Как получить формулу выражающую закон электролиза. Первый и второй закон фарадея

Электролиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплавэлектролита .

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами - проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом - отрицательный . Положительные ионы - катионы - (ионы металлов, водородные ионы, ионы аммония и др.) - движутся к катоду, отрицательныеионы - анионы - (ионы кислотных остатков и гидроксильной группы) - движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [ источник не указан 1700 дней ] , диоксида марганца ,пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональностиназываетсяэлектрохимическим эквивалентом вещества . Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

Где z - валентность атома (иона) вещества, e - заряд электрона (5)

Подставляя (2)-(5) в (1), получим

где -постоянная Фарадея.

Второй закон Фарадея

Второй закон электролиза Фарадея: для данного количества электричества масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты .

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где -постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

где -молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося - оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; -сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; - время, в течение которого проводился электролиз,с; -постоянная Фарадея,Кл·моль −1 ; - число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея ») .

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий . Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл , который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла .

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС , генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС , генерируемую действием электрической силы вследствие изменения магнитного поля. Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений. Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Таким образом, «правило потока» о том, что ЭДС в цепи равна скорости изменения магнитного потока через контур, применяется независимо от причины изменения потока: то ли потому что поле изменяется, то ли потому что цепь движется (или и то, и другое).... В нашем объяснении правила мы использовали два совершенно различных закона для двух случаев  –    v × B {\displaystyle {\stackrel {\mathbf {v\times B} }{}}}   для «движущейся цепи» и   ∇ x E = − ∂ t B {\displaystyle {\stackrel {\mathbf {\nabla \ x\ E\ =\ -\partial _{\ t}B} }{}}}   для «меняющегося поля».

Мы не знаем никакого аналогичного положения в физике, когда такие простые и точные общие принципы требовали бы для своего реального понимания анализа с точки зрения двух различных явлений.

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности :

Известно, что электродинамика Максвелла - как её обычно понимают в настоящее время - при применении к движущимся телам приводит к асимметрии, которая, как кажется, не присуща этому явлению. Возьмем, к примеру, электродинамическое взаимодействие магнита и проводника. Наблюдаемое явление зависит только от относительного движения проводника и магнита, тогда как обычное мнение рисует резкое различие между этими двумя случаями, в которых либо одно, либо другое тело находится в движении. Ибо, если магнит находится в движении, а проводник покоится, в окрестности магнита возникает электрическое поле с определенной плотностью энергии, создавая ток там, где расположен проводник. Но если магнит покоится, а проводник движется, то в окрестности магнита никакое электрическое поле не возникает. В проводнике, однако, мы находим электродвижущую силу, для которой не существует соответствующей энергии самой по себе, но которая вызывает - предполагая равенство относительного движения в двух обсуждаемых случаях - электрические токи по тому же направлению и той же интенсивности, как в первом случае.

Примеры подобного рода вместе с неудачной попыткой обнаружить какое-либо движение Земли относительно «светоносной среды» предполагают, что явления электродинамики, а также механики не обладают свойствами, соответствующими идее абсолютного покоя.

- Альберт Эйнштейн , К электродинамике движущихся тел

Поток через поверхность и ЭДС в контуре

Закон электромагнитной индукции Фарадея использует понятие магнитного потока Φ B через замкнутую поверхность Σ, который определён через поверхностный интеграл :

Φ = ∬ S B n ⋅ d S , {\displaystyle \Phi =\iint \limits _{S}\mathbf {B_{n}} \cdot d\mathbf {S} ,}

где dS - площадь элемента поверхности Σ(t ), B - магнитное поле, а B ·d S - скалярное произведение B и d S . Предполагается, что поверхность имеет «устье», очерченное замкнутой кривой, обозначенной ∂Σ(t ). Закон индукции Фарадея утверждает, что когда поток изменяется, то при перемещении единичного положительного пробного заряда по замкнутой кривой ∂Σ совершается работа E {\displaystyle {\mathcal {E}}} , величина которой определяется по формуле:

| E | = | d Φ d t | , {\displaystyle |{\mathcal {E}}|=\left|{{d\Phi } \over dt}\right|\ ,}

где | E | {\displaystyle |{\mathcal {E}}|} - величина электродвижущей силы (ЭДС) в вольтах , а Φ B - магнитный поток в веберах . Направление электродвижущей силы определяется законом Ленца .

