Хемотаксис в патологии. Хемотаксис

Хемотаксис (от Хемо... и таксис (См. Таксисы))

двигательные реакции свободно передвигающихся растительных и простейших животных организмов, а также клеток (зооспор, сперматозоидов, лейкоцитов и др.) под влиянием химических раздражителей. Х. может быть положительным - движение направлено к источнику химического раздражителя (по градиенту его концентрации в воздухе или воде), и отрицательным - движение направлено от источника. Явление Х. известно для ряда микроорганизмов и беспозвоночных животных (Х. можно считать и движение насекомых под влиянием различных феромонов (См. Феромоны)). Природа веществ, вызывающих Х., у разных организмов различна. Так, агрегирующим (собирающим) веществом почвенных миксомицетов рода Dictyostelium служит циклический аденозинмонофосфат (см. Циклические нуклеотиды); женские половые клетки водных грибов Allomyces выделяют изопреноид сиренин, являющийся причиной Х. мужских половых клеток по направлению к ним. Механизм восприятия химического сигнала (Хеморецепция) и путь от его получения до соответствующей физиологической реакции - ориентированного движения - окончательно не выяснены. Х. играет роль в разыскивании организмом пищи, в оплодотворении у высших растений и животных, в Фагоцитоз е.

Лит.: Behaviour of microorganisms, L. - N. Y., 1973; Chemotaxis: its biology and biochemistry, ed. E. Sorkin, Basel - , 1974.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Хемотаксис" в других словарях:

    Хемотаксис … Орфографический словарь-справочник

    Движение подвижных организмов под влиянием одностороннего раздражения хим. веществами. См. также таксис. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) Хемотаксис направленное движение бактерий, клеток крови или др … Словарь микробиологии

    Химиотаксис Словарь русских синонимов. хемотаксис сущ., кол во синонимов: 1 химиотаксис (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    См. Таксисы … Большой Энциклопедический словарь

    - (от хемо... и таксисы), перемещение свободно передвигающихся организмов под влиянием химических веществ. Может быть положительным (движение направлено к источнику химического раздражителя) и отрицательным (от источника). Явление хемотаксиса… … Экологический словарь

    ХЕМОТАКСИС - ХЕМОТАКСИС, явление движения низших организмов и подвижных клеток высших животных к определенным хим. раздражителям или от них. В мире растений, когда имеется не передвижение в пространстве, а лишь изменение направления роста, явление это… … Большая медицинская энциклопедия

    хемотаксис - Свойство живых свободноперемещающихся клеток (бактерий, макрофагов, нейтрофилов и др.) двигаться на встречу или прочь от специфического химического вещества Тематики биотехнологии EN… … Справочник технического переводчика

Эмиграция лейкоцитов - активный процесс их выхода из просвета микрососудов в межклеточное пространство.

Хронологическая упорядоченность эмиграции разных видов лейкоцитов в очаг острого воспаления обусловлена стадийностью образования и экспрессии на их поверхности молекул адгезии, а также стадийностью появления факторов хемотаксиса. К последним относят факторы комплемента С5а, фактор 4 тромбоцитов, метаболиты арахидоновой кислоты, лимфокины и другие.

Процесс эмиграции последовательно проходит стадии краевого стояния лейкоцитов, их адгезии к эндотелию и проникновения через сосудистую стенку, а также направленного движения лейкоцитов в очаге воспаления (в том числе хемокинез).

На стадии краевого стояния (маргинации) условно выделено четыре последовательных этапа.

1. Выход лейкоцитов из осевого цилиндра кровяного потока и приближение к стенке микрососуда, обращенной в сторону очага воспаления.

Причины: высокая концентрация хемотаксинов (а также других агентов, в том числе токсических) у стенки микрососуда, расположенного в очаге воспаления; замедление тока крови, особенно в венулах.

2. Медленное движение лейкоцитов вдоль стенки микрососуда по поверхности клеток эндотелия («качение», rolling - роллинг).

Причины: высокое содержание медиаторов воспаления (включая хемотаксины) в очаге воспаления и выделение селектинов клетками эндотелия и тромбоцитами.

3. Активация лейкоцитов и секреция из них разнообразных соединений, среди которых особое значение имеют молекулы межклеточной адгезии - селектины. Селектины экспрессируются на поверхности клеток уже через 10-15 мин после их стимуляции. Причина экспрессии : эффекты клеточных и плазменных медиаторов воспаления.

4. Обратимая («мягкая») адгезия лейкоцитов к стенкам микрососудов.

Причина: опосредованное селектинами взаимодействие лейкоцитов и эндотелиоцитов.

Адгезия и выход лейкоцитов .

Причина плотной адгезии лейкоцитов к эндотелию: экспрессия на поверхности лейкоцитов молекул LFA1, МАС1, VLA4, других интегринов и их взаимодействие с компонентами межклеточного матрикса, комплемента и разными молекулами адгезии (например, комплекс LFA1/ICAM1 обеспечивает плотную адгезию лейкоцита к эндотелию и создаёт условия для его последующей миграции через стенку микрососуда).

