Интегральная энтропия. Изучаем термины: энтропия – что же это такое простыми словами

В предыдущем разделе мы исходили из того основного предположения, что для любой системы существует параметр, называемый энтропией и обозначаемый S. При малых величинах теплового взаимодействия соответствующее дифференциальное изменение энтропии dS составляет . Используем далее это определение для вычисления изменений энтропии в некоторых простых и известных процессах.

Изменение энтропии при таянии льда. Предположим, что в жаркий летний день мы принесли на пикник термос, наполненный смесью льда и воды. Поскольку изоляция термоса не идеальна, лед будет постепенно таять. Однако таяние происходит медленно, температура в термосе будет оставаться практически неизменной и равной 0°С. Подсчитаем изменение энтропии, соответствующее таянию 1 моль (или 18 г) льда. Табличное значение теплоты плавления льда составляет 79,67 кал/г, что дает около 1434 кал/моль. Тогда можно записать

Как и ранее, обозначает просто суммирование бесконечно малых величин - интегрирование (или суммирование) всех величин , соответствующих каждому малому количеству теплоты . Интегрирование выполняется в этом случае особенно просто потому, что температура Т не меняется в ходе процесса плавления. Поэтому множитель 1/Т можно вынести из-под знака интеграла, так что он становится просто множителем при последнее выражение представляет собой фактически теплоту фазового перехода (плавления) льда кал/моль. Соотношение (19) означает, что энтропия 1 моль воды при 273 К на 5,27 кал/К превышает энтропию 1 моль льда при той же температуре.

Верь, когда растает лед. Энтропия возрастет.

Наоборот, если у воды при температуре 273 К отобрать достаточно теплоты - чтобы образовался 1 моль льда при 273 К, энтропия системы понизится на .

Заметим, что всюду в этом разделе мы использовали абсолютную температуру по Кельвину в знаменателе отношения . Можно было бы использовать и абсолютную шкалу Рэнкина, если измерять при этом количество теплоты в б.т. е. Очевидно, что в знаменателе выражения нельзя использовать температуры по шкалам Цельсия или Фаренгейта (как это иногда пытаются делать даже подготовленные студенты). Так, например, используя шкалу Цельсия, в рассматриваемом случае мы пришли бы к абсурдному результату (знаменатель выражения обратился бы в нуль). Заметим, что единицы, в которых выражается изменение энтропии, совпадают с единицами, в которых измеряется молярная теплоемкость Изменение энтропии при таянии 1 моль льда при точке замерзания в нормальных условиях составляет 5,27 кал/(моль К).

Изменение энтропии при кипении воды. Другой хорошо знакомый процесс, идущий при определенной температуре, - это переход жидкой воды в пар при давлении 1 атм. Температура, при которой вода кипит при нормальных условиях, равна по определению 100°С, или 373 К. Теплота испарения при такой температуре составляет 539 кал/г, или 9702 кал/моль. Тогда изменение энтропии, соответствующее испарению 1 моль воды при нормальных условиях, равно

Это вычисление оказалось столь простым потому, что температура не менялась в ходе процесса.

Заметим, что изменение энтропии в процессе испарения воды почти в 5 раз превышает изменение энтропии в процессе таяния льда. Значение несколько превышает обычные для подобных ситуаций значения и указывает на необычные свойства такого вещества, как вода. У многих «нормальных» (неполярных) жидкостей изменение энтропии при испарении составляет Это правило было получено эмпирически английским физиком Фредериком Троутоном (1863-1922) и носит название «правило Троутона». Оно дает способ оценки теплоты испарения данного вещества, если известна температура, при которой оно кипит при нормальных условиях.

Чтобы найти приближенное значение теплоты испарения, достаточно умножить температуру кипения (выраженную в Кельвинах) на постоянную Гроутона.

Изменение энтропии в процессе изотермического расширения идеального газа. Существует еще один процесс при постоянной температуре, который уже не раз встречался нам ранее, - это процесс обратимого изотермического расширения идеального газа. Если наряду с тепловым имеется лишь обычное механическое взаимодействие (так что элементарная работа выражается формулой первое начало термодинамики для 1 моль идеального газа можно записать в виде

(здесь учтено, что ). Используя уравнение pV = RT, можно при dT = 0 (условие постоянства температуры) написать

Интегрировать это выражение нам приходилось в гл. 4, так что здесь сразу приведем результат:

Поскольку температура T остается постоянной, выражение для соответствующего изменения энтропии имеет вид

Как известно, газовая постоянная R имеет размерность кал/(моль К), а множитель, содержащий логарифм, - безразмерное число, так что размерности в левой и правой частях соотношения (24) совпадают. Таким образом, увеличение объема (т. е. расширение) при постоянной температуре сопровождается ростом энтропии.