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. т.е. мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера а на единичный заряд в проводнике Сила Лоренца - поток вектора магнитной индукции B , ток в проводниках, соединяющие проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила действующая на заряд в проводнике будет равна

F = q B v . {\displaystyle F=qBv\,.}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F = I B ℓ , {\displaystyle {\mathcal {F}}=IB\ell ,}

где l длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции и это значение можно вычислить используя Закон Био - Савара - Лапласа . Данный эффект используется и в другом устройстве называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле Φ B = B w ℓ, где w - ширина движущейся петли.

Ошибочность такого подхода в том что это не рамка в обычном понимании этого слова. прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке ток по обоим проводника течет в одном направлении, т.е. здесь отсутствует понятие "замкнутый контур"

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера . Т.е. вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси соединяющие обода. Диаметр проводника должен быть конечным и отличатся от нуля чтобы момент силы Ампера был не нулевой.

Уравнение Фарадея - Максвелла

Переменное магнитное поле создаёт электрическое поле, описываемое уравнением Фарадея - Максвелла:

∇ × E = − ∂ B ∂ t {\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}

∇ × {\displaystyle \nabla \times } обозначает ротор E - электрическое поле B - плотность магнитного потока .

Это уравнение присутствует в современной системе уравнений Максвелла , часто его называют законом Фарадея. Однако, поскольку оно содержит только частные производные по времени, его применение ограничено ситуациями, когда заряд покоится в переменном по времени магнитном поле. Оно не учитывает [ ] электромагнитную индукцию в случаях, когда заряженная частица движется в магнитном поле.

В другом виде закон Фарадея может быть записан через интегральную форму теоремы Кельвина-Стокса :

∮ ∂ Σ ⁡ E ⋅ d ℓ = − ∫ Σ ∂ ∂ t B ⋅ d A {\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot d{\boldsymbol {\ell }}=-\int _{\Sigma }{\partial \over {\partial t}}\mathbf {B} \cdot d\mathbf {A} }

Для выполнения интегрирования требуется независимая от времени поверхность Σ (рассматриваемая в данном контексте как часть интерпретации частных производных). Как показано на рис. 6:

Σ - поверхность, ограниченная замкнутым контуром ∂Σ , причём, как Σ , так и ∂Σ являются фиксированными, не зависящими от времени, E - электрическое поле, d - бесконечно малый элемент контура ∂Σ , B - магнитное поле , dA - бесконечно малый элемент вектора поверхности Σ .

Элементы d и dA имеют неопределённые знаки. Чтобы установить правильные знаки, используется правило правой руки , как описано в статье о теореме Кельвина-Стокса . Для плоской поверхности Σ положительное направление элемента пути d кривой ∂Σ определяется правилом правой руки, по которому на это направление указывают четыре пальца правой руки, когда большой палец указывает в направлении нормали n к поверхности Σ.

Интеграл по ∂Σ называется интеграл по пути или криволинейным интегралом . Поверхностный интеграл в правой части уравнения Фарадея-Максвелла является явным выражением для магнитного потока Φ B через Σ . Обратите внимание, что ненулевой интеграл по пути для E отличается от поведения электрического поля, создаваемого зарядами. Генерируемое зарядом E -поле может быть выражено как градиент скалярного поля , которое является решением уравнения Пуассона и имеет нулевой интеграл по пути.

Интегральное уравнение справедливо для любого пути ∂Σ в пространстве и любой поверхности Σ , для которой этот путь является границей.