Прохождение лейкоцитов через стенку микрососуда

Существенные препятствия на пути лейкоцитов: пласт клеток эндотелия, межклеточный матрикс стенки сосудов и особенно базальная мембрана эндотелия.

При прохождении лейкоцитов между клетками эндотелия происходит взаимодействие молекул LFA1, МАС1, VLA4 и других интегринов с молекулами адгезии ICAM, VCAM, CD31. –

Прохождение лейкоцитов через базальную мембрану микрососудов существенно облегчается в результате высвобождения лейкоцитами гидролитических ферментов (например, коллагеназ и эластаз). Это обеспечивает гидролиз волокон и основного вещества базальной мембраны.

Различные типы лейкоцитов (нейтрофилы, моноциты, эозинофилы, лимфоциты) используют в ходе экстравазации разный спектр молекул адгезии.

Время прохождения лейкоцитов через стенки микрососудов в очаге воспаления с момента «мягкой» адгезии лейкоцита и клетки эндотелия составляет около 3-6 мин. При значительном повышении проницаемости стенок сосудов в ткань очага воспаления пассивно выходят эритроциты и тромбоциты, что часто приводит к интоксикации организма (при сибирской язве, чуме), при поражении тканей проникающими лучами.

16. ХЕМОТАКСИС ЛЕЙКОЦИТОВ. ОСНОВНЫЕ ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ХЕМОКИНЫ, МЕХАНИЗМЫ ИХ ДЕЙСТВИЯ Хемотаксис - процесс активного движения лейкоцитов к химическим раздражителям (например, к продуктам протеолиза тканей). Одним из главных "пусковых" механизмов хемотаксиса считают перемещение лейкоцитов по градиенту концентрации веществ, по-явлющихся в очаге воспаления. В результате биохимических исследований были получены новые данные о том, что этот процесс существенно регулируется веществами, находящимися в плазме и экссудате и оказывающими на передвижение клеток, в частности нейтрофилов, как стимулирующее, так и ингибирующее действие. В процессе выработки этих веществ анаэробы продуцируют ингибитор хемотаксиса, что и обусловливает тяжелое течение инфекционных болезней. Различают хемотаксис положительный (движение к объекту фагоцитоза) и отрицательный (движение фагоцита от объекта фагоцитоза). Положительный хемотаксис вызывается микробами, микробными продуктами и другими хемотропными веществами (лейкотаксин, адениловые нуклеотиды). Отрицательный хемотаксис вызывают вещества, подобные хинину.

Хемокины - это специальная разновидность цитокинов, контролирующих процессы миграции и активации клеток иммунной системы. Хемокины играют важную роль в различных патофизиологических процессах - хроническом и остром воспалении, инфекционных заболеваниях, модуляции ангио-генеза, росте опухолей, пролиферации гемопоэтических стволовых клеток и др. Одно из наиболее интересных открытий состоит в демонстрации того, что некоторые хемокиновые рецепторы функционируют в качестве ко-рецепторов для вируса иммунодефицита человека (ВИЧ-1). Известно, что молекула CD4 недостаточно. Необходимо дополнительное связывание ВИЧ-1 с так называемыми ко-рецепторами, которые, как оказалось, являются рецепторами к хемокинам. Так, на макрофагах таким дополнительным ко-рецептором служит рецептор к хемокинам MIP-lalfa, MIP-l beta и RANTES. На Т-лимфоцитах дополнительным ко-рецептором служит рецептор (его назвали фузин) к хемокину SDF-1. Обнаружено, что в тех случаях, когда на поверхности макрофагов или Т-лимфоцитов у человека не экспрессировались указанные выше ко-рецепторы, такие лица были резистентны к ВИЧ-инфекции, а также к прогрессировать заболевания. Это открытие имеет очень важную практическую перспективу: искусственная блокада хемокиновых рецепторов тем или иным способом может быть использована для профилактики заражения ВИЧ-инфекцией или лечения больных СПИДом.

МЕХАНИЗМЫ ДЕЙСТВИЯ Структура и механизм передачи сигнала в этих рецепторах очень древний и реализуется как в системах движения микроорганизмов, так и при фотосинтезе. Это - так называемые родопсинподобные рецепторы, 7 раз пронизывающие клеточную мембрану и сигналящие через G-белки, которые рекрутируются и активируются цитоплазматическими доменами рецепторов после конформационых изменений, вызванных связыванием лиганда. В отличие от большинства рассмотренных выше семейств рецепторов, рецепторы хемокинов не передают транскрипционного сигнала, а через ГТФазы сигналят на систему цитоскелета, перестройки которого и ответственны за поляризацию клетки и за появление способности «ползти» в направлении градиента концентрации хемокина. Другие сигнальные каскады от этих рецепторов задействуют фосфолипазу С (PLC), которая в итоге активирует МАР-киназы и РКС. Хсмокиновых рецепторов очень много (около 20), а хемокинов - еще больше (более 100). С помощью переключения экспрессии хемокиновых рецепторов осуществляются такие важнейшие процессы врожденного иммунитета, как привлечение нейтрофилов и моноцитов в очаг первичной инфекции или миграция дендритных клеток во вторичные лимфодные органы для встречи с Т-клетками, причем вероятность этого события многократно усиливается тем, что и Т-клетки, и дендритные клетки на определенном этапе экспрессируют один и тот же вид рецепторов. КРАТКАЯ ХАРАКТЕРИСТИКА НАИБОЛЕЕ ВАЖНЫХ ХЕМОКИНОВ

