Что такое теплоемкость газообразного тела. Изотермический процесс газа

Внутренняя энергия тела - сумма кинетической энергии хаотического движения молекул относительно центра масс тела и потенциальной энергии взаимодействия молекул друг с другом (но не с молекулами других тел). Зависит от температуры и объема.

Мы можем изменять энергию тела совершая над ним работу. Например, накачивая велосипедную шину, насос нагревается. Некоторые думают, что из-за того что поршень трётся о стенки насоса, а причиной тому служит то, что мы сжимаем газ, совершаем над ним работу, которая идет на увеличение внутренней энергии и это проявляется, как увеличение температуры.

Есть и другой способ изменения внутренней энергии тела без совершения работы - теплопередача.

Теплопередача

Теплопередача - способ передачи внутренней энергии тела без совершения работы.

Перенос теплоты может передаваться тремя способами:

  • теплопроводностью;
  • конвекцией;
  • излучением (радиацией);

Этими тремя способами можно изменить внутреннюю энергию тела.

Совокупность всех видов теплообмена называется сложным теплообменом. Процессы теплообмена могут происходить в различных средах: чистых веществах при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по разному и описывается различными уравнениями.

Теплопроводность

class="h3_fon">

Процесс переноса теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты за счет колебания молекул. Молекулы с большей амплитудой колебания заставляют колебаться чаще соседний молекулы с меньшей амплитудой колебания.

При нагревании тела кинетическая энергия его молекул возрастает, и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии. При этом более нагретые части тела остывают, а менее нагретые нагреваются.

Конвекция

class="h3_fon">

Конвекция - перенос теплоты при перемещении или перемешивании всей массы неравномерно нагретых жидкостей или газов. При этом перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально.

Конвективный теплообмен - одновременный перенос теплоты конвекцией и теплопроводностью. В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Излучение

class="h3_fon">

Излучение (тепловое излучение, радиация) - процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн.

Этот процесс происходит в три стадии:

  • превращение части внутренней энергии одного тела в энергию электромагнитных волн;
  • распространение электромагнитных волн в пространстве;
  • поглощение энергии излучения другим телом.

Радиационнокондуктивный теплообмен - совместный теплообмен излучением и теплопроводностью.

Количество теплоты

Количество теплоты (Q) - энергия, сообщаемая телу в процессе теплопередачи называется количеством теплоты и измеряется в [Дж].

Если агрегатное состояние вещества не меняется (не меняется потенциальная энергия взаимодействия молекул между собой, а меняется кинетическая), то изменение внутренней энергии связано с изменением внутренней температуры.

Q ~ ΔТ
Полученное количество теплоты прямопропорционально разнице температуры тела.

Коэффициент пропорциональности зависит от тела, массы и объема и является характеристикой тела. Если мы возмем стакан воды и повысим температуру на 1 Кельвин, то нам нужно одно количество теплоты. Если мы возьмем море, то нам понадобится совсем другое кол-во теплоты.

Q = СΔТ
С- теплоемкость тела.

С = Q  [Дж/К]
ΔТ

Теплоемкость тела - физическая величина численно равная количеству теплоты которой необходимо сообщения телу для увеличения его температуры на 1 Кельвин.

Удельная теплоемкость

Теплоемкость тела зависит прямопропорционально от массы тела, т.е. это свойство вещества.

C = cm, с=С/m, [c] = [Дж/кг*K]
С- удельная теплоемкость (теплоемкость вещества).

Соответственно формула количества тепла можно записать в следующем виде.

Q = cmΔТ
c - теплоемкость вещества
m - масса тела
ΔТ - разность температур

Удельная теплоемкость вещества - физическая величина численно равная количества теплоты, необходимо сообщить одному кг вещества для увеличения его температуры на 1 Кельвин.

Теплоемкость тела характеризуется количеством теплоты, необходимым для нагревание этого тела на один градус (Дж/град). Если для увеличения температуры тела на Т градусов необходимо сообщить ему ΔQ джоулей, то средняя теплоемкость тела в интервале ΔТ определяется как:

Теплоемкость тела пропорциональна массе и зависит от вещества тела. Удельная теплоемкость С уд данного вещества (дерева, железа, воздуха и т. д.) характеризуется количеством тепла на один градус, и измеряется в Дж/кг град. Удельная теплоемкость.

Для газов удобно пользоваться молярной теплоемкостью (С мол или просто С), характеризующейся количеством теплоты, нужным для нагревания одного киломоля данного вещества на один градус.

Очевидно, что

С уд /Дж/кг * град/ * μ/кг/кмоль/ = С /Дж/кмоль * град/.