D d t ∫ A B d A = ∫ A (∂ B ∂ t + v div B + rot (B × v)) d A {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\int \limits _{A}{\mathbf {B} }{\text{ d}}\mathbf {A} =\int \limits _{A}{\left({\frac {\partial \mathbf {B} }{\partial t}}+\mathbf {v} \ {\text{div}}\ \mathbf {B} +{\text{rot}}\;(\mathbf {B} \times \mathbf {v})\right)\;{\text{d}}}\mathbf {A} }

и принимая во внимание div B = 0 {\displaystyle {\text{div}}\mathbf {B} =0} (Ряд Гаусса), B × v = − v × B {\displaystyle \mathbf {B} \times \mathbf {v} =-\mathbf {v} \times \mathbf {B} } (Векторное произведение) и ∫ A rot X d A = ∮ ∂ A ⁡ X d ℓ {\displaystyle \int _{A}{\text{rot}}\;\mathbf {X} \;\mathrm {d} \mathbf {A} =\oint _{\partial A}\mathbf {X} \;{\text{d}}{\boldsymbol {\ell }}} (теорема Кельвина - Стокса), мы находим, что полная производная магнитного потока может быть выражена

∫ Σ ∂ B ∂ t d A = d d t ∫ Σ B d A + ∮ ∂ Σ ⁡ v × B d ℓ {\displaystyle \int \limits _{\Sigma }{\frac {\partial \mathbf {B} }{\partial t}}{\textrm {d}}\mathbf {A} ={\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} +\oint _{\partial \Sigma }\mathbf {v} \times \mathbf {B} \,{\text{d}}{\boldsymbol {\ell }}}

Добавляя член ∮ ⁡ v × B d ℓ {\displaystyle \oint \mathbf {v} \times \mathbf {B} \mathrm {d} \mathbf {\ell } } к обеим частям уравнения Фарадея-Максвелла и вводя вышеприведённое уравнение, мы получаем:

∮ ∂ Σ ⁡ (E + v × B) d ℓ = − ∫ Σ ∂ ∂ t B d A ⏟ induced emf + ∮ ∂ Σ ⁡ v × B d ℓ ⏟ motional emf = − d d t ∫ Σ B d A , {\displaystyle \oint \limits _{\partial \Sigma }{(\mathbf {E} +\mathbf {v} \times \mathbf {B})}{\text{d}}\ell =\underbrace {-\int \limits _{\Sigma }{\frac {\partial }{\partial t}}\mathbf {B} {\text{d}}\mathbf {A} } _{{\text{induced}}\ {\text{emf}}}+\underbrace {\oint \limits _{\partial \Sigma }{\mathbf {v} }\times \mathbf {B} {\text{d}}\ell } _{{\text{motional}}\ {\text{emf}}}=-{\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} ,}

что и является законом Фарадея. Таким образом, закон Фарадея и уравнения Фарадея-Максвелла физически эквивалентны.

Рис. 7 показывает интерпретацию вклада магнитной силы в ЭДС в левой части уравнения. Площадь, заметаемая сегментом d кривой ∂Σ за время dt при движении со скоростью v , равна:

d A = − d ℓ × v d t , {\displaystyle d\mathbf {A} =-d{\boldsymbol {\ell \times v}}dt\ ,}

так что изменение магнитного потока ΔΦ B через часть поверхности, ограниченной ∂Σ за время dt , равно:

d Δ Φ B d t = − B ⋅ d ℓ × v = − v × B ⋅ d ℓ , {\displaystyle {\frac {d\Delta \Phi _{B}}{dt}}=-\mathbf {B} \cdot \ d{\boldsymbol {\ell \times v}}\ =-\mathbf {v} \times \mathbf {B} \cdot \ d{\boldsymbol {\ell }}\ ,}

и если сложить эти ΔΦ B -вклады вокруг петли для всех сегментов d , мы получим суммарный вклад магнитной силы в закон Фарадея. То есть этот термин связан с двигательной ЭДС.