Интерлейкин-8 IL-8 Моноциты, макрофаги, Т-лимфоциты, нейтрофилы, фибробласты, кератиноциты, гепатоциты, клетки эндотелия, клетки эпителия, хондроциты Стимулирует хемотаксис нейтрофилов, субпопуляций Т-лимфоцитов и базофилов; активирует нейтрофилы к выбросу ферментов лизосом, "дыхательному взрыву" и дегрануляции; повышает сродство нейтрофилов к эндотелиальным клеткам; индуцирует выход LTB4 из нейтрофилов; повышает сродство моноцитов к клеткам эндотелия Интерферон-индуцируемый протеин-10 IP-10 Т-лимфоциты, моноциты, клетки эндотелия, кератиноциты Хемоаттрактант для моноцитов и Т-лимфоцитов; повышает сродство Т-лимфоцитов к эндотелиальным клеткам Лимфотактин Т-лимфоциты Стимулятор хемотаксиса Т-лимфоцитов Макрофагальный воспалительный протеин - 1альфа MIP-1a Т-лимфоциты, В-лимфоциты, моноциты, стволовые клетки, фибробласты Стимулятор хемотаксиса моноцитов, Т-лимфоцитов и эозинофилов; подавляет пролиферацию ранних гемопоэтических стволовых клеток, эндогенный пироген Макрофагальный воспалительный протеин - 1бета MIP-1в Т-лимфоциты, В-лимфоциты, моноциты, стволовые клетки, фибробласты Стимулятор хемотаксиса моноцитов и Т-лимфоцитов; стимулирует сродство Т-лимфоцитов к клеткам эндотелия Моноцитарный хемотаксический протеин-1/Моноцитарный хемотаксический и активирующий фактор MCP-1/MCAF Моноциты, макрофаги, фибробласты, В-лимфоциты, эндотелиальные клетки, кератиноциты, гладкомышечные клетки Стимулятор хемотаксиса моноцитов; стимулирует высвобождение гистамина из базофилов; регулирует продукцию цитокинов моноцитами РАНТЕС (RANTES) Т-лимфоциты, тромбоциты Стимулятор хемотаксиса моноцитов, Т-лимфоцитов, эозинофилов и базофилов; стимулирует высвобождение гистамина из базофилов Фактор роста меланомы GROa/MGSA Фибробласты, хондроциты, эпителиальные клетки, моноциты, макрофаги, нейтрофилы, тромбоциты Стимулятор хемотаксиса нейтрофилов, активирует нейтрофилы; стимулирует пролиферацию клеток меланомы

17.Значение опсонизации в поглощении фагоцитами обьектов фагоцитоза.

Способность фагоцитов различать элементы организма-хозяина («свое») от чужеродных и потенциально опасных инфекционных агентов обеспечивается системой рецепторов, которые получили название паттерн-распознающие рецепторы или рецепторы, распознающие образцы (в частности, образцы патогенности) – PRRs (pattern recognition receptors). Эти рецепторы распознают консервативные структуры и последовательности, характерные исключительно для чужеродных, внедрившихся в организм агентов. Они закодированы в геноме и имеют ограниченное разнообразие. Такие консервативные паттерны называются образцами патогенности (PAMPs – pathogen-associated molecular patterns). Однако параллельно с запустившимся фагоцитозом происходит ряд иных иммунных реакций врожденного иммунитета, обеспечивающих защиту от повреждающего патогенна. Сюда относится и активация системы комплемента, с последующей опсонизацией его продуктами (о них будет упомянуто несколько позже), и развитие реакции воспаления с параллельным протеканием хемотаксических реакций (в частности, главными хемотаксическими факторами являются IL-8, TNF-, анафилатоксины C3а, С4а и С5а; IL-1, LTB4 (лейкотриен В4), дегрануляция макрофагов (это событие они осуществляют не так часто, как нейтрофилы) и нейтрофилов при задействовании TLRs (Toll-like receptors) (в том числе и выброс провоспалительных и хемотаксических факторов), опсонизация антителами (преимущественно IgA и IgG), белками SP-A и SP-D (surfactant proteins, представленные обильно в дыхательном тракте), CRP (C-reactive protein) MBL (mannose binding lectin) и другие важные в защите организма процессы.

Несмотря на то, что фагоцитоз может активироваться непосредственно PAMPs, многие инфекционные агенты научились варьировать своими антигенными характеристиками, таким образом избегая фагоцитоза и дальнейшего киллинга. Однако для того, чтобы повысить эффективность фагоцитоза, ускорить его и избежать «обмана» инфекционных агентов иммунной системой предусмотрен процесс, называющийся опсонизация (от греч. языка opsonin - «делать вкуснее»). Все эти растворимые белки, ускоряющие фагоцитоз, т.е. опосредующие опсонизацию, называются опсонинами. Мишенями опсонинов являются оглеводные структуры, липополисахариды, вирусные белки. Следовательно, они иногда обозначаются как растворимые паттерн-распознающие белки.

Рецепторы, способные запускать фагоцитоз, делятся на 2 типа:

1) рецепторы PAMPs;

2) рецепторы опсонинов.

Рассмотрим рецепторы опсонинов и все, что относится к процессу опсонизации.

Рецепторы опсонинов (а также основные опсонины, которые улавливаются соответствующими рецепторами):

а)collagen - domain receptor CD 91/кальретикулин (кальретикулин необходим для встраивания олигосахаридных участков с терминальными остатками глюкозы для дальнейшего процессинга рецептора; постоянно обновляющийся рецептор), распознающий коллагеноподобные участки белков семейства коллектинов (MBL, SP-A, SP-D), семейства фиколинов (L-ficolin; название семейства происходит от Fi-Col-Lin = Fi brinogen (fibronectin domain)-containing (содержащий фибронектиновые домены), Col lagen-like stalk containing (содержащий коллагеноподобный ствол/столб), possess L ectin activiti (обладает активностью лектинов) и C1q-белка системы комплемента;

б) рецепторы комплемента : CR1 (C3b/C4b рецептор), CR3 (рецептор для C4b и iC3b), CR4 (iC3b) и некоторые другие;

в) Fc -рецепторы : Fc  R (рецептор к константным регионам (Fc-фрагментам) тяжелых -цепей IgA), FcR (рецептор к Fc-фрагментам тяжелых -цепей IgG, а также к CRP (C-reactive protein).

В результате связывания лиганда с рецептором возникают так называемые DS (danger signals). Передача таких сигналов с участием ядерного фактора транскрипции B инициирует процесс фагоцитоза (путем каскада биохимических реакций), а также последующий синтез высокореактивных соединений для киллинга бактерий, провоспалительные цитокины и др.

Рассмотрим характеристику некоторых опсонинов. Достаточно специфическим являются белки-коллектины сурфактанта, упомянутые выше, - SP-A и SP-D. Они обнаруживаются в крови, а также в слизистых секретах в легких и других серкетирующих слизь сайтах, где функционируют как опсонины. Разница между ними заключается в том, что SP-A может связываться только с обильной мукополисахаридной оболочкой (капсулой) бактерий (например, Klebsiella pneumonia ), в то время как SP-D связывается только непосредственно с липополисахаридной оболочкой неинкапсулированных форм бактерий. Связывает данные коллектины рецептор CD91, что ускоряет фагоцитарную активность альвеолярной популяции макрофагов, а также других, где присутствуют данные опсонины. Также белки сурфактанта способствуют устранению грибкового респираторного патогена Pneumocystis carinii , главному возбудителю пневмонии у больных СПИДом.

Mannose-binding lectin (MBL) (маннан (маннозо)-связывающий лектин) также является коллектином и обнаруживается в крови и респираторных жидкостях. На фагоцитах имеются соответвующие рецепторы к MBL (CD91), связывающие его коллагено-подобные стволовые домены и активирующие фагоцитоз.

Фиколины (M-, L- и H-) представляют собой отдельное семейство опсонинов, родственных MBL и другим коллектинам. Обнаруживаются в крови, где и связывают ацетилированные сахара на поверхности микроорганизмов. Компонент системы комплемента C1q (С1) также функционирует в качестве опсонина, связывая компоненты клеточных стенок бактерий, такие как липополисахариды, а также связывает вирусные белки (через уже связанный с ними IgG, либо непосредственно). Все вышеперечисленные опсонины имеют структурное сходство и обладают сериновыми протеазами, т.е. участвуют в активации системы комплемента как по классическому, так и по лектиновому пути.

Таким образом, фагоцитарная активность значительно ускоряется и ее эффективность повышается при протекании процессов опсонизации. Можно провести параллель с катализаторами химических реакций, что если бы их не было, то и такой динамики биохимических процессов можно было бы и не ожижать.

Кислородзависимые факторы бактерицидности

В обеспечении киллинга фагоцитированных микроорганизмов наиболее важна роль производных кислорода. Главное событие в образованиикислородзависимых бактерицидных факторов - кислородный взрыв - быстрое (реализуемое за секунды) и высокопродуктивное осуществление цепиреакций, приводящих к образованию активных форм кислорода. Активныеформы кислорода включают высокореактивные свободные радикалы, ионыкислорода и кислородсодержащих химических групп. Образование активныхформ кислорода катализируется ферментом NADPH-оксидазой (NADPH -восстановленная форма

никотинамиддинуклеотидфосфата), называемойтакже оксидазой фагоцитов (Phоx ).(подробнее о NADPH-оксидазе в 62-м вопросе)

Образование активных форм кислорода. Конформационные изменения, происходящие при сборке NADPH-оксидазы, приводят к тому, что ее основной компонент gp91phox приобретает способность взаимодействовать с окисленной формой кофактора, образующегося при гликолизе, - NADPH. Это взаимодействие происходит при участии простетической группы FAD (флавин адениндинуклеотид)

и двух молекул гема. FAD получает электрон (е -) от NADPH и передает его ≪наружной≫ молекуле гема, обращенной к цитозолю, от которой он переходит к ≪внутренней≫ молекуле гема, обращенной к содержимому фагосомы. Внутренняя молекула гема передает электрон молекуле кислорода, что приводит к образованию супероксида , объединяющего в себе свойства аниона и радикала, и потому называемого супероксидрадикалом,или супероксиданионом (*О2Ї). Супероксидрадикал - короткоживущий родоначальник активных форм кислорода (рис. 2.29). В начальную фазу фагоцитоза супероксиданион, образующийся на участке клеточной мемб-

раны, находится во внутриклеточном пространстве; после формирования фагосомы и фаголизосомы он поступает внутрь этих гранул. На следующем этапе реализуется цепь реакций, приводящих к образованию радикалов, ионов кислорода и содержащих их молекул, обладающих более высокой бактерицидной активностью чем супероксианион, -активных форм кислорода. Под действием фермента супероксиддисмутазы из двух молекул супероксидного аниона образуется перекись водорода. В присутствии ионов Fe2+ супероксид взаимодействует с перекисью водорода

с образованием гидроксил-радикала (*ОН) (см. рис. 2.29) - сильного окислителя. Перекись водорода и особенно гидрокисл-радикал обладают очень сильной бактерицидной активностью. При их совместном действии происходит перекисное окисление липидов, разрыв пептидных связей, окисление сульфгидрильных групп и другие глубокие химические изменения макромолекул в клеточных стенках патогенов, приводящие к их гибели. При мутациях генов, кодирующих субъединицы NADPH-оксидазы, нарушается активность этого фермента и, как следствие, развивается хроническая гранулематозная болезнь.

Кислородзависимые факторы бактерицидности, индуцируемые миелопероксидазой

Миелопероксидаза - маркерный фермент азурофильных гранул нейтрофилов. Она составляет 1–5% общего белка этих клеток. Зрелая молекула миелопероксидазы - гетеродимер, образованный тяжелой α- и легкой β-цепями. С α-цепью связана железосодержащая группа - гем.Миелопероксидазная микробицидная система включает, помимо собственно миелопероксидазы, перекись водорода и кофакторы, в том числе ионы галогенов (Cl-, I-, Br-).Миелопероксидаза катализирует в фаголизосомах окислительные реакции. Превращение йодида (I-) в молекулярный йод (при участии миелопероксидазы и перекиси водорода) обеспечивает его связывание с сульфгидрильными группами белков, приводящее к нарушению жизнеспособности микроорганизмов. При катализируемом миелопероксидазой взаимодействии ионов Cl- с перекисью водорода образуется сильный микробицидный

агент - хлорноватистая (гипохлорная) кислота HOCl. При ее взаимодействии с аминокислотами образуются хлорамины , обладающие бактерицидным действием. При окислении хлорноватистой кислоты супероксидом образуется гидроксильный радикал *ОН, а при ее оксилении перекисью водорода -синглетный кислород ‘О2 (см. рис. 2.29) Эти метаболиты обладают сильной микробицидной активностью. Синглетный кислород особенно активно взаимодействует с полиненасыщенными жирными кислотами, вызывая их перекисное окисление, нарушающее целостность мембраны бактерий. Синглетный кислород участвует в образовании еще одного микробицидного вещества - озона (О3). Нейтрофилы - наиболее эффективные продуценты активных форм кислорода. К этим агентам чувствительны разные типы микроорганизмов, в первую очередь - внеклеточные патогены.

О2-зависимая система исходно не предсуществует, а образуется в результате РВ.

Респираторный взрыв - процесс, характеризующийся:

    Поглощением О2 из крови и тканей

    Использованием О2 на продукцию оксидантов

    Интенсификация ПФП в ходк которого продуцируется NADPH+

Последовательность этих трех процессов приводит к образованию О2-зависимой системы.

Он может происходить на двух стадиях:

    Стадия опсонизации дляться чуть меньше минуты

    В фагосоме

NADOH-оксидазный комплекс находится или в плазмолемме фагоцита или в мембране фагосомы.Он состоит из НАДФН оксидазы, флавоноидов, убихинона и цитохрома b(обычно это450) по эелементам этой цепи движется е-, котрый присоединяется к О2 и образует супероксидный анион.




В ходе этих реакций образуются первичные оксиданты: супероксид, синглетный кислород ОН-,Н2О2.

Глутатион легко окисляется (S-H) , чем обезврежиает оксиданты,но каждыйц раз должен восстанавливаться с помощью глутатионредуктазы, Ко-фактор которой НАФН.

Оксиданты могут действовать в фагосоме, в цитоплазме фагоцита и в мало м радиусе за его пределами. Они могут повреждать структуры собственного организма.

Вторичные оксиданты образуются в ходе реакций с первичными оксидантами

Это гипохлорная кислота,хлорамины и продукты перекисного окисления(в основном липидов – метаболиты арахидоновой кислоты, но перекисному окислению также могут подвергаться белки и НК).

К кислород зависимым системам бактерицидности относят миелопероксидазную систему: фермент миелопероксидаза,Н2О2, и галогены:Хлор,Йод, Бром и Фтор.(имеется наследственный дефект – качественная недостаточность этого фермента) – этой системы чувствительны Г+ и Г- бактерии, вирусы грибки, простейшие гельминты.

Также в ходе РВ выделяетсяNO. Оказывает бактерицидный эффект в комплексе с супероксидом, образуя при этом пероксинитрит. Наиболее чувствительны к этому грибки, простейшие и микобактерии, обладает туморицидным эффектом, убивает опухолевые клетки

Хемотаксис

В опытах, о которых до сих пор шла речь, различные органы растений были сильно поранены. Но, как мы уже говорили, и в природных условиях могут возникнуть серьёзные повреждения от дождя, града, ветра, насекомых, грызунов, птиц и т.п. В поле, лесу, степи - везде, где есть растения, постоянно выделяются в атмосферу летучие фитонциды. Точно так же и в реках, прудах, озёрах, океанах - во всех водоёмах, где обитают растения, могут выделяться фитонциды.

Это ставит перед учёными много новых и новых вопросов. Обязательно ли и всегда ли в природе гибнут микроорганизмы под влиянием фитонцидов? Если на лист лимонного дерева или черёмухи, дуба или берёзы попадёт из воздуха та или иная бактериальная клетка, обязательно ли ожидать гибели её от выделяющихся фитонцидов? Если около стебля водного растения окажутся инфузории, обязательно ли их погубят фитонциды этого растения?

Конечно, нет и, может быть, даже в большинстве случаев этого не происходит.

Летучие фитонциды и фитонцидные тканевые соки могут тормозить размножение бактерий и грибков, создавать химические условия, препятствующие другим организмам усваивать питательные вещества. Возникают и иные, ещё более сложные, соотношения между организмами. Растение может выделять во внешнюю среду фитонциды, которые не только не убивают микроорганизмы, но и, наоборот, помогают им размножаться. Далеко не все бактерии и грибки вредны для данного растения, есть и полезные. Среди этих полезных имеются и такие, которые являются противниками других бактерий и грибков, болезнетворных для данного растения, врагами его врагов.

Совершенно очевидно, что деятельность фитонцидов, улучшающих питание, рост и размножение полезных для растений бактерий, играет такую же важную роль, как и деятельность бактерицидных и противогрибковых веществ.

Могут быть и иные, ещё более сложные отношения.

Мы давно предполагали, что в природе существует так называемый хемотаксис подвижных одноклеточных организмов (бактерий, простейших, зооспор грибков и других организмов) в отношении фитонцидов. Под словом «хемотаксис» разумеется явление определённо направленного движения организмов навстречу или в сторону от какого-нибудь химического вещества. Движение от химического источника называют отрицательным хемотаксисом, движение навстречу - положительным. Конечно, ни о каком сознательном действии, ни о каком выборе места одноклеточными организмами здесь не может быть и речи. Это физико-химические и биологические явления.

Чувствительность бактерий ко многим веществам крайне велика. Так, одна двухсотмиллионная часть миллиграмма вещества, называемого пептоном, находящаяся в стеклянной трубочке с микроскопическим диаметром, может вызвать отчётливый хемотаксис у гнилостных бактерий в жидкой среде, в которую опущена трубочка.

Правильность предположения о хемотаксисе микроорганизмов в отношении фитонцидов подтвердили опыты. Это ещё только лабораторные опыты и на основании их нельзя полностью решить вопрос о том, что происходит в природе; но они представляют большой интерес.

Работая с инфузориями, мы обратили внимание на любопытное явление: если поднести источник летучих фитонцидов к капле жидкости, то находящиеся в ней инфузории в очень короткий срок меняют направление своего движения - теперь они движутся не передним концом вперёд, а задним.

Поставим опыт с фитонцидами цитрусовых. Поднесём к капле воды с инфузориями гляукомы кашицу из листьев апельсинового, лимонного или мандаринового деревьев. Под микроскопом видно, как в первые доли секунды инфузории меняют своё движение на обратное. Последим за ними в течение минуты. Если источник фитонцидов не слишком мощный, если инфузории остаются живыми, все они совершают свои поступательные движения задним концом вперёд, вращаясь одновременно вокруг своей длинной оси и производя ещё третье движение, которое может быть названо воронкообразным.

Удалим теперь стекло с висячей каплей от источника фитонцидов. Через одну, две, три, четыре минуты все гляукомы снова начинают двигаться нормально, передним концом вперёд. Когда мы в этом убедимся, приблизим снова источник летучих фитонцидов. И вновь все гляукомы, как по команде, двигаются задним концом вперёд. Речь идёт буквально о долях секунды. Все инфузории моментально, словно по команде «назад!», изменяют своё движение.

Возникает вопрос: относится ли такое явление к хемотаксису? Опыты и наблюдения, сделанные не в природной, а в лабораторной обстановке, подтверждают это предположение.

Возьмём стеклянную чашку любого размера. На подставки положим стеклянную трубку около 10 сантиметров длиной, с любым внутренним диаметром, однако таким, чтобы жидкость с простейшими, которой заполняется вся трубка, не выливалась при её горизонтальном положении. Один конец трубки запаян, а другой оставляется открытым (рис.20).

В каждом участке этой трубки видны под микроскопом плавающие инфузории. Поставим опыты с гляукомами. В зависимости от того, под каким увеличением микроскопа или лупы рассматривать трубку, будет видно большее или меньшее количество гляуком.

Подберём такую взвесь инфузорий и такое увеличение, чтобы в каждом поле зрения (то, что видишь под микроскопом, не передвигая трубку) было 10-20 экземпляров инфузорий. Положим теперь на дно чашки готовый для опыта источник фитонцидов, например измельчённые листья черёмухи, лавровишни, цитрусовых и т.п.

Мы обнаружим поразительное явление: инфузории, совершая, казалось бы, только беспорядочные движения, начинают плыть от источника раздражения, то есть от открытого конца трубки к закрытому. При удачных сочетаниях условий (удачно выбранные растения, количество источника, температура и т.п.) результаты таких опытов бывают очень наглядными. Можно добиться, чтобы вследствие отрицательного хемотаксиса к летучим фитонцидам уже в течение 30 секунд на расстоянии 2-3 миллиметров от источника не оказалось ни одной инфузории: все они уплывут по направлению к закрытому концу.

Вычисления показывают, что если бы инфузория всё время двигалась по прямой линии от источника фитонцидов, то за 30 секунд она проплывала бы расстояние, равное её длине, умноженной на 200! На самом же деле, чтобы составить себе представление о быстроте движения, эту цифру надо увеличить во много раз, самое меньшее раз в десять, так как инфузория плывёт зигзагами, а часто и возвращаясь несколько назад. Выходит, что инфузория, можно сказать, галопом мчится от летучих фитонцидов, поступающих в жидкость у открытого конца трубки.

Опыты по хемотаксису проведены со многими растениями: с листьями черёмухи, весенними и осенне-зимними почками её, с кожурой лимона, мандарина и апельсина, с листьями клёна, дуба, самшита, эвкалиптовых деревьев, с иглами хвойных, с луком и разными органами других растений. Опыты со всеми этими растениями на гляукоме дали положительный результат. Не вызывают явлений отрицательного хемотаксиса варёные (убитые температурой) листья или иные органы растений.

Фитонциды различных растений отличаются по силе действия. Не исключена возможность и того, что будут обнаружены фитонциды, вызывающие явления положительного хемотаксиса.


В пустыне чахлой и скупой, На почве, зноем раскалённой, Анчар, как грозный часовой, Стоит один во всей вселенной... К нему и птица не летит, И тигр нейдёт...

Хемотаксис - это целенаправленная миграция клеток (локомоция) в сторону увеличения концентрации хемотаксических факторов (хемотаксины).

Для этого процесса необходимы следующие условия: а) распознавание и связывание хемотаксинов специфическими рецепторами цитоплазматической мембраны; б) целенаправленная миграция.

Хемотаксины и соответствующие рецепторы функционально связаны друг с другом. Фагоциты способны специфически связывать большое количество водорастворимых веществ и отвечать на их присутствие активацией клетки. В том случае, если создается градиент концентрации активатора, миграция клетки происходит в направлении более высокой его концентрации. Поэтому термин «хемотаксин» носит относительный характер. В области низких концентраций активатора наблюдают спонтанную миграцию, в области максимальной концентрации - угнетение миграции. Связывание хемотаксинов с поверхностью частицы приводит, как правило, к усиленному фагоцитозу. При появлении хемотаксинов в кровотоке или при их внутривенном введении происходит активация моноцитов, в результате чего возникает опасность развития шока (диссеминированное внутрисосудистое свертывание крови) или симптомов «шокового легкого» (респираторный синдром). С физиологической и патогенетической точек зрения наиболее значимыми являются эндогенные хемотаксины, С5а, С5а-дезаргинин и комплекс С5b, 6, 7 системы комплемента; хемотаксины активированных фагоцитов, лейкотриен В4, фактор активации тромбоцитов, IL-1, а также растворимые иммунные комплексы и некоторые лимфокины. Клиническое значение имеют следующие экзогенные хемотаксины: бактериальные липополисахариды (эндотоксины), формил и олигоцептиды, денатурированные белки (альбумин, иммуноглобулины). Часть этих факторов действует на эозинофилы, базофилы и тучные клетки, активируя их. Рецепторы экспрессируются на мембране в соответствии с регуляторным механизмом обратной связи: утрата при более длительном воздействии лиганда (исследование С5а-рецептора). В связи с этим особое значение при воспалении приобретает взаимодействие многочисленных факторов. При этом наблюдают как потенцирующие, так и ингибирующие эффекты.

Сенсибилизирующие эффекты для других хемотаксинов доказаны применительно к липополисахаридам грамотрицательных бактерий (эндотоксин). Это происходит через индукцию усиленной экспрессии соответствующих рецепторов. Например, предварительная аппликация мурамилдипептида повышает чувствительность организма к действию эндотоксина. Многообразие хемотаксинов или активаторов фагоцитов, с одной стороны, и динамика экспрессии рецепторов - с другой, создает в комплексе основу процесса воспаления, принимающего разные клинические формы. К этому следует добавить участие гистамина из базофильных гранулоцитов и тучных клеток, а также влияние системы кининов, способствующих (через протеазы из фагоцитов) повышению проницаемости стенок сосудов. Хемотаксис фагоцитов и сами хемотаксические факторы исследуются экспериментально в камере Бойдена, в которой суспензия исследуемых клеток и активатор разделены мембраной, проницаемой для хемотаксина, но непроницаемой для клеток, что приводит к накоплению клеток на мембране.

Подвижные бактерии активно перемещаются в направлении, определяемом теми или иными внешними факторами. Такие направленные перемещения бактерий называют таксисами. В зависимости от фактора различают хемотаксис (частный случай - аэротаксис), фототаксис, магнитотаксис, термотаксис и вискозитаксис. Наибольшее внимание привлекает изучение хемотаксиса, т.е. движения в определенном направлении относительно источника химического вещества. Для каждого организма все химические вещества в этом плане могут быть разделены на две группы: инертные и вызывающие таксисы (эффекторы). Среди последних выделяют аттрактанты (вещества, привлекающие бактерий) и репелленты (вещества, отпугивающие бактерий). Аттрактантами могут быть сахара, аминокислоты, витамины, нуклеотиды и другие химические молекулы; репеллентами - некоторые аминокислоты, спирты, фенолы, неорганические ионы. Бактерии легко детектируют изменение концентрации на 0,1 % при микромолярных концентрациях веществ, а диапазон детектируемых концентраций перекрывает пять порядков. Аттрактантом для аэробных и репеллентом для анаэробных прокариот является молекулярный кислород. Аттрактанты часто представлены пищевыми субстратами, хотя не все вещества, необходимые для организма, выступают в качестве аттрактантов. Также не все ядовитые вещества служат репеллентами и не все репелленты вредны.

Аэротаксис - это движение микроорганизмов, одноклеточных, подвижных клеток многоклеточных организмов к источнику раздражения или от него. Источником раздражения в данном случае является кислород. Движение в сторону концентрации кислорода проявляется у аэробов, в обратную сторону - у анаэробов. Некоторые организмы в зависимости от концентрации кислорода может проявлять как положительный, так и отрицательный таксис. Определить аэротаксис у бактерий можно следующим образом. Под микроскопом наблюдается пробирка, в которой под стеклом находится капля воды. Аэробы скопятся у края стёклышка, анаэробы - в середине капли, бактерии, для которых наиболее благоприятна определённая кислорода среда (например, некоторые спириллы), скопляются на наиболее благоприятном для них расстоянии от края.

Фототаксис, т.е. движение к свету или от него, свойственен прежде всего фототрофным бактериям. Механизм фототаксиса включает три основные стадии: поглощение света и первичная реакция в фоторецепторе; преобразование стимула и передача сигнала двигательному аппарату; изменение движения жгутиков. Различают положительный и отрицательный фототаксисы. Положительный фототаксис - движение в сторону источника света: Эвглена зелёная плывет к свету, хлоропласты перемещаются в сторону света. Отрицательный фототаксис - движение в сторону от света.

Способность перемещаться по силовым линиям магнитного поля Земли или магнита - магнитотаксис - обнаружен у разных бактерий, обитающих в пресной и морской воде. У ряда бактерий обнаружен вискозотаксис - способность реагировать на изменение вязкости раствора и перемещаться в направлении ее увеличения или уменьшения.

За чувствительность бактерий к градиентам определенных факторов ответственны специфические рецепторы. Изучение хемотаксиса у Escherchia coli позволило обнаружить свыше 30 различных хеморецеторов, представляющий собой белки, синтезируемые независимо от присутствия индуктора или только в результате индукции. Рецептор реагирует на эффектор и передает сигнал по определенному пути, конкретный механизм которого неизвестен, на «мотор» жгутика. Мембранные рецепторы группируются в кластеры, как правило расположенные на полюсах клетки, однако это не может помочь бактерии уловить разницу концентраций между полюсами, поскольку она будет слишком маленькой из-за малого размера самой клетки. Вместо этого бактерии ориентируются в химических градиентах путем измерения временных изменений концентраций при движении. Обычно скорость движения Escherichia coli составляет 10-20 своих длин в секунду. Три класса белков участвуют в хемотаксисе: трансмембранные рецепторы, цитоплазматические сигнальные белки и ферменты адаптивного метилирования.



Понравилась статья? Поделитесь с друзьями!