Поскольку в 1 киломоле любого газа содержится одинаковое количество молекул, а средняя кинетическая энергия молекул не зависит от их массы, то можно ожидать, что молярные теплоемкости всех достаточно разреженных газов должны быть одинаковыми.

Теплоемкость тела существенно зависит от того, как меняются состояния тела в процессе нагревания. Рассмотрим для простоты идеальный одноатомный газ. Если мы будем нагревать газ, заключенный в замкнутом объеме, V = const (рис. 1, а), то все подводимое тепло ΔQ будет идти только на увеличение внутренней энергии газа. Тогда первое начало термодинамики при ΔA = 0 будет иметь вид: ΔQ = ΔU.

При этом температура газа будет возрастать в соответствии с увеличением его внутренней энергии, откуда следует, что температура идеального газа пропорциональна его внутренней энергии. Давление газа Р. также будет возрастать пропорционально температуре. Обозначим теплоемкость газа при постоянном объеме через С.

Если хотим, чтобы в процессе нагревания сохранилось давление, газу следует предоставить возможность расширяться. Для этого поместим газ в цилиндр с поршнем, на который действует постоянное давление Р. = const (рис. 1, б). Так как внутренняя энергия U идеального газа не зависит от его объема, то количество теплоты, необходимое для ее увеличения, останется тем же. Но при нагревании газа до той же температуры часть подводимого тепла расходуется теперь на работу против внешних сил при расширении газа. Следовательно, для нагревания газа до той же температуры, как и в предыдущем случае (V = const), придется затратить большее количество теплоты. Таким образом, теплоемкость ΔQ/ΔТ газа при постоянном давлении, которую мы обозначим через С р. , будет больше, чем С V .



Рассмотренный пример очень важен. Он показывает, что количество теплоты ΔQ, необходимое для нагревания газа на ΔТ градусов, существенно зависит от дополнительных условий – характера измерений других микроскопических параметров, определяющих состояние газа, т. е. Р. и V. Кроме рассмотренных процессов, характеризуемых простейшими дополнительными условиями V = const и Р. = const, можно рассмотреть и множество других, отвечающих различным изменениям V и Р. при нагревании. Каждому процессу будет отвечать своя теплоемкость С.

Величины С р. и С v для идеального газа оказывается связанными простым соотношением:

С р. – С v = R (2)

Это соотношение носит название закона Роберта Майера, полученного им в 1842 году.

Для идеального газа молярная теплоемкость при постоянном давлении превышают молярную теплоемкость при постоянном объеме на величину R т. е. на 8,31 кДж/кмоль град.

Универсальная газовая постоянная R численно равна работе расширения киломоля идеального газа при нагревании его на один градус при постоянном давлении.

Опыт показывает, что во всех случаях превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. Поскольку тепловое движение есть в конечном счете, тоже механическое движение отдельных молекул (только не направленное, а хаотическое), то при всех этих превращениях должен соблюдаться закон сохранения энергии с учетом энергии не только внешних, но и внутренних движений. Такая общая формулировка этого закона носит название первого начала термодинамики и записывается в виде:

ΔQ = ΔU + ΔA, т. е.

Количество теплоты, сообщенное телу (ΔQ), идет на увеличение внутренней энергии (ΔU) и на совершение теплом работы (ΔА).

Однако, если сосуд с расширяющим газом теплоизолировать от окружающей среды, то теплообмен будет отсутствовать, т. е. ΔQ = 0. Процесс, происходящий при таком условии, называется адиабатическим. Уравнение первого начала термодинамики для адиабатического процесса тогда примет вид:

ΔQ = 0 0 = ΔU + ΔA или ΔА = - ΔU. (3)

Следовательно, при адиабатическом процессе работа совершается только за счет внутренней энергии газа. При адиабатическом расширении газ совершает работу, а его внутренняя энергия и, следовательно, температура падают. При адиабатическом сжатии работа газа отрицательная (внешняя среда производит работу над газом), внутренняя энергия и температура газа возрастают.

Теплоемкость при адиабатическом процессе будет равна 0, т. е.

Уравнение, описывающее адиабатический процесс имеет вид:

PV γ = const ; где γ = С Р /С V . (4)

Так как С Р >С V , то γ>1 и кривая, изображаемая уравнением (4), идет круче изотермы (рис. 2). Величина работы адиабатического процесса может быть особенно просто вычислена с помощью уравнения (3):

Для одноатомного газа С =12,5кДж/к моль град, С р. =С v + =20,8 кДж/к моль град и показатель степени адиабаты γ=С Р /С v =1,67.

Для двухатомных газов при обычных температурах

g=29,1/20,8=1,4.

Для многоатомных газов γ еще ближе к единице.

В быстроходных двигателях внутреннего сгорания и при истечении газов через сопла реактивных двигателей процесс расширения газа протекает настолько быстро, что его можно считать практически адиабатическим и

рассчитывать по уравнению /4/.

Опыт также показывает, что для звуковых колебаний с минимальными частотами за время одного колебания /~0,1с/температура между сжатыми/ и тем самым разогретыми/ и разряженными /и тем самым охлажденными/ областями волны не успевает выравниваться. Практически процесс распространения звука можно считать адиабатическим, так что скорость распространения звука в идеальном газе определяется выражением:

Отсюда легко найти :

Таким образом, определение γ сводится к измерению скорости звука и абсолютной температуры воздуха. В данной работе скорость звука определяется методом стоячих волн - методом Кундта.

II. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ.

Схема экспериментальной установки изображена на рисунке 3. Телефон т, получая электрический сигнал от генератора1, излучает звуковые волны в трубу 2. Достигнув микрофона М, звуковая волна преобразуется в напряжение, которое поступает на вертикально отклоняющие пластины У электронного осциллографа 3.Напряжение на горизонтально отклоняющие пластины X подается непосредственно с выходных клемм звукового генератора. Телефон жестко закреплен на левом конце трубы, а микрофон может свободно перемещаться внутри нее.

Фазовый сдвиг сигнала, поступающего на пластины У, относительно сигнала, подведенного к пластинам X зависит от времени, которое тратит звук на прохождение расстояния между микрофоном и телефоном, может быть использована для определения длины волны λ. При включении установки на экране осциллографа должен быть виден эллис. Изменяя расстояние между микрофоном и телефоном, можно добиться превращения эллипса в прямую линию. Если теперь сместить микрофон на λ/2, то на экране вновь возникнет прямая линия, проходящая на этот раз через другие квадранты. При дальнейшем смещении прямая вновь переменит свое направление и т.д. Таким образом, при помощи фигур, получивших название фигур Лиссажу, можно непосредственно измерить длину звуковой волны в воздухе и по формуле определить скорость звука, где - частота генератора в Гц.

III.ПОРЯДОК ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ.

1. Включите осциллограф и дайте ему прогреться в течение 10 минут.

2. Включите и настройте звуковой генератор на частоту /частота задается преподавателем/.Установите напряжение на выходе генератора 1,5 В.

3. Установите указатель штока микрофона 5 в крайнее правое положение шкалы 4 /рис/, при этом на экране осциллографа появится фигура Лиссажу /эллипс или прямая линия/.

4. Перемещая шток с микрофоном в лево, зафиксируйте положение штока микрофона / /, при которых эллипс превращается в четкую прямую линию, что соответствует узлам стоячей волны /отсчет производить в см по шкале 4/.

5. Вычислите разность между узловыми точками, которая является половиной длины волны .

11.Сделайте выводы.

IV. КОНТРОЛЬНЫЕ ВОПРОСЫ.

Смотри работу №10.

ТЕПЛОЁМКОСТЬ - кол-во теплоты; поглощаемой телом при нагревании на 1 градус (1 °С или 1 К); точнее - отношение кол-ва теплоты, поглощаемой телом при бесконечно малом изменении его темп-ры, к этому изменению. Т. единицы массы вещества наз. удельной Т., 1 моля вещества-молярной (мольной) Т. Единицами Т. служат Дж/(кг · К), ДжДмоль · К), Дж/(м 3 · К) и внесистемная единица кал/(моль·К).

Кол-во теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их темп-ры), но и от способа, к-рым был осуществлён процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при пост. объёме (C V )и Т. при пост. давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. При нагревании при пост. давлении часть теплоты идёт на производство работы расширения тела, а часть - на увеличение его внутренней энергии , тогда как при нагревании при пост. объёме вся теплота расходуется на увеличение внутр. энергии; в связи с этим С Р всегда больше, чем C V . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. С P - C V = R , где R - универсальная газовая постоянная ,равная 8,314 Дж/(Дмоль·К) или 1,986 калДмоль·К). У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала. Т. С Р нек-рых веществ и материалов приведены в табл. 1 и 2.

В твёрдых (кристаллич.) телах тепловое движение атомов представляет собой малые колебания вблизи определ. положений равновесия (узлов кристаллич. решётки). Каждый атом обладает, т. о., тремя колебат. степенями свободы, и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллич. решётки) должна быть равной ЗnR , где n -число атомов в молекуле. В действительности, однако, это значение - лишь предел, к к-рому стремится Т. твёрдого тела при высоких темп-pax. Он достигается уже при обычных темп-pax у мн. элементов, в т. ч. у металлов (п=1 , т.н. Дюлонга и Пти закон )и у нек-рых простых соединений ; у сложных соединений этот предел фактически не достигается, т. к. раньше наступает плавление вещества или его разложение.

При низких темп-pax решёточная составляющая Т, твёрдого тела оказывается пропорц. T 3 (Дебая закон теплоёмкости) . Критерием, позволяющим различать высокие и низкие темп-ры, является сравнение их с характерным для каждого данного вещества параметром - т. н. характеристической или Дебая температурой q D , Эта величина определяется спектром колебания атомов в теле и тем самым существенно зависит от его кристаллич. структуры (см. Колебания кристаллической решётки) . Обычно q D -величина порядка неск. сотен К, но может достигать (напр., у алмаза) и тысяч К,

У металлов определ. вклад в Т. дают также и электроны проводимости (см. Электронная теплоёмкость) . Эта часть Т. может быть вычислена с помощью Ферми - Дирака, статистики, к-рой подчиняются электроны. Электронная Т. металла пропорц. Т . Она представляет собой, однако, сравнительно малую величину, её вклад в Т. металла становится существенным лишь при темп-pax, близких к абс, нулю (порядка неск. К), когда решёточная Т. ( 3 )становится пренебрежимо малой. У кристаллич. тел с упорядоченным расположением спиновых магн. моментов атомов (ферро- и антиферромагнетиков) существует дополнит. магн, составляющая Т. При темп-ре фазового перехода в парамагн. состояние (в Кюри точке или соответственно Нееля точке )эта составляющая Т. испытывает резкий подъём - наблюдается "пик" Т., что является характерной особенностью фазовых переходов 2-го рода. .

Лит..: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976; Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976. E. М. Лифшиц .

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Теплоемкостью тела называют количество теплоты, которое нужно сообщить данному телу, чтобы повысить его температуру на один градус. При остывании на один градус тело отдает такое же количество тепла. Теплоемкость пропорциональна массе тела. Теплоемкость единицы массы тела называется удельной, а произведение удельной теплоемкости на атомную или молекулярную массу - соответственно атомной или молярной.

Теплоемкости различных веществ сильно различаются между собой. Так, удельная теплоемкость воды при 20° С составляет 4200 Дж/кг К, соснового дерева - 1700, воздуха - 1010. У металлов она меньше: алюминия - 880 Дж/кг К, железа - 460, меди - 385, свинца - 130. Удельная теплоемкость слабо растет с температурой (при 90° С теплоемкость воды составляет 4220 Дж/кг К) и сильно меняется при фазовых превращениях: теплоемкость льда при 0° С в 2 раза меньше, чем воды; теплоемкость водяного пара при 100° С около 1500 Дж/кг К.

Теплоемкость зависит от условий, в которых происходит изменение температуры тела. Если размеры тела не меняются, то вся теплота идет на изменение внутренней энергии. Здесь говорится о теплоемкости при постоянном объеме . При постоянном внешнем давлении благодаря тепловому расширению совершается механическая работа против внешних сил, и нагревание на ту или иную температуру требует большего тепла. Поэтому теплоемкость при постоянном давлении всегда больше, чем . Для идеальных газов (см. рис.), где R - газовая постоянная, равная 8,32 Дж/моль К.

Обычно измеряется . Классический способ измерения теплоемкости следующий: тело, теплоемкость которого хотят измерить, нагревают до определенной температуры и помещают в калориметр с начальной температурой , наполненный водой или другой жидкостью с известной теплоемкостью и - теплоемкости калориметра и жидкости).

Измеряя температуру в калориметре после установления теплового равновесия , можно вычислить теплоемкость тела по формуле:

где и - массы тела, жидкости и калориметра.

Наиболее развита теория теплоемкости газов. При обычных температурах нагревание приводит в основном к изменению энергии поступательного и вращательного движения молекул газа. Для молярной теплоемкости одноатомных газов теория дает , двухатомных и многоатомных - и . При очень низких температурах теплоемкость несколько меньше из-за квантовых эффектов (см. Квантовая механика). При высоких температурах добавляется колебательная энергия, и теплоемкость многоатомных газов растет с ростом температуры.

Атомная теплоемкость кристаллов, по классической теории, равна , что согласуется с эмпирическим законом Дюлонга и Пти (установлен в 1819 г. французскими учеными П. Дюлонгом и А. Пти). Квантовая теория теплоемкости приводит к такому же выводу при высоких температурах, но предсказывает уменьшение теплоемкости при понижении температуры. Вблизи абсолютного нуля теплоемкость всех тел стремится к нулю (третий закон термодинамики).



Понравилась статья? Поделитесь с друзьями!