Интеграл как функция верхнего предела интегрирования. Определенный интеграл как функция верхнего предела

Пусть функция f (t ) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число

определив тем самым на промежутке функцию I (x ), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x . Для этого сначала рассмотрим прира­щение функции в точке x при приращении аргумента x :

I (x ) = I (x + x ) – I (x ) =

Как показано на рисунке 23, величина последнего интеграла в формуле для приращения I (x ) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах x (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f (x )x . Отсюда получаем соотношение

.

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина x .

Из сказанного следует формула для производной функции I (x ):

.

Производная определенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x . Отсюда следует, что функция
является первообразной для функцииf (x ), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде

. (9)

Пусть F (x) тоже является первообразной для функции f (x ), тогда по теореме об общем виде всех первообразных функции I (x ) = F (x ) + C , где C - некоторое число. При этом правая часть формулы (9) принимает вид

I (x ) – I (a ) = F (x ) + C – (F (a ) +C ) = F (x ) – F (a ). (10)

Из формул (9) и (10) после замены x на b следует формула для вычисления определенного интеграла от функции f (t ) по промежутку [a ;b ]:

,

которая называется формулой Ньютона-Лейбница . Здесь F (x) - любая первообразная функции f (x ).

Для того, чтобы вычислить определенный интеграл от функции f (x ) по промежутку [a ;b ], нужно найти какую-либо первообразную F (x ) функции f (x ) и подсчитать разность значений первообразной в точках b и a . Разность этих значений первообразной принято обозначать символом .

Приведем примеры вычисления определенных интегралов с помощью формулы Ньютона-Лейбница.

Примеры. 1.
.

2.
.

Сначала вычислим неопределенный интеграл от функции f (x ) = xe x . Используя метод интегрирования по частям, получаем:
. В качестве первообразной функцииf (x ) выберем функцию e x (x – 1) и применим формулу Ньютона-Лейбница:

I = e x (x – 1)= 1.

При вычислении определенных интегралов можно применять формулу замены переменной в определенном интеграле :

.

Здесь и определяются, соответственно, из уравнений () = a ; () = b , а функции f , ,  должны быть непрерывны на соответствующих промежутках.

Пример:
.

Сделаем замену: ln x = t или x = e t , тогда если x = 1, то t = 0, а если x = e , то t = 1. В результате получим:

.

При замене переменной в определенном интеграле не нужно возвращаться к исходной переменной интегрирования.

HTML-версии работы пока нет.

Подобные документы

    Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация , добавлен 18.09.2013

    Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.

    презентация , добавлен 11.04.2013

    Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

    презентация , добавлен 18.09.2013

    Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.

    реферат , добавлен 30.10.2010

    Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация , добавлен 11.09.2011

    Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа , добавлен 21.10.2011

    Понятие и свойства отражающей функции. Первый интеграл дифференциальной системы и условия существования. Условия возмущения дифференциальных систем, не изменяющие временных симметрий. Определение связи между первым интегралом и эквивалентными системами.

    курсовая работа , добавлен 21.08.2009

    Понятие и исследование функции четной, нечетной и симметричной относительной оси. Понятие интервалов знакопостоянства. Выпуклость и вогнутость, точки перегиба. Вертикальные и наклонные асимптоты. Наименьшее и наибольшее значения функции и интеграла.

    практическая работа , добавлен 25.03.2011

    Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.

    конспект урока , добавлен 23.10.2013

    Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

Пусть функция f (t ) определœена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число ,

определив тем самым на промежутке функцию I (x ), которая принято называть определœенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x . Для этого сначала рассмотрим приращение функции в точке x при приращении аргумента Dx :

DI (x ) = I (x + Dx ) – I (x ) =

.

Как показано на Рис. 4, величина последнего интеграла в формуле для приращения DI (x ) равна площади криволинœейной трапеции, отмеченной штриховкой. При малых величинах Dx (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения бывают и положительными, и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f (x )Dx . Отсюда получаем соотношение

.

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина Dx .

Из сказанного следует формула для производной функции I (x ):

.

Производная определœенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x . Отсюда следует, что функция является первообразной для функции f (x ), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определœенный интеграл в виде

. (1)

Пусть F (x) тоже является первообразной для функции f (x ), тогда по теореме об общем виде всœех первообразных функции I (x ) = F (x ) + C , где C - неĸᴏᴛᴏᴩᴏᴇ число. При этом правая часть формулы (1) принимает вид

I (x ) – I (a ) = F (x ) + C – (F (a ) +C ) = F (x ) – F (a ). (2)

Из формул (1) и (2) после замены x на b следует формула для вычисления определœенного интеграла от функции f (t ) по промежутку [a ;b ]:

,

которая принято называть формулойНьютона-Лейбница . Здесь F (x) - любая первообразная функции f (x ).

Для того, чтобы вычислить определœенный интеграл от функции f (x ) по промежутку [a ;b ], нужно найти какую-либо первообразную F (x ) функции f (x ) и подсчитать разность значений первообразной в точках b и a . Разность этих значений первообразной принято обозначать символом , ᴛ.ᴇ. .

Приведем примеры вычисления определœенных интегралов с помощью формулы Ньютона-Лейбница.

Пример 1 . .

При вычислении определœенных интегралов можно применять формулу замены переменной:

.

Здесь a и b определяются, соответственно, из уравнений j (a ) = a ; j (b ) = b , а функции f , j , должны быть непрерывны на соответствующих промежутках.

Пример 2. .

Сделаем замену: ln x = t или x = e t , тогда если x = 1, то t = 0, а если x = e , то t = 1. В результате получим:

.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при вычислении определœенного интеграла с помощью замены переменных нет крайне важности возвращаться к прежней переменной интегрирования. Достаточно лишь ввести новые пределы интегрирования.

Пусть функция f (t ) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число ,

определив тем самым на промежутке функцию I (x ), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x . Для этого сначала рассмотрим приращение функции в точкеx при приращении аргумента Dx :

DI (x ) = I (x + Dx ) – I (x ) =

.

Как показано на Рис. 4, величина последнего интеграла в формуле для приращения DI (x ) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах Dx (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными, и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f (x )Dx . Отсюда получаем соотношение

.

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина Dx .

Из сказанного следует формула для производной функции I (x ):

.

Производная определенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x . Отсюда следует, что функция является первообразной для функции f (x ), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде

. (1)

Пусть F (x) тоже является первообразной для функции f (x ), тогда по теореме об общем виде всех первообразных функции I (x ) = F (x ) + C , где C - некоторое число. При этом правая часть формулы (1) принимает вид

I (x ) – I (a ) = F (x ) + C – (F (a ) +C ) = F (x ) – F (a ). (2)

Из формул (1) и (2) после замены x на b следует формула для вычисления определенного интеграла от функции f (t ) по промежутку [a ;b ]:

,

которая называется формулойНьютона-Лейбница . Здесь F (x) - любая первообразная функции f (x ).

Для того, чтобы вычислить определенный интеграл от функции f (x ) по промежутку [a ;b ], нужно найти какую-либо первообразную F (x ) функции f (x ) и подсчитать разность значений первообразной в точках b и a . Разность этих значений первообразной принято обозначать символом , т.е. .

Замена переменной в определенном интеграле. При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нахождение приращения первообразной). Такой подход, использующий, в частности, формулы замены переменной и интегрирования по частям для определенного интеграла, обычно позволяет упростить запись решения.


ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t [α,β].

Тогда справедливо следующее равенство:

Эта формула носит название формулы замены переменной в определенном интеграле.

Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).

Пример 19. Вычислить

Положим t=2-х 2 . Тогда dt=d(2-х 2)=(2-х 2)"dx=-2xdx и xdx=- dt. Если х=0, то t=2-0 2 =2, и если х=1, то t=2-1 2 =1. Следовательно:

Интегрирование по частям. Метод интегрирования по частям позволяет свести исходный неопределенный интеграл к более простому виду либо к табличному интегралу. Этот метод наиболее часто применяется, если подынтегральная функция содержит логарифмические, показательные, обратные тригонометрические, тригонометрические функции, а также их комбинации.

Формула интегрирования по частям следующая .

То есть, подынтегральное выражение f(x)dx представляем в виде произведения функции u(x) наd(v(x)) - дифференциал функции v(x) . Далее находим функцию v(x) (чаще всего методом непосредственного интегрирования) и d(u(x)) - дифференциал функции u(x) . Подставляем найденные выражения в формулу интегрирования по частям и исходный неопределенный интеграл сводится к разности . Последний неопределенный интеграл может быть взят с использованием любого метода интегрирования, в том числе и метода интегрирования по частям.



Понравилась статья? Поделитесь с друзьями!