Пример 3: точка зрения движущегося наблюдателя

Возвращаясь к примеру на рис. 3, в движущейся системе отсчета выявляется тесная связь между E - и B -полями, а также между двигательной и индуцированной ЭДС. Представьте себе наблюдателя, движущегося вместе с петлёй. Наблюдатель вычисляет ЭДС в петле с использованием как закона Лоренца, так и с использованием закона электромагнитной индукции Фарадея. Поскольку этот наблюдатель движется с петлей, он не видит никакого движения петли, то есть нулевую величину v × B . Однако, поскольку поле B меняется в точке x , движущийся наблюдатель видит изменяющееся во времени магнитного поля, а именно:

B = k B (x + v t) , {\displaystyle \mathbf {B} =\mathbf {k} {B}(x+vt)\ ,}

где k - единичный вектор в направлении z .

Закон Лоренца

Уравнение Фарадея-Максвелла говорит, что движущийся наблюдатель видит электрическое поле E y в направлении оси y , определяемое по формуле:

∇ × E = k d E y d x {\displaystyle \nabla \times \mathbf {E} =\mathbf {k} \ {\frac {dE_{y}}{dx}}} = − ∂ B ∂ t = − k d B (x + v t) d t = − k d B d x v , {\displaystyle =-{\frac {\partial \mathbf {B} }{\partial t}}=-\mathbf {k} {\frac {dB(x+vt)}{dt}}=-\mathbf {k} {\frac {dB}{dx}}v\ \ ,} d B d t = d B d (x + v t) d (x + v t) d t = d B d x v . {\displaystyle {\frac {dB}{dt}}={\frac {dB}{d(x+vt)}}{\frac {d(x+vt)}{dt}}={\frac {dB}{dx}}v\ .}

Решение для E y с точностью до постоянной, которая ничего не добавляет в интеграл по петле:

E y (x , t) = − B (x + v t) v . {\displaystyle E_{y}(x,\ t)=-B(x+vt)\ v\ .}

Используя закон Лоренца, в котором имеется только компонента электрического поля, наблюдатель может вычислить ЭДС по петле за время t по формуле:

E = − ℓ [ E y (x C + w / 2 , t) − E y (x C − w / 2 , t) ] {\displaystyle {\mathcal {E}}=-\ell } = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ ,}

и мы видим, что точно такой же результат найден для неподвижного наблюдателя, который видит, что центр масс x C сдвинулся на величину x C + v t . Однако, движущийся наблюдатель получил результат под впечатлением, что в законе Лоренца действовала только электрическая составляющая, тогда как неподвижный наблюдатель думал, что действовала только магнитная составляющая.

Закон индукции Фарадея

Для применения закона индукции Фарадея рассмотрим наблюдателя, движущегося вместе с точкой x C . Он видит изменение магнитного потока, но петля ему кажется неподвижной: центр петли x C фиксирован, потому что наблюдатель движется вместе с петлей. Тогда поток:

Φ B = − ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 B (x + v t) d x , {\displaystyle \Phi _{B}=-\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x+vt)dx\ ,}

где знак минуса возникает из-за того, что нормаль к поверхности имеет направление, противоположное приложенному полю B . Из закона индукции Фарадея ЭДС равна:

E = − d Φ B d t = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d t B (x + v t) d x {\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dt}}B(x+vt)dx} = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d x B (x + v t) v d x {\displaystyle =\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dx}}B(x+vt)\ v\ dx} = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ \ ,}

и мы видим тот же результат. Производная по времени используется при интегрировании, поскольку пределы интегрирования не зависят от времени. Опять же, для преобразования производной по времени в производную по x используются методы дифференцирования сложной функции.

Неподвижный наблюдатель видит ЭДС как двигательную , тогда как движущийся наблюдатель думает, что это индуцированная ЭДС.

Электрический генератор

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов . Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея , показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» - Induced B). Обод, таким образом, становится электромагнитом , который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Электродвигатель

Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B , которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля , диск будет вращаться с такой скоростью, чтобы d Φ B / dt было равно напряжению, вызывающему ток.

Электрический трансформатор

ЭДС, предсказанная законом Фарадея, является также причиной работы электрических трансформаторов. Когда электрический ток в проволочной петле изменяется, меняющийся ток создаёт переменное магнитное поле. Второй провод в доступном для него магнитном поле будет испытывать эти изменения магнитного поля как изменения связанного с ним магнитного потока d Φ B / d t . Электродвижущая сила, возникающая во второй петле, называется индуцированной ЭДС или ЭДС трансформатора . Если два конца этой петли связать через электрическую нагрузку, то через неё потечёт ток.

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

Основы > Задачи и ответы

Электролиз. Законы Фарадея


1 Найти электрохимический эквивалент натрия. Молярная масса натрия m = 0,023 кг/моль, его валентность z=1. Постоянная Фарадея

Решение:

2 Цинковый анод массы m = 5 г поставлен в электролитическую ванну, через которую проходит ток I =2 А. Через какое время t анод полностью израсходуется на покрытие металлических изделий? Электрохимический эквивалент цинка

Решение:

3 Найти постоянную Фарадея, если при прохож-дении через электролитическую ванну заряда q = 7348 Кл на катоде выделилась масса золота m = 5 г. Химический эквивалент золота А = 0,066 кг/моль.

Решение:
Согласно объединенному закону Фарадея

отсюда

4 Найти элементарный электрический заряд е, если масса вещества, численно равная химическому эквиваленту, содержит N o =N A /z атомов или молекул.

Решение:
Ионы в растворе электролита несут на себе число элементарных зарядов, равное валентности z. При выделении массы вещества, численно равной его химическому эквиваленту, через раствор проходит заряд, численно равный постоянной Фарадея, т. е.

Следовательно, элементарный заряд

5 Молярная масса серебра m 1 =0,108 кг/моль, его валентность z 1 = 1 и электрохимический эквивалент . Найти электрохимический эквивалент золота к2, если молярная масса золота m 2 = 0,197 кг/моль, его валентность z 2 = 3.

Решение:
По второму закону Фарадея имеем

отсюда электрохимический эквивалент золота

6 Найти массы веществ, выделившихся за время t =10ч на катодах трех электролитических ванн, вклю-ченных последовательно в сеть постоянного тока. Аноды в ваннах - медный, никелевый и серебряный - опущены соответственно в растворы CuS O 4, NiS0 4 и AgN0 3 . Плотность тока при электролизе j =40 А/м2, площадь катода в каждой ванне S = 500 см. Электрохимические эквиваленты меди, никеля и серебра

Решение:
Ток в ваннах I=jS. По первому закону Фарадея массы выделившихся при электролизе веществ

7 При никелировании изделий в течение времени t = 2 ч отложился слой никеля толщины l =0,03 мм.
Найти плотность тока при электролизе. Электрохимический эквивалент никеля
, его плотность

Решение:

8 Амперметр, включенный последовательно с электролитической ванной, показывает ток Io =1,5А. Какую поправку надо внести в показание амперметра, если за время t =10мин на катоде отложилась масса меди m = 0,316 г? Электрохимический эквивалент меди .

Решение:
По первому закону Фарадея m = kI
t , где I-ток в цепи; отсюда I = m /k t =1,6 А, т.е. в показание амперметра надо внести поправку

9 Желая проверить правильность показаний вольтметра, его подключили параллельно резистору с известным сопротивлением R = 30 Ом. Последовательно в общую цепь включили электролитическую ванну, в которой ведется электролиз серебра. За время t =5 мин в этой ванне выделилась масса серебра m = 55,6 мг. Вольтметр показывал напряжение Vo = 6 В. Найти разность между показанием вольтметра и точным значением падения напряжения на резисторе. Электрохимический эквивалент серебра .

Решение:
По первому закону Фарадея m = kl
t , где I-ток в цепи. