Как называются самые большие числа в мире.

В детстве меня мучил вопрос, какое существует самое большое число, и я изводил этим дурацким вопросом практически всех подряд. Узнав число миллион, я спрашивал, а есть ли число больше миллиона. Миллиард? А больше миллиарда? Триллион? А больше триллиона? Наконец, нашёлся кто-то умный, кто мне объяснил, что вопрос глуп, так как достаточно всего лишь прибавить к самому большому числу единицу, и окажется, что оно никогда не было самым большим, так как существуют число ещё больше.

И вот, спустя много лет, я решил задаться другим вопросом, а именно: какое существует самое большое число, которое имеет собственное название? Благо, сейчас есть инет и озадачить им можно терпеливые поисковые машины, которые не будут называть мои вопросы идиотскими;-). Собственно, это я и сделал, и вот, что в результате выяснил.

Число Латинское название Русская приставка
1 unus ан-
2 duo дуо-
3 tres три-
4 quattuor квадри-
5 quinque квинти-
6 sex сексти-
7 septem септи-
8 octo окти-
9 novem нони-
10 decem деци-

Существуют две системы наименования чисел - американская и английская.

Американская система постороена довольно просто. Все названия больших чисел строятся так: в начале идет латинское порядковое числительное, а в конце к ней добавляется суффикс -иллион. Исключение составляет название "миллион" которое является названием числа тысяча (лат. mille ) и увеличительного суффикса -иллион (см. таблицу). Так получаются числа - триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Американская система используется в США, Канаде, Франции и России. Узнать количество нулей в числе, записанном по американской системе, можно по простой формуле 3·x+3 (где x - латинское числительное).

Английская система наименования наиболее распространена в мире. Ей пользуются, например, в Великобритании и Испании, а также в большинстве бывших английских и испанских колоний. Названия чисел в этой системе строятся так: так: к латинскому числительному добавляют суффикс -иллион, следущее число (в 1000 раз большее) строится по принципу - то же самое латинское числительное, но суффикс - -иллиард. То есть после триллиона в английской системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т.д. Таким образом, квадриллион по английской и американской системам - это совсем разные числа! Узнать количество нулей в числе, записанном по английской системе и оканчивающегося суффиксом -иллион, можно по формуле 6·x+3 (где x - латинское числительное) и по формуле 6·x+6 для чисел, оканчивающихся на -иллиард.

Из английской системы в русский язык перешло только число миллиард (10 9), которое всё же было бы правильнее называть так, как его называют американцы - биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! ;-) Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.

Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.

Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33:

Название Число
Единица 10 0
Десять 10 1
Сто 10 2
Тысяча 10 3
Миллион 10 6
Миллиард 10 9
Триллион 10 12
Квадриллион 10 15
Квинтиллион 10 18
Секстиллион 10 21
Септиллион 10 24
Октиллион 10 27
Нониллион 10 30
Дециллион 10 33

И вот, теперь возникает вопрос, а что дальше. Что там за дециллионом? В принципе, можно, конечно же, при помощи объединения приставок породить такие монстры, как: андецилион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион и новемдециллион, но это уже будут составные названия, а нам были интересны именно собственные названия чисел. Поэтому собственных имён по этой системе, помимо указанных выше, ещё можно получить лишь всего три - вигинтиллион (от лат. viginti - двадцать), центиллион (от лат. centum - сто) и миллеиллион (от лат. mille - тысяча). Больше тысячи собственных названий для чисел у римлян не имелось (все числа больше тысячи у них были составными). Например, миллион (1 000 000) римляне называли decies centena milia , то есть "десять сотен тысяч". А теперь, собственно, таблица:

Таким образом, по подобной системе числа больше, чем 10 3003 , у которого было бы собственное, несоставное название получить невозможно! Но тем не менее числа больше миллеиллиона известны - это те самые внесистемные числа. Расскажем, наконец-то, о них.

Название Число
Мириада 10 4
Гугол 10 100
Асанкхейя 10 140
Гуголплекс 10 10 100
Второе число Скьюза 10 10 10 1000
Мега 2 (в нотации Мозера)
Мегистон 10 (в нотации Мозера)
Мозер 2 (в нотации Мозера)
Число Грэма G 63 (в нотации Грэма)
Стасплекс G 100 (в нотации Грэма)

Самое маленькое такое число - это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть - 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово "мириады", которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.

Гугол (от англ. googol) - это число десять в сотой степени, то есть единица со ста нулями. О "гуголе" впервые написал в 1938 году в статье "New Names in Mathematics" в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать "гуголом" большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google . Обратите внимание, что "Google" - это торговая марка, а googol - число.

В известном буддийском трактате Джайна-сутры, относящегося к 100 г. до н.э., встречается число асанкхейя (от кит. асэнци - неисчислимый), равное 10 140 . Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Гуголплекс (англ. googolplex ) - число также придуманное Каснером со своим племянником и означающее единицу с гуголом нулей, то есть 10 10 100 . Вот как сам Каснер описывает это "открытие":

Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner"s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested "googol" he gave a name for a still larger number: "Googolplex." A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination (1940) by Kasner and James R. Newman.

Еще большее, чем гуголплекс число - число Скьюза (Skewes" number) было предложено Скьюзом в 1933 году (Skewes. J. London Math. Soc. 8 , 277-283, 1933.) при доказательстве гипотезы Риманна , касающейся простых чисел. Оно означает e в степени e в степени e в степени 79, то есть e e e 79 . Позднее, Риел (te Riele, H. J. J. "On the Sign of the Difference П (x)-Li(x)." Math. Comput. 48 , 323-328, 1987) свел число Скьюза к e e 27/4 , что приблизительно равно 8,185·10 370 . Понятное дело, что раз значение числа Скьюза зависит от числа e , то оно не целое, поэтому рассматривать мы его не будем, иначе пришлось бы вспомнить другие ненатуральные числа - число пи, число e, число Авогадро и т.п.

Но надо заметить, что существует второе число Скьюза, которое в математике обозначается как Sk 2 , которое ещё больше, чем первое число Скьюза (Sk 1). Второе число Скьюза , было введённо Дж. Скьюзом в той же статье для обозначения числа, до которого гипотеза Риманна справедлива. Sk 2 равно 10 10 10 10 3 , то есть 10 10 10 1000 .

Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел - это нотации Кнута, Конвея, Стейнхауза и др.

Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots , 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур - треугольника, квадрата и круга:

Стейнхауз придумал два новых сверхбольших числа. Он назвал число - Мега , а число - Мегистон.

Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

Таким образом, по нотации Мозера стейнхаузовский мега записывается как 2, а мегистон как 10. Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге - мегагоном. И предложил число "2 в Мегагоне", то есть 2. Это число стало известным как число Мозера (Moser"s number) или просто как мозер .

Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham"s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.

К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал "Искусство программирования" и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

В общем виде это выглядит так:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:

Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в "Книгу рекордов Гинесса". А, вот , что число Грэма больше числа Мозера.

P.S. Чтобы принести великую пользу всему человечеству и прославиться в веках, я решил сам придумать и назвать самое большое число. Это число будет называться стасплекс и оно равно числу G 100 . Запомните его, и когда ваши дети будут спрашивать какое самое большое в мире число, говорите им, что это число называется стасплекс .

Update (4.09.2003): Спасибо всем за комментарии. Оказалось, что при написании текста я допустил несколько ошибок. Попробую сейчас исправить.

  1. Я сделал сразу несколько ошибок, просто упомянув число Авогадро. Во-первых, несколько человек указали мне, что на самом деле 6,022·10 23 - самое, что ни на есть натуральное число. А во-вторых, есть мнение и оно мне кажется верным, что число Авогадро вообще не является числом в собственном, математическом смысле слова, так как оно зависит от системы единиц. Сейчас оно выражается в "моль -1 ", но если его выразить, к примеру в молях или ещё в чём-нибудь, то оно будет выражаться совсем другой цифрой, но числом Авогадро от этого быть совсем не перестанет.
  2. 10 000 - тьма
    100 000 - легион
    1 000 000 - леодр
    10 000 000 - ворон или вран
    100 000 000 - колода
    Что интересно, древние славяне тоже любили большие числа умели считать до миллиарда. Причём такой счёт назывался у них "малый счёт". В некоторых же рукописях авторами рассматривался и "великий счёт", доходивший до числа 10 50 . Про числа больше, чем 10 50 говорилось: "И более сего несть человеческому уму разумети". Названия употреблявшиеся в "малом счёте", переносились на "великий счет", но с другим смыслом. Так, тьма означала уже не 10 000, а миллион, легион - тьму тем (миллион миллионов); леодр - легион легионов (10 в 24 степени), дальше говорилось - десять леодров, сто леодров, ... , и, наконец, сто тысяч тем легион леодров (10 в 47); леодр леодров (10 в 48) назывался ворон и, наконец, колода (10 в 49).
  3. Тему национальных названий чисел можно расширить, если вспомнить и про забытую мной японскую систему наименования чисел, которая сильно отличается от английской и американской системы (иероглифы я рисовать не буду, если кому-то интересно, то они ):
    10 0 - ichi
    10 1 - jyuu
    10 2 - hyaku
    10 3 - sen
    10 4 - man
    10 8 - oku
    10 12 - chou
    10 16 - kei
    10 20 - gai
    10 24 - jyo
    10 28 - jyou
    10 32 - kou
    10 36 - kan
    10 40 - sei
    10 44 - sai
    10 48 - goku
    10 52 - gougasya
    10 56 - asougi
    10 60 - nayuta
    10 64 - fukashigi
    10 68 - muryoutaisuu
  4. По поводу чисел Хьюго Стейнхауза (в России его имя переводили почему-то как Гуго Штейнгауз). botev уверяет, что идея записывать сверхбольшие числа в виде чисел в кружочках, принадлежит не Стейнхаузу, а Даниилу Хармсу, который задолого до него опубликовал эту идею в статье "Поднятие числа". Также хочу поблагодарить Евгения Скляревского, автора самого интересного сайта по занимательной математике в русскоязычном интернете - Арбуза , за информацию, что Стейнхауз придумал не только числа мега и мегистон, но и предложил ещё число медзон , равное (в его нотации) "3 в кружочке".
  5. Теперь о числе мириада или мириои. Насчёт происхождения этого числа существуют разные мнения. Одни считают, что оно возникло в Египте, другие же полагают, что оно родилось лишь в Античной Греции. Как бы то ни было на самом деле, но известность мириада получила именно благодаря грекам. Мириада являлось названием для 10 000, а для чисел больше десяти тысяч названий не было. Однако в заметке "Псаммит" (т.е. исчисление песка) Архимед показал, как можно систематически строить и называть сколь угодно большие числа. В частности, размещая в маковом зерне 10 000 (мириада) песчинок, он находит, что во Вселенной (шар диаметром в мириаду диаметров Земли) поместилось бы (в наших обозначениях) не более чем 10 63 песчинок. Любопытно, что современные подсчеты количества атомов в видимой Вселенной приводят к числу 10 67 (всего в мириаду раз больше). Названия чисел Архимед предложил такие:
    1 мириада = 10 4 .
    1 ди-мириада = мириада мириад = 10 8 .
    1 три-мириада = ди-мириада ди-мириад = 10 16 .
    1 тетра-мириада = три-мириада три-мириад = 10 32 .
    и т.д.

Если есть замечания -

John Sommer

Ставьте после любой цифры нули или перемножайте с десятками, возведенными в сколь угодно большую степень. Мало не покажется. Покажется очень много. Но голые записи, все-таки, не слишком впечатляют. Громоздящиеся нули у гуманитария вызывают не столько удивление, сколько легкую зевоту. В любом случае, к любому самому большому числу в мире, которое вы можете вообразить, всегда можно прибавить еще единицу... И число выйдет еще больше.

И все-таки, есть в русском или любом другом языке слова для обозначения очень больших чисел? Тех, которые больше миллиона, миллиарда, триллиона, биллиона? И вообще, биллион - это сколько?

Оказывается, существуют две системы наименования чисел. Но не арабская, египетская, или любых других древних цивилизаций, а - американская и английская.

В американской системе числа называются так: берется латинское числительное + - иллион (суффикс). Таким образом, получаются числа:

Триллион - 1 000 000 000 000 (12 нулей)

Квадриллион - 1 000 000 000 000 000 (15 нулей)

Квинтиллион - 1 и 18 нулей

Секстиллион - 1 и 21 нуль

Септиллион - 1 и 24 нуля

октиллион - 1 и 27 нулей

Нониллион - 1 и 30 нулей

Дециллион - 1 и 33 нуля

Формула проста: 3·x+3 (х - латинское числительное)

По идее должны быть еще числа анилион (unus в латинском языке - один) и дуолион (duo - два), но, по-моему, такие названия вообще не используются.

Английская система наименования чисел распространена в большей степени.

Здесь тоже берется латинское числительное и к нему добавляется суффикс -иллион. Однако название следующего числа, которое больше предыдущего в 1 000 раз, образуется с помощью того же латинского числа и суффикса - иллиард. То бишь:

Триллион - 1 и 21 нуль (в американской системе - секстиллион!)

Триллиард - 1 и 24 нуля (в американской системе - септиллион)

Квадриллион - 1 и 27 нулей

Квадриллиард - 1 и 30 нулей

Квинтиллион - 1 и 33 нуля

Квиниллиард - 1 и 36 нулей

Секстиллион - 1 и 39 нулей

Секстиллиард - 1 и 42 нуля

Формулы для подсчета количества нулей, таковы:

Для чисел, оканчивающихся на - иллион - 6·x+3

Для чисел, оканчивающихся на - иллиард - 6·x+6

Как видите, путаница возможна. Но не устрашимся!

В России принята американская система наименования чисел. Из английской системы мы позаимствовали название числа "миллиард" - 1 000 000 000 = 10 9

А где же "заветный" биллион? - Да ведь биллион - это и есть миллиард! По-американски. А мы, хоть и пользуемся американской системой, а "миллиард" взяли из английской.

Пользуясь латинскими наименованиями чисел и американской системой назовем числа:

- вигинтиллион - 1 и 63 нуля

- центиллион - 1 и 303 нуля

- миллеиллион - единица и 3003 нуля! О-го-го...

Но и это, оказывается, не все. Есть еще числа внесистемные.

И первое из них, наверное, мириада - сотня сотен = 10 000

Гугол (именно в честь него названа известная поисковая система) - единица и сто нулей

В одном из буддийских трактатов названо число асанкхейя - единица и сто сорок нулей!

Название числа гуголплекс (как и гугол) придумал английский математик Эдвард Каснер и его девятилетний племянник - единица с - мама дорогая! - гуголом нулей!!!

Но и это еще не все...

Математик Скьюз назвал в честь себя число Скьюза. Оно означает e в степени e в степени e в степени 79, то есть e e e 79

А потом возникла большая трудность. Названия числам придумать можно. А вот как их записывать? Количество степеней степеней степеней уже таково, что просто не убирается на страницу! :)

И тогда некоторые математики стали записывать числа в геометрических фигурах. А первым, говорят, такой способ записи придумал выдающийся писатель и мыслитель Даниил Иванович Хармс.

И, все-таки, какое САМОЕ БОЛЬШОЕ ЧИСЛО В МИРЕ? - Оно называется СТАСПЛЕКС и равно G 100,

где G - число Грэма, самое большое число, когда-либо применявшееся в математических доказательствах.

Это число - стасплекс - придумал замечательный человек, наш соотечественник Стас Козловский, к ЖЖ которому я вас и адресую:) - ctac

Есть числа, которые так неимоверно, невероятно велики, что даже для того чтобы записать их, потребуется вся вселенная целиком. Но вот что действительно сводит с ума… некоторые из этих непостижимо больших чисел крайне важны для понимания мира.

Когда я говорю “наибольшее число во Вселенной’’, в действительности я имею в виду самое большое значимое число, максимально возможное число, которое в некотором роде полезно. Есть много претендентов на этот титул, но я сразу же предупреждаю вас: в самом деле существует риск того, что попытка понять все это взорвет ваш мозг. И кроме того, с излишком математики, вы получите мало удовольствия.

Гугол и гуголплекс

Эдвард Каснер

Мы могли бы начать с двух, весьма вероятно, самых больших чисел, о которых вы когда-либо слышали, и это действительно два самых больших числа, которые имеют общепринятые определения в английском языке. (Имеется довольно точная номенклатура, применяемая для обозначения чисел столь больших, как вам хотелось бы, но эти два числа в настоящее время вы не найдете в словарях.) Гугол, с тех пор как он стал всемирно известным (хотя и с ошибками, примеч. в самом деле это googol) в виде Google, родился в 1920 году как способ заинтересовать детей большими числами.

С этой целью Эдвард Каснер (на фото), взял двух своих племянников, Мильтона и Эдвина Сиротт, на прогулку по Нью-Джерси Palisades. Он предложил им выдвигать любые идеи, и тогда девятилетний Мильтон предложил “гугол’’. Откуда он взял это слово, неизвестно, но Каснер решил, что или число, в котором за единицей стоят сто нулей отныне будет называться гугол.

Но молодой Мильтон на этом не остановился, он предложил еще большее число, гуголплекс. Это число, по мнению Мильтона, в котором на первом месте стоит 1, а затем столько нулей, сколько вы могли бы написать до того как устанете. Хотя эта идея очаровательна, Каснер решил, что необходимо более формальное определение. Как он объяснил в своей книге 1940 года издания “Математика и воображение’’, определение Мильтона оставляет открытой рискованную возможность того, что случайный шут может стать математиком, превосходящим Альберта Эйнштейна просто потому, что он обладает большей выносливостью.

Таким образом, Каснер решил, что гуголплекс будет равен , или 1, а затем гугол нулей. Иначе, и в обозначениях, аналогичных тем, с которыми мы будем иметь дело для других чисел, мы будем говорить, что гуголплекс — это . Чтобы показать, насколько это завораживает, Карл Саган однажды заметил, что физически невозможно записать все нули гуголплекса, потому что просто не хватит места во Вселенной. Если заполнить весь объем наблюдаемой Вселенной мелкими частицами пыли размером приблизительно в 1,5 микрона, то число различных способов расположения этих частиц будет примерно равно одному гуголплексу.

Лингвистически говоря, гугол и гуголплекс, вероятно, два самых больших значащих числа (по крайней мере, в английском языке), но, как мы сейчас установим, способов определения “значимости’’ бесконечно много.

Реальный мир

Если мы будем говорить о самом большом значащем числе, существует разумный аргумент, что это в самом деле означает, что нужно найти наибольшее число с реально существующим в мире значением. Мы можем начать с текущей человеческой популяции, которая в настоящее время составляет около 6920 миллионов. Мировой ВВП в 2010 году, по оценкам, составил около 61960 миллиардов долларов, но оба эти числа незначительны по сравнению с примерно 100 триллионами клеток, составляющих организм человека. Конечно, ни одно из этих чисел не может сравниться с полным числом частиц во Вселенной, которое, как правило, считается равным примерно , и это число настолько велико, что наш язык не имеет соответствующего ему слова.

Мы можем поиграть немного с системами мер, делая числа больше и больше. Так, масса Солнца в тоннах будет меньше, чем в фунтах. Прекрасный способ сделать это состоит в использовании системы единиц Планка, которые являются наименьшими возможными мерами, для которых остаются в силе законы физики. Например, возраст Вселенной во времени Планка составляет около . Если мы вернемся в первую единицу времени Планка после Большого Взрыва, то увидим, что плотность Вселенной была тогда . Мы получаем все больше, но мы еще не достигли даже гугола.

Наибольшее число с каким-либо реальным приложением мире — или, в данном случае реальным применением в мирах — вероятно, , — одна из последних оценок числа вселенных в мультивселенной. Это число настолько велико, что человеческий мозг будет буквально не в состоянии воспринять все эти разные вселенные, поскольку мозг способен только примерно на конфигураций. На самом деле, это число, вероятно, самое большое число с каким-либо практическим смыслом, если вы не принимаете во внимание идею мультивселенной в целом. Однако существуют еще намного большие числа, которые там скрываются. Но для того, чтобы найти их, мы должны отправиться в область чистой математики, и нет лучшего начала, чем простые числа.

Простые числа Мерсенна

Часть трудностей состоит в том, чтобы придумать хорошее определение того, что такое “значащее’’ число. Один из способов состоит в том, чтобы рассуждать в терминах простых и составных чисел. Простое число, как вы, наверное, помните из школьной математики, — это любое натуральное число (примеч. не равное единице), которое делится только на и самого себя. Итак, и — простые числа, а и — составные числа. Это означает, что любое составное число может в конечном счете быть представлено своими простыми делителями. В некотором смысле число является более важным, чем, скажем, , потому что нет никакого способа выразить его через произведение меньших чисел.

Очевидно, мы можем пойти немного дальше. , например, на самом деле просто , что означает, что в гипотетическом мире, где наши знания чисел ограничены числом , математик еще может выразить число . Но уже следующее число простое, и это значит, что единственным способом его выразить — непосредственно знать о его существовании. Это означает, что самые большие известные простые числа играют важную роль, а, скажем, гугол – который, в конечном счете просто набор из чисел и , перемноженных между собой — вообще-то и нет. И поскольку простые числа в основном случайные, не известно никаких способов предсказать, что невероятно большое число на самом деле будет простым. По сей день открытие новых простых чисел — это трудное дело.

Математики Древней Греции имели понятие о простых числах, по крайней мере, уже в 500 году до нашей эры, а 2000 лет спустя люди все еще знали, какие числа простые только примерно до 750. Мыслители времен Евклида увидели возможность упрощения, но вплоть до эпохи Возрождения математики не могли действительно использовать это на практике. Эти числа известны как числа Мерсенна, они названы в честь французского ученого XVII века Марина Мерсенна. Идея достаточно проста: число Мерсенна — это любое число вида . Так, например, , и это число простое, то же самое верно и для .

Гораздо быстрее и легче определить простые числа Мерсенна, чем любой другой вид простых чисел, и компьютеры напряженно работают в их поисках на протяжении последних шести десятилетий. До 1952 года крупнейшим известным простым числом было число — число с цифрами. В том же году на компьютере вычислили, что число простое, и это число состоит из цифр, что делает его уже намного больше, чем гугол.

Компьютеры с тех пор были на охоте, и в настоящее время -е число Мерсенна является самым большим простым числом, известным человечеству. Обнаруженное в 2008 году, оно составляет — число с почти миллионами цифр. Это самое большое известное число, которое не может быть выражено через какие-либо меньшие числа, и если вы хотите помочь найти еще большее число Мерсенна, вы (и ваш компьютер) всегда можете присоединиться к поиску на сайте http://www.mersenne.org/.

Число Скьюза

Стэнли Скьюз

Снова обратимся к простым числам. Как я уже говорил, они ведут себя в корне неправильно, это означает, что нет никакого способа предсказать, каким будет следующее простое число. Математики были вынуждены обратиться к некоторым довольно фантастическим измерениям, чтобы придумать какой-нибудь способ предсказать будущие простые числа даже каким-нибудь туманным способом. Наиболее успешной из этих попыток, вероятно, является функция, считающая простые числа, которую придумал в конце XVIII века легендарный математик Карл Фридрих Гаусс.

Я избавлю вас от более сложной математики — так или иначе, у нас много еще впереди — но суть функции заключается в следующем: для любого целого можно оценить, сколько существует простых чисел, меньших . Например, если , функция предсказывает, что должно быть простых чисел, если — простых числа, меньших , и если , то существует меньших чисел, которые являются простыми.

Расположение простых чисел действительно имеет нерегулярный характер, и это всего лишь приближение фактического числа простых чисел. На самом деле мы знаем, что есть простых чисел, меньших , простых чисел меньших , и простых чисел меньших . Это отличная оценка, что и говорить, но это всегда только оценка… и, более конкретно, оценка сверху.

Во всех известных случаях до , функция, находящая количество простых чисел, слегка преувеличивает фактическое количество простых чисел меньших . Математики когда-то думали, что так будет всегда, до бесконечности, что это, безусловно, относится и к некоторым невообразимо огромным числам, но в 1914 году Джон Идензор Литтлвуд доказал, что для какого-то неизвестного, невообразимо огромного числа эта функция начнет выдавать меньшее количество простых чисел, а затем она будет переключаться между оценкой сверху и оценкой снизу бесконечное число раз.

Охота была на точку начала скачков, и вот тут появился Стэнли Скьюз (см. фото). В 1933 году он доказал, что верхняя граница, когда функция, приближающая количество простых чисел впервые дает меньшее значение — это число . Трудно по-настоящему понять даже в наиболее абстрактном смысле, что на самом деле представляет собой это число, и с этой точки зрения это было наибольшее число, когда-либо использованное в серьезном математическом доказательстве. С тех пор математики смогли уменьшить верхнюю границу до относительно маленького числа , но исходное число осталось известно как число Скьюза.

Итак, насколько велико число , которое делает карликом даже могучий гуголплекс? В словаре The Penguin Dictionary of Curious and Interesting Numbers Дэвид Уэллс рассказывает об одном способе, с помощью которого математику Харди удалось осмыслить размер числа Скьюза:

“Харди думал, что это “самое большое число, когда-либо служившее какой-либо определенной цели в математике’’, и предположил, что если играть в шахматы со всеми частицами Вселенной как фигурами, один ход состоял бы в перестановке местами двух частиц, и игра прекращалась бы, когда одна и та же позиция повторялась бы третий раз, то число всех возможных партий было бы равно примерно числу Скьюза’’.

И последнее перед тем как двигаться дальше: мы говорили о меньшем из двух чисел Скьюза. Существует другое число Скьюза, которое математик нашел в 1955 году. Первое число получено на том основании, что так называемая гипотеза Римана истинна — это особенно сложная гипотеза математики, которая остается недоказанной, очень полезна, когда речь идет о простых числах. Тем не менее, если гипотеза Римана является ложной, Скьюз обнаружил, что точка начала скачков увеличивается до .

Проблема величины

Прежде чем мы перейдем к числу, рядом с которым даже число Скьюза выглядит крошечным, нам нужно немного поговорить о масштабе, потому что иначе у нас нет возможности оценить, куда мы собираемся идти. Сначала давайте возьмем число — это крошечное число, настолько малое, что люди могут действительно иметь интуитивное понимание того, что оно значит. Есть очень мало чисел, которые соответствуют этому описанию, так как числа больше шести перестают быть отдельными числами и становятся “несколько’’, “много’’ и т.д.

Теперь давайте возьмем , т.е. . Хотя мы в действительности не можем интуитивно, как это было для числа , понять, что такое , представить себе то, чем является очень легко. Пока все идет хорошо. Но что произойдет, если мы перейдем к ? Это равно , или . Мы очень далеки от способности представить себе эту величину, как и любую другую, очень большую — мы теряем способность постигать отдельные части где-то около миллиона. (Правда, безумно большое количество времени заняло бы, чтобы действительно досчитать до миллиона чего бы то ни было, но дело в том, что мы все еще способны воспринимать это число.)

Тем не менее, хотя мы не можем представить , мы по крайней мере в состоянии понять в общих чертах, что такое 7600 млрд, возможно, сравнивая его с чем-то таким, как ВВП США. Мы перешли от интуиции к представлению и к простому пониманию, но по крайней мере у нас еще есть некоторый пробел в понимании того, что такое число. Это вот-вот изменится, по мере нашего продвижения на еще одну ступень вверх по лестнице.

Для этого нам нужно перейти к обозначению, введенному Дональдом Кнутом, известному как стрелочная нотация. В этих обозначениях можно записать в виде . Когда мы затем перейдем к , число, которое мы получим, будет равно . Это равно где в общей сложности троек. Мы теперь значительно и по-настоящему превзошли все другие числа, о которых уже говорили. В конце концов, даже в самых больших из них было всего три или четыре члена в ряду показателей. Например, даже супер-число Скьюза — это “только’’ — даже с поправкой на то, что и основание, и показатели гораздо больше, чем , оно по-прежнему абсолютно ничто по сравнению с величиной числовой башни с млрд членов.

Очевидно, что нет никакого способа для постижения настолько огромных чисел… и тем не менее, процесс, посредством которого они созданы, еще можно понять. Мы не могли бы понять реальное количество, которое задается башней степеней, в которой млрд троек, но мы можем в основном представить такую башню со многими членами, и действительно приличный суперкомпьютер сможет хранить в памяти такие башни, даже если он не сможет вычислить их действительные значения.

Это становится все более абстрактным, но дальше будет только хуже. Вы можете подумать, что башня степеней , длина показателя которой равна (более того, в предыдущей версии этого поста я сделал именно эту ошибку), но это просто . Другими словами, представьте, что у вас есть возможность вычислить точное значение степенной башни из троек, которая состоит из элементов, а потом вы взяли это значение и создали новую башню с таким количеством в нем,… которое дает .

Повторите этот процесс с каждым последующим числом (примеч. начиная справа), пока вы не сделаете это раза, и тогда наконец вы получите . Это число, которое просто невероятно велико, но по крайней мере шаги его получения вроде бы понятны, если все делать очень медленно. Мы больше не можем понять числа или представить процедуру, благодаря которой оно получается, но, по крайней мере, мы можем понять основной алгоритм, только в достаточно большой срок.

Теперь подготовим ум к тому, чтобы его действительно взорвать.

Число Грэма (Грехема)

Рональд Грэм

Вот как вы получите число Грэма, которое занимает место в Книге рекордов Гиннеса как самое большое число, которое когда-либо использовали в математическом доказательстве. Совершенно невозможно представить, насколько оно велико, и столь же трудно точно объяснить, что это такое. В принципе, число Грэма появляется, когда имеют дело с гиперкубами, которые являются теоретическими геометрическими формами с более чем тремя измерениями. Математик Рональд Грэм (см. фото) хотел выяснить, при каком наименьшем числе измерений определенные свойства гиперкуба будут оставаться устойчивыми. (Простите за такое расплывчатое объяснение, но я уверен, что нам всем нужно получить по крайней мере две ученые степени по математике, чтобы сделать его более точным.)

В любом случае число Грэма является оценкой сверху этого минимального числа измерений. Итак, насколько велика эта верхняя граница? Давайте вернемся к числу , такому большому, что алгоритм его получения мы можем понять достаточно смутно. Теперь, вместо того, чтобы просто прыгать вверх еще на один уровень до , мы будем считать число , в котором есть стрелки между первой и последней тройками. Теперь мы находимся далеко за пределами даже малейшего понимания того, что такое это число или даже от того, что нужно делать, чтобы его вычислить.

Теперь повторим этот процесс раза (примеч. на каждом следующем шаге мы пишем число стрелок, равное числу, полученному на предыдущем шаге).

Это, дамы и господа, число Грэма, которое примерно на порядка стоит выше точки человеческого понимания. Это число, которое настолько больше, чем любое число, которое можно себе представить — это гораздо больше, чем любая бесконечность, которую вы могли бы когда-либо надеяться себе представить — оно просто не поддается даже самому абстрактному описанию.

Но вот странная вещь. Поскольку число Грэма в основном — это просто тройки, перемноженные между собой, то мы знаем некоторые его свойства без фактического его вычисления. Мы не можем представить число Грэма с помощью любых знакомых нам обозначений, даже если бы мы использовали всю Вселенную, чтобы записать его, но я могу назвать вам прямо сейчас последние двенадцать цифр числа Грэма: . И это еще не все: мы знаем по крайней мере последних цифр числа Грэма.

Конечно, стоит помнить, что это число только верхняя граница в исходной задаче Грэма. Вполне возможно, что фактическое число измерений, необходимых для выполнения нужного свойства гораздо, гораздо меньше. На самом деле, еще с 1980-х годов считалось, по мнению большинства специалистов в этой области, что фактически число измерений всего лишь шесть — число настолько малое, что мы можем понять его на интуитивном уровне. С тех пор нижняя граница была увеличена до , но есть еще очень большой шанс, что решение задачи Грэма не лежит рядом с числом столь же большим, как число Грэма.

К бесконечности

Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма . Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что, как я могу надеяться, когда-либо смогут разумно объяснить. Для тех, кто достаточно безрассуден достаточно, чтобы пойти еще дальше, предлагается литература для дополнительного чтения на свой страх и риск.

Ну а сейчас удивительная цитата, которая приписывается Дугласу Рею (примеч. честно говоря, звучит довольно забавно ):

“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.

эпиграф
Если долго всматриваться в бездну,
можно неплохо провести время.

Инженер Механических Душ

Как только ребенок (а это происходит где–то года в три–четыре) понимает, что все числа делятся на три группы "один, два и много", он тут же пытается выяснить: насколько много бывает много , чем много отличается от очень много , и может ли оказаться так много, что больше не бывает . Наверняка вы играли с родителями в интересную (для того возраста) игру, кто назовет самое большее число, и если предок был не глупее пятиклассника , то он всегда выигрывал, на каждый "миллион" отвечая "два миллиона", а на "миллиард" - "два миллиарда" или "миллиард плюс один".

Уже к первому классу школы каждый знает - чисел бесконечное множество, они никогда не заканчиваются и самого большого числа не бывает. К любому миллиону триллионов миллиардов всегда можно сказать "плюс один" и остаться в выигрыше. А чуточку позже приходит (должно прийти!) понимание, что длинные строки цифр сами по себе ничего не значат. Все эти триллионы миллиардов только тогда имеют смысл, когда служат представлением какого–то количества предметов или же описывают некое явление. Выдумать длиннющее число, которое ничего из себя не представляет, кроме набора долгозвучащих цифр, нет никакого труда, их итак бесконечное количество . Наука, в какой–то образной мере, занимается тем, что выискивает в этой необозримой бездне совершенно конкретные комбинации цифр, присовокупляя к некому физическому явлению, например скорости света, числу Авогадро или постоянной Планка.

И сразу же возникает вопрос, а какое на свете самое больше число, которое что–то означает? В этой статье я попытаюсь рассказать о цифровом монстре, называемом число Грэма , хотя строго говоря, науке известны числа и побольше. Число Грэма самое распиаренное, можно сказать "на слуху" у широкой публики, потому что оно довольно просто в объяснении и все же достаточно велико, чтобы вскружить голову. Вообще, тут необходимо объявить небольшой disclaimer (рус. предостережение ). Пусть прозвучит как шутка, но я нифига не шучу. Говорю вполне серьезно - дотошное ковыряние в подобных математических глубинах в совокупности с безудержным расширением границ восприятия может оказать (и окажет) серьезное влияние на мироощущение, на позиционирование личности в обществе, и, в конечном итоге, на общее психологическое состояние ковыряющего, или, будем называть вещи своими именами - открывает дорогу к шизе. Не нужно чересчур внимательно вчитываться в нижеследующий текст, не стоит слишком ярко и живо представлять описываемые в нем вещи. И не говорите потом, что вас не предупреждали!

Прежде чем переходить к числам–монстрам, потренируемся для начала на кошках . Напомню, что для описания больших чисел (не монстров, а просто больших чисел) удобно пользоваться научным или т.н. экспоненциальным способом записи.

Когда говорят, скажем, о количестве звезд во Вселенной (в Обозримой Вселенной), никакой идиот не лезет вычислять сколько их там в буквальном смысле с точностью до последней звезды. Считается, что примерно 10 21 штук. И это оценка снизу. Значит общее количество звезд можно выразить числом, у которого после единицы стоит 21 ноль, т.е. "1 000 000 000 000 000 000 000".

Так выглядит небольшая часть из них (около 100 000) в шаровом скоплении Омега Центавра.

Естественно, когда речь идет о подобных масштабах, действительные цифры в числе существенного значения не играют, все ведь весьма условно и примерно. Может быть на самом деле число звезд во Вселенной "1 564 861 615 140 168 357 973", а может "9 384 684 643 798 468 483 745". А то и "3 333 333 333 333 333 333 333", почему нет, хотя маловероятно, конечно. В космологии, науке о свойствах Вселенной в целом, такими мелочами не морочатся. Главное представлять, что примерно это число состоит из 22 цифр, от чего удобней считать его единицей с 21 нулем, и записывать как 10 21 . Правило общее и весьма простое. Какая цифра или число стоят на месте степени (напечатаны мелким шрифтом сверху над 10 вот тут), столько нолей после единицы будет в этом числе, если расписать его по–простецки, знаками подряд, а не по–научному. У некоторых чисел существуют "человеческие названия", например 10 3 мы называем "тысяча", 10 6 - "миллион", а 10 9 - "миллиард", а у некоторых нет. Скажем у 10 59 нет общепринятого названия. А у 10 21 , кстати, есть - это "секстиллион".

Все, что идет до миллиона, практически любому человеку понятно интуитивно, ведь кто не хочет стать миллионером ? Дальше у некоторых начинаются проблемы. Хотя миллиард (10 9) тоже знают почти все. До миллиарда даже можно досчитать. Если только родившись, буквально в момент появления на свет начать считать раз в секунду "один, два, три, четыре..." и не спать, не пить, не есть, а только считать–считать–считать без устали днем и ночью, то когда стукнет 32 года можно досчитать до миллиарда, потому что 32 оборота Земли вокруг Солнца занимают примерно миллиард секунд.

7 миллиардов - количество людей планете. Исходя из вышеизложенного, посчитать их всех по порядку в течении человеческой жизни совершенно невозможно, придется прожить больше двухсот лет.

100 миллиардов (10 11) - столько или около того людей жило на планете за всю ее историю. 100 миллиардов гамбургеров продал Макдональдс к 1998му году за 50 лет своего существования. 100 миллиардов звезд (ну, чуть больше) находится в нашей галактике Млечный Путь, и Солнце - одна из них. Такое же количество галактик содержится в обозримой Вселенной. 100 миллиардов нейронов находится в головном мозге человека. И столько же анаэробных бактерий проживают у каждого читающего эти строки в слепой кишке.

Триллион (10 12) - число, которым редко пользуются. До триллиона досчитать невозможно, на это уйдет 32 тысячи лет. Триллион секунд назад люди жили в пещерах и охотились с копьями на мамонтов. Да, триллион секунд назад на Земле жили мамонты. В океанах планеты примерно триллион рыб. В соседней с нами галактике Андромеды около триллиона звезд. Человек состоит из 10 триллионов клеток. ВВП России в 2013м году составил 66 триллионов рублей (в рублях 2013го года). От Земли до Сатурна 100 триллионов сантиметров и столько же букв в целом было отпечатано во всех когда–либо опубликованных книгах.

Квадриллион (10 15 , миллион миллиардов) - столько всего муравьев на планете. Это слово нормальные люди вслух не произносят, ну, признайтесь, когда вы последний раз в разговоре слышали "квадриллион чего–то"?

Квинтиллион (10 18 , миллиард миллиардов) - столько существует возможных конфигураций при сборке кубика Рубика 3х3х3. Так же количество кубометров воды в мировом океане.

Секстиллион (10 21) - это число нам уже встречалось. Количество звезд в Обозримой Вселенной. Количество песчинок всех пустынь Земли. Количество транзисторов во всех существующих электронных устройствах человечества, если Intel нам не врал .

10 секстиллионов (10 22) - количество молекул в грамме воды.

10 24 - масса Земли в килограммах.

10 26 - диаметр Обозримой Вселенной в метрах, но в метрах считать не очень удобно, общепринятые границы Обозримой Вселенной 93 миллиарда световых лет .

Размерами, большими чем Обозримая Вселенная, наука не оперирует. Мы знаем наверняка, что Обозримая Вселенная это не вся–вся–вся Вселенная. Это та часть, что мы, хотя бы теоретически, можем видеть и наблюдать. Или могли видеть в прошлом. Или сможем увидеть когда–нибудь в отдаленном будущем, оставаясь в рамках современной науки. От остальных частей Вселенной даже со скоростью света сигналы не смогут до нас добраться, от чего этих мест с нашей точки зрения как бы не существует. Насколько велика та большая Вселенная на самом деле никто не знает. Может быть в миллион раз больше, чем Обозримая. А может в миллиард. А может и вообще бесконечная. Говорю же, это уже не наука, а гадание на кофейной гуще. У ученых есть кое–какие догадки, но это больше фантазии, чем реальность.

Для визуализации космических масштабов полезно изучить эту картинку, раскрыв ее на весь экран .


Однако даже в Обозримую Вселенную можно напихать гораздо больше чего–то другого, чем метры.

10 51 атомов составляют планету Земля.

10 80 примерное количество элементарных частиц в Обозримой Вселенной.

10 90 примерное количество фотонов в Обозримой Вселенной. Их почти в 10 миллиардов раз больше, чем элементарных частиц, электронов и протонов.

10 100 - гугол. Это число ничего физически не значит, просто круглое и красивое. Компания, которая поставила себе целью индексировать гугол ссылок (шутка, конечно, это же больше, чем число элементарных частиц во Вселенной!) в 1998м году взяла себе название Google.

10 122 протонов понадобится, чтобы набить Обозримую Вселенную под завязку, плотненько так, протончик к протончику, впритык.

10 185 планковских объемов занимает Обозримая Вселенная. Меньших величин, чем планковский объем (кубик размеров планковской длины 10 –35 метра) наша наука не знает. Наверняка, как и со Вселенной, там есть что–то еще более мелкое, но вменяемых формул для подобных мелочей ученые еще не придумали, одни сплошные спекуляции.

Получается, что 10 185 или около того - наибольшее число, которое в принципе может что–то значить в современной науке. В науке, которая может пощупать и измерить. Это то, что существует или могло бы существовать, если так случилось, что мы узнали о Вселенной все, что можно было узнать. Число состоит из 186 цифр, вот оно:

100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Наука здесь, конечно же, не заканчивается, но дальше уже идут вольные теории, догадки, а то и просто околонаучный чес и гон. Например, вы наверняка слышали про инфляционную теорию, согласно которой, возможно, наша Вселенная лишь часть более общей Мультивселенной, в которой этих вселенных как пузырей в океане шампанского.

Или слышали о теории струн, согласно которой может существовать около 10 500 конфигураций колебаний струн, а значит такое же количество потенциальных вселенных, каждая со своими законами.

Чем дальше в лес, тем меньше теоретической физики и вообще науки остается в набирающих объемы числах, и за колонками нулей начинает проглядывать все более чистая, ничем не замутненная царица наук. Математика это ведь не физика, тут ограничений нет и стыдиться нечего, гуляй душа, пиши нули в формулах хоть до упаду.

Упомяну лишь известный многим гуголплекс . Число у которого гугол цифр, десять в степени гугол (10 гугол), или десять в степени десять в степени сто (10 10 100).

10 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Не буду записывать его цифрами. Гуголплекс не значит абсолютно ничего. Человек не может представить себе гуголплекс чего бы то ни было, это физически невозможно. Чтобы записать такое число понадобится вся Обозримая Вселенная, если писать "нано–ручкой" прямо по вакууму фактически в планковские ячейки космоса. Переведем всю материю на чернила и заполним Вселенную одними сплошными цифрами, тогда получим гуголплекс. Но математики (страшные люди!) гуголпрексом только разминаются, это нижайшая планка, с которой для них стартуют настоящие ничтяки. И если вы думаете, что гуголплекс в степени гуголплекс это то, о чем пойдет речь, вы даже не представляете, НАСКОЛЬКО ошибаетесь.

За гуголплексом идут много интересных чисел, имеющих ту или иную роль в математических доказательствах, долго ли коротко, перейдем сразу к числу Грэма, названному так в честь (ну, естественно) математика Рональда Грэма. Сначала расскажу, что это такое и для чего нужно, после чего образно и на пальцах™ опишу, каково оно по величине, а затем уже напишу само число. Точнее попытаюсь объяснить, что же я написал.

Число Грэма появилось в работе, посвященной решению одной из задач в теории Рамсея, причем "рамсея" тут не деепричастие несовершенного вида, а фамилия другого математика, Франка Рамсея. Задача конечно же довольно надуманная с обывательской точки зрения, хоть и не сильно замороченная, даже легко понятная.

Представьте себе куб, все вершины которого соединены линиями–отрезками двух цветов, красного или синего. Соединены и раскрашены в случайном порядке. Кое–кто уже догадался, что речь пойдет о разделе математики под названием комбинаторика .

Сможем ли мы исхитриться и так подобрать конфигурацию цветов (а их всего два - красный и синий), чтобы при раскраске этих отрезков у нас НЕ ВЫШЛО, что все отрезки одного цвета, соединяющие четыре вершины, лежат в одной плоскости? В данном случае, НЕ представляют из себя такую фигуру:

Можете сами покумекать, покрутить куб в воображении перед глазами, сделать подобное не так уж и сложно. Цвета два, вершин (углов) у куба 8, значит отрезков их соединяющих - 28. Можно так подобрать конфигурацию раскраски, что мы нигде не получим вышеуказанной фигуры, во всех возможных плоскостях будут разноцветные линии.

А что, если у нас больше измерений? Что, если мы возьмем не куб, а четырехмерный куб, т.е. тессеракт ? Сможем ли мы провернуть тот же фокус, что и с трехмерным?

Даже не стану объяснять, что такое четырехмерный куб, все знают? У четырехмерного куба 16 вершин. И не нужно пыжить мозг и пытаться представить четырехмерный куб. Это же чистая математика. Посмотрел на количество измерений, подставил в формулу, получил количество вершин, ребер, граней и так далее. Итак у четырехмерного куба 16 вершин и 120 отрезков их соединяющих. Количество комбинаций раскраски в четырехмерном случае гораздо больше, чем в трехмерном, но и тут не сильно сложно посчитать, разделить, сократить и тому подобное. Короче выяснить, что в четырехмерном пространстве тоже можно так исхитриться с раскраской отрезков у гиперкуба, что все линии одного цвета, соединяющие 4 вершины, не будут лежать в одной плоскости.

В пятимерном? И в пятимерном, там где куб называется пентерактом или пентакубом, тоже можно.
И в шестимерном.

А дальше уже сложности. Грэм не смог математически доказать, что у семимерного гиперкуба удастся провернуть такую операцию. И у восьмимерного и у девятимерного и так далее. Но данное "и так далее", оказалось, не уходит в бесконечность, а заканчивается неким очень большим числом, которое и назвали "числом Грэма".

То есть существует какая–то минимальная размерность гиперкуба, при котором условие нарушается, и уже невозможно избежать комбинации раскраски отрезков, что четыре точки одного цвета будут лежать в одной плоскости. И эта минимальная размерность точно больше шести и точно меньше числа Грэма, в этом и заключается математическое доказательство ученого.

А теперь определение того, что я выше расписал на несколько абзацев, сухим и скучным (зато емким) языком математики. Понимать не надо, но не привести его я не могу.

Рассмотрим n–мерный гиперкуб и соединим все пары вершин для получения полного графа с 2 n вершинами. Раскрасим каждое ребро этого графа либо в красный, либо в синий цвет. При каком наименьшем значении n каждая такая раскраска обязательно содержит раскрашенный в один цвет полный подграф с четырьмя вершинами, все из которых лежат в одной плоскости?

В 1971м году Грэм доказал, что указанная проблема имеет решение, и что это решение (количество размерности) лежит между числом 6 и неким большим числом, которое позже (не самим автором) было названо в его честь. В 2008м году доказательство улучшили, нижнюю границу подняли, теперь искомое количество размерностей лежит уже между числом 13 и числом Грэма. Математики не спят, работа идет, прицел сужается.

С 70х годов прошло немало лет, были найдены математические задачи в которых проявляются числа и побольше грэмова, но это первое число–монстр так поразило современников, понимавших о каких масштабах идет речь, что в 1980м году его включили в книгу рекордов Гиннесса, как "самое большое число, когда–либо участвовавшее в строгом математическом доказательстве" на тот момент.

Давайте попытаемся разобраться, насколько оно велико. Самое большое число, могущее иметь какой–то физический смысл 10 185 , а если всю Обозримую Вселенную заполнить кажущимся бесконечным набором мизерных циферок, получим что–то соизмеримое с гуголплексом .

Представляете себе эту громаду? Вперед, назад, вверх, вниз, насколько хватает глаз и насколько хватает телескопа Хаббл, и даже насколько не хватает, до самых далеких галактик и заглядывая за них - цифры, цифры, цифры размером много меньше протона. Существовать такая Вселенная, конечно, долго не сможет, тут же в черную дыру схлопнется. Припоминаете, сколько информации можно теоретически уместить во Вселенную? Я ведь .

Число действительно огромно, рвет мозг. Оно не совсем точно равно гуголплексу, и у него нет названия, потому буду называть его "дохулион ". Только что придумал, почему бы и нет. Количество планковских ячеек в Обозримой Вселенной, и в каждой ячейке записана цифра. Число содержит 10 185 цифр, его можно изобразить как 10 10 185 .

дохулион = 10 10 185

Раскроем двери восприятия чуть пошире. Помните ? Что наша Вселенная лишь одна из многих пузырьков Мультивселенной. А если представить дохулион таких пузырьков? Возьмем число, длиною со все сущее и представим себе Мультивселенную с подобным количеством вселенных, каждая из которых под завязку исписана цифрами - получим дохулион дохулионов . Представляете себе такое? Как плывешь в небытии скалярного поля, а кругом вселенные–вселенные и в них цифры–цифры–цифры... Надеюсь, подобный кошмар (хотя, почему кошмар?) не будет мучить (и почему мучить?) излишне впечатлительного читателя по ночам.

Для удобства назовем подобную операцию "флип ". Такое несерьезное междометие, как будто взяли Вселенную и вывернули наизнанку, то она была внутри в цифрах, а теперь наоборот у нас снаружи столько вселенных, сколько было цифр, и каждая полным–полна коробочка, сама вся в цифрах. Как гранат чистишь, корочку так отгибаешь, изнутри выворачиваются зернышки, а в зернышках снова гранаты. Тоже на ходу придумалось, почему бы и нет, с дохулионом ведь прокатило.

К чему я клоню? Стоит ли тормозить? Давайте, хоба, и еще один флип ! И вот у нас столько вселенных, сколько было цифр во вселенных, количество которых было равно дохулиону цифр, заполнявших нашу Вселенную. И сразу, не останавливаясь, еще раз флип. И четвертый, и пятый. Десятый, тысячный. Успеваете за мыслью, все еще представляете себе картину?

Не будем мелочиться, распускаем крылья воображения, разгоняемся по полной и флипаем флип флипов . Столько раз выворачиваем каждую вселенную наизнанку, сколько дохулионов вселенных было в предыдущем флипе, который флипал из позапрошлого, который... эээ... ну, вы следите? Где–то так. Пусть теперь наше число станет, предположим, "дохулиард ".

дохулиард = флип флипов

Не останавливаемся и продолжаем флипать дохулионы дохулиардов до тех пор пока есть силы. Пока в глазах не темнеет, пока не захочется кричать. Тут каждый сам себе отважный Буратина, стоп–слово будет "брынза".

Так вот. Это все о чем? Огромные и бесконечные дохулионы флипов и дохулиарды вселенных полных цифр не идут ни в какое сравнение с числом Грэма. Даже не скребут по поверхности. Если число Грэма представить в виде палки, растянутой по традиции во всю Обозримую Вселенную, то, что мы тут с вами нафлипали окажется засечкой толщины... ну... как бы это так, помягче выразить... недостойной упоминания . Вот, смягчал, как мог.

Теперь давайте немного отвлечемся, передохнем. Мы читали, мы считали, наши глазоньки устали. Забудем про число Грэма, до него еще ползти и ползти, расфокусируем взгляд, расслабимся, помедитируем на гораздо меньшее, прямо–таки миниатюрнейшее число, которое назовем g 1 , и запишем всего шестью знаками:

Число g 1 равно "три, четыре стрелочки, три". Что это значит? Так выглядит способ записи, называемый стрелочная нотация Кнута .

Одна стрелочка означает обыкновенное возведение в степень.

1010 = 10 10 = 10 000 000 000

Две стрелочки означают, что понятно, возведение в степень степени.

23 = 222 = 2 2 2 = 2 4 = 16

33 = 333 = 3 3 3 = 3 27 = 7 625 597 484 987 (больше 7 триллионов)

34 = 3333 = 3 3 3 3 = 3 7 625 597 484 987 = число, в котором около 3 триллионов цифр

35 = 33333 = 3 3 3 3 3 = 3 3 7 625 597 484 987 = 3 в степени числа, в котором 3 триллиона цифр - гуголплекс уже сосет

Короче говоря, "число стрелочка стрелочка другое число" показывает, какая высота степеней (математики говорят "башня ") выстраивается из первого числа. Например 58 означает башню из восьми пятерок и настолько велико, что не может быть рассчитано ни на каком суперкомпьютере, даже на всех компьютерах планеты одновременно.

5 5 5 5 5 5 5 5

Переходим к трем стрелочкам. Если двойная стрелочка показывала высоту башни степеней, то тройная, казалось бы, укажет "высоту башни высоты башни"? Какой–там! В случае тройки мы имеем высоту башни высоты башни высоты башни (в математике такого понятия нет, я решил назвать его "безбашней "). Как–то так:

То есть 33 образует безбашню из троек, высотой в 7 триллионов штук. Что такое 7 триллионов троек, поставленные друг на друга и именуемые "безбашней"? Если вы внимательно читали этот текст и не уснули в самом начале, вероятно помните, что от Земли до Сатурна 100 триллионов сантиметров. Тройка, показанная на экране двенадцатым шрифтом, вот эта - 3 - высотой миллиметров пять. Значит безбашня из троек протянется от вашего экрана... ну, не до Сатурна, конечно. Даже до Солнца не дотянется, всего четверть астрономической единицы, примерно как от Земли до Марса в хорошую погоду. Обращаю внимание (не спать!), что безбашня это не число длиной от Земли до Марса, это башня степеней такой высоты . Мы помним, что пять троек в этой башне покрывают гуголплекс, вычисление первого дециметра троек сжигает все предохранители компьютеров планеты, а остальные миллионы километров степеней уже как бы и ни к чему, они просто в открытую насмехаются над читателем, считать их бесполезно и невозможно.

Теперь понятно, что 34 = 3333 = 337 625 597 484 987 = 3безбашня, (не 3 в степени безбашни, а "три стрелочка стрелочка безбашня"(!)), она же безбашня безбашни не влезет ни по длине ни по высоте в Обозримую Вселенную, и даже не поместится в предполагаемую Мультивселенную.

На 35 = 33333 заканчиваются слова, а на 36 = 333333 кончаются междометия, но можете потренироваться, коль есть интерес.

Переходим к четырем стрелочкам. Как вы уже догадались, тут безбашня на безбашне сидит, безбашней погоняет, и хоть с башней, что без башни - все равно. Просто молча приведу картинку, раскрывающую схему вычисления четырех стрелочек, когда каждое следующее число башни степеней определяет высоту башни степеней, определяющую высоту башни степеней, определяющую высоту башни степеней... и так до самозабвения.

Рассчитывать его бесполезно, да и не получится. Количество степеней здесь не поддается осмысленному учету. Это число невозможно представить, его невозможно описать. Никакие аналогии на пальцах™ неприменимы, число просто не с чем сравнивать. Можно говорить, что оно огромно, что грандиозно, что монументально и заглядывает за горизонт событий. То есть придать ему какие–то словесные эпитеты. Но визуализация, даже вольная и образная - невозможна. Если с тремя стрелочками еще хоть что–то удавалось сказать, нарисовать безбашню от Земли до Марса, как–то с чем–то сопоставить, то тут аналогий быть просто не может. Попробуйте вообразить себе тонкую башню из троек от Земли до Марса, рядом еще одну почти такую же и еще одну, и еще... Бескрайнее поле башень уходит вдаль, в бесконечность, башни повсюду, башни везде. И, что самое обидное, эти башни даже отношения к числу не имеют, они лишь определяют высоту других башен, которые нужно построить, чтобы получить высоту башень, чтобы получить высоту башень... чтобы через невообразимое количество времени и итераций получить само число.

Вот, что такое g 1 , вот что такое 33.

Передохнули? Теперь от g 1 с новыми силами возвращаемся к штурму числа Грэма. Заметили, как нарастает эскалация от стрелочки к стрелочке?

33 = 7 625 597 484 987

33 = башня, высотой от Земли до Марса.

33 = число, которое невозможно ни представить ни описать.

А вообразите какой цифровой кошмар творится, когда стрелок окажется пять? Когда их шесть? Можете представить число, когда стрелок будет сто? Если можете, позвольте предложить вашему вниманию число g 2 , в котором количество этих стрелок оказывается равно g 1 . Помните, что такое g 1 , да?

Все, что было написано до сих пор, все эти расчеты, степени и башни не помещающиеся в мультивселенные мультивселенных нужны были только для одного. Чтобы показать КОЛИЧЕСТВО СТРЕЛОК в числе g 2 . Тут уже не нужно ничего считать, можно просто рассмеяться и махнуть рукой.

Не буду скрывать, есть еще g 3 , в котором содержится g 2 стрелок. Кстати, все еще понятно, что g 3 , это не g 2 "в степени" g 2 , а количество безбашен, определяющих высоту безбашен, определяющих высоту... и так по всей цепочке вниз до тепловой смерти Вселенной? Здесь можно начинать плакать.

Почему плакать? Потому что совершенно верно. Есть еще число g 4 , в котором содержится g 3 стрелочек между тройками. Есть так же g 5 , есть g 6 и g 7 и g 17 и g 43 ...

Короче их 64 штуки этих g. Каждое предыдущее численно равно количеству стрелок в следующем. Последнее g 64 и есть число Грэма, с которого все так вроде бы невинно начиналось. Это число размерностей гиперкуба, которого точно будет достаточно, чтобы правильно раскрасить отрезки красным и синим цветами. Может и меньше, это, так сказать, верхняя граница. Его записывают следующим образом:

А расписывают так:

Все, теперь можно расслабиться по–честному. Нет больше необходимости ничего представлять и рассчитывать. Если вы дочитали до этого места, уже как бы все должно встать на свои места. Или не встать. Или не на свои.

Да, опытный читатель с прокачанными предохранителями, не нужно упреков, вы абсолютно правы. Число Грэма - надуманная и высосанная из пальца фигня . Все эти безразмерные гиперкубы и абстрактные плоскости, дьявол их раздери, кому они нужны? Где килограммы, где электроны, где то, что можно измерить? Что за пустые разглагольствования ни о чем? Соглашусь. Можно сказать, что сегодняшний пост на пальцах™ максимально, на сколько это было возможно, далек от реальной науки, почти весь целиком парит в каких–то заумных математических фантазиях, в то время как ученым не хватает денег на приборы, не решена мировая энергетическая проблема, а у кого–то все еще туалет во дворе. А у кого и в поле.

Но знаете, есть такая теория, тоже весьма эфемерная и философская, может слышали - все, что человек мог себе представить или вообразить обязательно когда–нибудь воплотится. Потому что развитие цивилизации определяется по тому, насколько она смогла воплотить в реальность фантазии прошлого.

Никто не знает, что ждет нас в будущем. У человеческой цивилизации есть тысячи способов закончиться: ядерные войны, экологические катастрофы, смертоносные пандемии, астероид какой может прилететь, динозавры не дадут соврать. Развитие человечества может остановиться само собой, вдруг есть такой закон, что по достижению определенного уровня развитие просто прекращается и все. Или прилетят представители межгалактического союза и остановят это развитие силой.

Но есть все–таки, и не маленький, шанс, что развитие человечества продолжится без остановки. Пусть даже не такое головокружительно быстрое, как в последние 100 лет, главное, что движение вперед, главное, что поступательное.

У природы есть один незыблемый закон, известный нам с самой давней древности. Как бы ни было, что бы ни случилось, что бы мы себе ни думали, но время никуда не денется, оно пройдет. Хотим мы этого или не хотим, с нами или без - пройдут и тысяча и 10 тысяч лет.

200 лет назад ковер–самолет (обычный самолет), волшебное зеркало (скайп–видео) или тридевятое царство (поверхность планеты Марс) казались несбыточной сказкой, 2000 лет назад полагались только богам, 20 000 лет такого вообще представить не могли, способностей воображения не хватало. Вы можете сказать, что будет доступно человеку через 200 лет? Через 2000, через 20000 лет?

Выживет ли человечество, будет ли это вообще человечество с приставкой "чело–", а может к тому времени и этап Искусственного Интеллекта закончится, порождая какие–то эфирные энергетические субстанции особой категории осознанности? Может да, может нет.

А если пройдет миллион лет? А ведь он пройдет, куда денется. Число Грэма, и вообще все, о чем человек способен задуматься, представить, вытащить из небытия и сделать пусть не осязаемой, но хотя бы имеющей какой–то смысл сущностью - обязательно рано или поздно воплотится. Просто потому, что сегодня у нас хватило сил развиться до способности осознания подобного .

Сегодня, завтра, когда будет возможность - запрокиньте голову в ночное небо. Помните этот момент ощущения собственной ничтожности? Чувствуете, какой человек крошечный? Пылинка, атом по сравнению с безбрежной Вселенной, которая звезд полна, коим числа нет, ну, и бездна, соотвественно, тоже не маленькая.

В следующий раз попробуйте ощутить, какая Вселенная песчинка по сравнению с тем, что происходит в голове. Какая пучина открывается, какие неизмеримые концепции рождаются, какие миры строятся, как Вселенная флипается наизнанку одним только движением мысли, как и насколько живая, разумная материя отличается от мертвой и неразумной.

Я верю, что через какое–то время человек дотянется до числа Грэма, дотронется до него рукой, или что у него к тому времени будет вместо руки. Это не обоснованная, научно доказанная мысль, это действительно всего лишь надежда, то, что меня вдохновляет. Не Вера с большой буквы, не религиозный экстаз, не учение и не духовная практика. Это то, чего я жду от человечества. В чем стремлюсь, в меру сил, помочь. Хоть и продолжаю из осторожности причислять себя к агностикам.



Понравилась статья? Поделитесь с друзьями!