Вернемся к случаю кипения воды. Пусть испарился 1 моль воды; 1 моль идеального газа, как мы помним, при нормальных условиях (давлении 1 атм и температуре 273 К) занимает объем около 22 400 см3. При 373 К соответствующий объем будет равен 22 400 (373/273), или примерно 30 600 см3. До испарения 1 моль жидкости занимал объем около таким образом, отношение составляет Согласно равенству (24), изменение энтропии, соответствующее изменению объема за счет испарения, составляет R ln 1700. Учитывая, что значение R примерно равно , искомое изменение энтропии составляет примерно 14,88 кал/(моль К).

Подсчитывая в предыдущем разделе полное изменение энтропии в течение всего процесса испарения 1 моль воды, мы получили значение 26,0 кал/(моль К). Как мы убедились теперь, чуть более половины этого значения связано с изменением объема при переходе жидкости в пар.

Изменения энтропии, обусловленные изменениями температуры. До сих пор все наши вычисления изменения энтропии проводились для тепловых взаимодействий при постоянной температуре. Рассмотрим теперь более обычный и несколько более сложный случай, когда обратимое нагревание приводит к изменению температуры. Если нагревание происходит при постоянном объеме, то. согласно определению удельной теплоемкости при постоянном объеме , имеем . Тогда

Интегрируя это выражение по конечному интервалу температур, получаем

Здесь предполагалось, что теплоемкость не зависит от температуры и ее можно вынести за знак интеграла. Существенно, что, отождествляя

мы снимаем ограничеиие об обратимости процесса нагревания, а также об однородности температуры в процессе нагревания. Нам необходимо знать температуру системы только в начале и в конце процесса нагревания. Иными словами, существенно лишь, чтобы тепловое равновесие существовало в начальном и конечном состояниях: промежуточные состояния не играют роли.

В более обычном и практически значительно легче осуществляемом случае нагревания при постоянном давлении имеем . Буквально повторяя все приведенные выше рассуждения, получаем

2. Нагревание воды при 1 атм от 273 К до 373 К:

3. Переход вода-пар при 1 атм и 373 К:

Таким образом, результирующее изменение энтропии при превращении 1 моль льда, имеющего температуру 273 К, в пар при 373 К составляет

Второе начало термодинамики имеет несколько формулировок. Формулировка Клаузиуса:невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.

Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Невозможно построить машину (вечный двигатель второго рода), которая совершала бы работу только за счет получения теплоты из окружающей среды.

Формулировка Больцмана: Энтропия - это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед - в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится.Энтропия не может уменьшаться в замкнутых системах - то есть, в системах, не получающих внешней энергетической подпитки.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

где - любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Энтропия идеальных газов

Для получения рассчетного выражения изменения энтропии идеальных газов воспользуемся первым законом термодинамики, в котором теплота определяется с использованием изменения энтальпии

Разность энтропий идеального газа в конкретных двух состояниях можно получить интегрированием выражения (4.59)

Для определения абсолюного значения энтропии идеального газа необходимо зафиксировать начало ее отсчета любой парой термических параметров состояния. Например, приняв s 0 =0 при Т 0 и Р 0 , воспользовавшись уравнением (4.60), получим

Выражение (4.62) свидетельствует о том, что энтропия идеального газа есть параметр состояния, поскольку ее можно определить через любую пару параметров состояния. В свою очередь, поскольку энтропия сама является параметром состояния, используя ее в паре с любым независимым параметром состояния, можно определить любой другой параметр состояния газа.

Подробности Категория: Термодинамика Опубликовано 03.01.2015 15:41 Просмотров: 6669

К макроскопическим параметрам термодинамической системы относятся давление , объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Что такое энтропия

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия?

Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Q" = Q/T .

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия » и обозначил её буквой S , а отношение общего количества теплоты ∆Q к величине абсолютной температуры Т назвал изменением энтропии .

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: "Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой ". То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T . Полный дифференциал энтропии dS = δQ/T .

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0 . В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0 ). Следовательно, она указывает направление протекания термодинамического процесса.

Формула Клаузиуса, записанная в виде dS = δQ/T , справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Закон неубывания энтропии

Второй закон термодинамики на основании понятия энтропии формулируется так: «В изолированной системе энтропия не уменьшается ». Этот закон называют также законом неубывания энтропии .

Если в какой-то момент времени энтропия замкнутой системы отличается от максимальной, то в дальнейшем она может только увеличиваться, пока не достигнет максимального значения. Система придёт в состояние равновесия.

Клаузиус был уверен, что Вселенная представляет собой замкнутую систему. А раз так, то её энтропия стремится достичь максимального значения. Это означает, что когда-нибудь все макроскопические процессы в ней прекратятся, и наступит «тепловая смерть». Но американский астроном Эдвин Пауэлл Хаблл доказал, что Вселенную нельзя назвать изолированной термодинамической системой, так как она расширяется. Советский физик академик Ландау считал, что закон неубывания энтропии к Вселенной применять нельзя, так как она находится в переменном гравитационном поле. Современная наука пока не в состоянии дать ответ на вопрос, замкнутой ли системой является наша Вселенная или нет.

Принцип Больцмана

Людвиг Больцман

Любая замкнутая термодинамическая система стремится к состоянию равновесия. Все самопроизволные процессы, происходящие в ней, сопровождаются ростом энтропии.

В 1877 г. австрийский физик-теоретик Людвиг Больцман связал энтропию термодинамического состояния с количеством микросостояний системы. Считается, что саму формулу расчёта значения энтропии позднее вывел немецкий физик-теоретик Макс Планк.

S = k · ln W ,

где k = 1,38·10 −23 Дж/К - постоянная Больцмана; W - количество микросостояний системы, которые реализуют данное макростатическое состояние, или число способов, которыми это состояние может быть реализовано.

Мы видим, что энтропия зависит только от состояния системы и не зависит от того, каким способом система перешла в это состояние.

Физики считают энтропию величиной, характеризующей степень беспорядка термодинамической системы. Любая термодинамическая система всегда стремится уравновесить свои параметры с окружающей средой. К такому состоянию она приходит самопроизвольно. И когда состояние равновесия достигнуто, система уже не может совершать работу. Можно считать, что она находится в беспорядке.

Энтропия характеризует направление протекания термодинамического процесса обмена теплом между системой и внешней средой. В замкнутой термодинамической системе она определяет, в каком направлении протекают самопроизвольные процессы.

Все процессы, протекающие в природе, необратимы. Поэтому они протекают в направлении увеличения энтропии.

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What"s an intuitive way to understand entropy? , заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.

Так что же такое энтропия?

Если в двух словах, то
Энтропия - это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.


Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые - меньшему, но мы этим пренебрежём).


Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей - вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) - макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).

А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти - 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 - 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.

Другими словами, энтропия - это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа - это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.

Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

Хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона - Менделеева pV = νRT - это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 10 23 .

Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации - мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.


Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого - красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача - пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные - справа.


Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия - это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много - чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю - у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе - но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние - и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S , которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2 S < 0).

Неравенство (4.1) называют неравенством Клаузиуса . Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

где k = 1.38 10 -23 Дж/К - постоянная Больцмана (k = R / N A), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

где G (E ) - фазовый объем, занятый микроканоническим ансамблем с энергией E .

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Q обр = TdS , (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении .

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = C p dT .

(4.9)

Если теплоемкость не зависит от температуры в интервале от T 1 до T 2 , то уравнение (4.8) можно проинтегрировать:

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) C p надо заменить на C V .

2) Изотермическое расширение или сжатие .

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT / V )

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2 /V 1) .

3) Фазовые переходы .

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

(4.13)

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п. , поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении .

Если n 1 молей одного газа, занимающего объем V 1 , смешиваются с n 2 молями другого газа, занимающего объем V 2 , то общий объем будет равен V 1 + V 2 , причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

где x i - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln x i < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

Абсолютная энтропия

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики) :

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

(x = p , V ). (4.15)

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости C p от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

. (4.17)

ПРИМЕРЫ

Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

Решение .

Интегрируя это равенство, находим зависимость энтропии от объема:

где const зависит от температуры.

Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

C p (S тв) = 23.64 Дж/(моль. К),
C p (S ж) = 35.73 + 1.17 . 10 -3 . T Дж/(моль. К).

Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

Решение . Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

4.54 Дж/К.

2.58 Дж/К.

S = S 1 + S 2 + S 3 = 11.88 Дж/К.

Ответ. 11.88 Дж/К.

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V 1 до объема V p .

Решение . а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

.

Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

.

б) Энтропия - функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс - обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело - энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

.

В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V 2 -V 1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

,

как и полагается для необратимого процесса.

Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

Решение . Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
-5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

77.3 Дж/К.

-35.6 Дж/К.

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

-1223 Дж/К.

Т.к. энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

S = S 1 + S 2 + S 3 = -1181 Дж/К.

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

Ответ. -1181 Дж/К.

ЗАДАЧИ

4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

4-7. Три моля идеального одноатомного газа (C V = 3.0 кал/(моль. К)), находящегося при T 1 = 350 K и P 1 = 5.0 атм, обратимо и адиабатически расширяются до давления P 2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

C p (NaCl тв) = 45.94 + 16.32 . 10 -3 . T Дж/(моль. К),
C p (NaCl ж) = 66.53 Дж/(моль. К).

Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: C p (H 2 O) = 4.184 Дж/(г. К).

4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p 1 до p 2:

.

Насколько уменьшится энтропия этого тела при сжатии от p 1 до p 2 ?

4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p 1 до давления p 2: а) обратимо; б) против внешнего давления p < p 2 .

4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-18. Один моль газа описывается уравнением состояния

где f (V ) - некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V 1 до объема V 2 .

4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

4-20. Теплоемкость некоторого вещества в интервале температур от T 1 до T 2 изменяется следующим образом:

Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H 2(г) + ЅO 2(г) = H 2 O (г) а) при 25 о С; б) при 300 о С.



Понравилась статья? Поделитесь с друзьями!