рекомбинируют, испуская свет. В этом случае люминесценция и накаливание становятся неразличимыми.

    Люминесцентные пигменты и красители

    Обычные пигменты и красители обладают цветом, так как они отражают ту часть спектра, которая комплементарна поглощенной. Небольшая часть энергии преобразуется в тепло, но заметного излучения не происходит. Если, однако, люминесцентный пигмент поглощает дневной свет на определенном участке спектра, он может излучать фотоны, отличающиеся от отраженных. Это происходит в результате процессов внутри молекулы красителя или пигмента, благодаря которым ультрафиолет может быть преобразован в видимый, например, синий свет. Такие методы люминесценции используются в наружной рекламе и в стиральных порошках. В последнем случае «осветлитель» остается в ткани не только для отражения белого, но и для преобразования ультрафиолетового излучения в синий цвет, компенсирующий желтизну и усиливающий белизну.

    Ранние исследования

    Хотя молнии, северное сияние и тусклое свечение светлячков и грибов всегда были известны человечеству, первые исследования люминесценции начались с синтетического материала, когда Винченцо Каскариоло, алхимик и сапожник из Болоньи (Италия), в 1603 г. нагрел смесь сульфата бария (в виде барита, тяжелого шпата) с углем. Порошок, полученный после охлаждения, ночью испускал голубоватое свечение, и Каскариоло заметил, что оно может быть восстановлено путем воздействия на порошок солнечного света. Вещество было названо «ляпис солярис», или солнечный камень, потому что алхимики надеялись, что оно способно превращать металлы в золото, символом которого является солнце. Послесвечение вызвало интерес многих ученых того периода, дававших материалу и другие названия, в том числе «фосфор», что означает «носитель света».

    Сегодня название «фосфор» используется только для химического элемента, в то время как микрокристаллические люминесцирующие материалы называются люминофором. «Фосфор» Каскариоло, по-видимому, был сульфидом бария. Первым коммерчески доступным люминофором (1870 г.) стала «краска Бальмена» - раствор сульфида кальция. В 1866 году был описан первый стабильный люминофор из сульфида цинка - один из важнейших в современной технике.

    Одно из первых научных исследований люминесценции, проявляющейся при гниении древесины или плоти и в светлячках, было выполнено в 1672 году английским ученым Робертом Бойлем, который, хотя и не знал о биохимическом происхождении этого света, тем не менее установил некоторые из основных свойств биолюминесцентных систем:

    • свечение холодное;
    • оно может быть подавлено такими химическими агентами, как спирт, соляная кислота и аммиак;
    • излучение требует доступа к воздуху.

    В 1885-1887 годах было замечено, что неочищенные экстракты, полученные из вест-индийских светлячков (огненосных щелкунов) и из моллюсков фолад, при смешивании производят свет.

    Первыми эффективными хемилюминесцентными материалами были небиологические синтетические соединения, такие как люминола, открытая в 1928 году.

    Хеми- и биолюминесценция

    Большая часть энергии, выделяющейся в химических реакциях, особенно реакциях окисления, имеет форму тепла. В некоторых реакциях, однако, ее часть используется для возбуждения электронов до более высоких уровней, а во флуоресцентных молекулах до возникновения хемилюминесценции (ХЛ). Исследования показывают, что ХЛ является универсальным явлением, хотя интенсивность люминесценции бывает настолько мала, что требуется использование чувствительных детекторов. Есть, однако, некоторые соединения, которые демонстрируют яркую ХЛ. Наиболее известным из них является люминол, который при окислении пероксидом водорода может давать сильный синий или сине-зеленый свет. Другие сильные ХЛ-вещества - люцигенин и лофин. Несмотря на яркость их ХЛ, не все они эффективны при преобразовании химической энергии в световую, т. к. менее 1 % молекул излучают свет. В 1960-е годы было обнаружено, что сложные эфиры щавелевой кислоты, окисленные в безводных растворителях в присутствии сильно флуоресцирующих ароматических соединений, излучают яркий свет с эффективностью до 23 %.

    Биолюминесценция представляет собой особый тип ХЛ, катализируемой ферментами. Выход люминесценции таких реакций может достигать 100 %, что означает, что каждая молекула реагирующего люциферина переходит в излучающее состояние. Все известные сегодня биолюминесцентные реакции катализируются реакциями окисления, протекающими в присутствии воздуха.

    Термостимулированная люминесценция

    Термолюминесценция означает не температурное излучение, но усиление светового излучения материалов, электроны которых возбуждены под действием тепла. Термостимулированная люминесценция наблюдается у некоторых минералов и прежде всего у кристаллофосфоров после того, как они были возбуждены светом.

    Фотолюминесценция

    Фотолюминесценция, которая возникает под действием электромагнитного излучения, падающего на вещество, может производиться в диапазоне от видимого света через ультрафиолетовый до рентгеновского и гамма-излучения. В люминесценции, вызванной фотонами, длина волны излучаемого света, как правило, равна или больше длины волны возбуждающего (т. е. равной или меньшей энергии). Эта разница в длине волны обусловлена ​​преобразованием поступающей энергии в колебания атомов или ионов. Иногда, при интенсивном воздействии лучом лазера, испускаемый свет может иметь более короткую длину волны.

    Тот факт, что ФЛ может возбуждаться под действием ультрафиолетового излучения, был обнаружен немецким физиком Иоганном Риттером в 1801 г. Он заметил, что люминофоры ярко светятся в невидимой области за фиолетовой частью спектра, и таким образом открыл УФ-излучение. Превращение УФ в видимый свет имеет большое практическое значение.

    При высоком давлении частота увеличивается. Спектры больше не состоят из одной спектральной линии 254 нм, а энергия излучения распределена по спектральным линиям, соответствующим различным электронным уровням: 303, 313, 334, 366, 405, 436, 546 и 578 нм. Ртутные лампы высокого давления используют для освещения, так как 405-546 нм соответствуют видимому голубовато-зеленому свету, а при трансформации части излучения в красный свет с помощью люминофора в итоге получается белый.

    Когда молекулы газа возбуждаются, их спектры люминесценции показывают широкие полосы; не только электроны поднимаются на уровни более высокой энергии, но одновременно возбуждаются колебательные и вращательные движения атомов в целом. Это происходит потому, что колебательные и вращательные энергии молекул составляют 10 -2 и 10 -4 от энергий переходов, которые, складываясь, образуют множество немного отличающихся длин волн, составляющих одну полосу. В более крупных молекулах есть несколько перекрывающих друг друга полос, по одной для каждого вида перехода. Излучение молекул в растворе преимущественно лентовидное, что вызвано взаимодействием относительно большого числа возбужденных молекул с молекулами растворителя. В молекулах, как и в атомах, в люминесценции участвуют внешние электроны молекулярных орбиталей.

    Флуоресценция и фосфоресценция

    Эти термины можно различать не только на основании длительности свечения, но и по способу его производства. Когда электрон возбуждается до синглетного состояния со сроком пребывания в нем 10 -8 с, из которого он может легко вернуться в основное, вещество излучает свою энергию в виде флуоресценции. Во время перехода спин не изменяется. Базовое и возбужденное состояния имеют подобную кратность.

    Электрон, однако, можно поднять на более высокий энергетический уровень (называемый "возбужденное триплетное состояние") с обращением его спина. В квантовой механике переходы из триплетных состояний в синглетные запрещены, и, следовательно, время их жизни значительно больше. Поэтому люминесценция в этом случае имеет гораздо более длительный срок: наблюдается фосфоресценция.

    Возбуждаемая в веществе под действием оптического излучения ультрафиолетового или видимого диапазонов. Фотолюминесценция подчиняется закону Стокса – Ломмеля : максимум спектра излучения всегда смещен по отношению к максимуму спектра поглощения люминофора в сторону более длинных волн. Это смещение объясняется наличием «стоксовых» потерь за счет того, что часть поглощаемой люминофором энергии рассеивается в кристаллической решетке, переходя в тепловую энергию. Если облучить вещество (люминофор) в любом агрегатном состоянии ультрафиолетовым или видимым электромагнитным излучением, фотолюминесцентное изучение испускается после того, как в возбужденном светом веществе заканчиваются процессы релаксации и устанавливается квазиравновесие. Время задержки составляет 10 -12 - 10 -10 с.

    При высокой плотности оптического возбуждения (например, с помощью лазера) в некоторых материалах могут наблюдаться существенные отклонения от закона Стокса-Ломеля. Это происходит при взаимодействии падающих квантов света с возбужденными атомами вещества, когда энергия кванта добавляется к уже имеющейся энергии возбуждения. Тогда в небольшой области спектра излучения может регистрироваться люминесценция более коротковолновая, чем длина волны падающего излучения - антистоксовая люминесценция. Такие люминофоры получили название антистоксовых. С их помощью можно преобразовывать инфракрасное излучение лазеров в видимый свет.

    Отношение числа фотонов люминесцентного излучения к числу фотонов возбуждающего излучения называется квантовым выходом h фотолюминесценции. В результате межмолекулярных взаимодействий, а в сложных молекулах и вследствие внутримолекулярных процессов, может происходить переход электронной энергии возбуждения в энергию движения молекул, т. е. в тепловую энергию. Такие процессы называются тушением фотолюминесценции, они приводят к тому, что квантовый выход фотолюминесценции оказывается меньше единицы. В отсутствие тушения фотолюминесценции, квантовый выход фотолюминесценции равен единице. Согласно закону С. И. Вавилова , квантовый выход фотолюминесценции постоянен в широкой области длин волн возбуждающего излучения и резко уменьшается при длинах волн, превышающих максимум спектра фотолюминесценции. Если при поглощении света происходит не только возбуждение, но и фотоионизация, фотолюминесценция возникает в результате рекомбинации электронов с ионизованными центрами свечения, и выход фотолюминесценции и ее свойства зависят от того, где поглощается возбуждающий свет - в центрах свечения или в кристаллической решетке основного вещества.

    Фотолюминесценция широко используется в технике, так как около 10% всей вырабатываемой энергии идет на цели освещения, а применение фотолюминофоров, используемых в



    Понравилась статья? Поделитесь с друзьями!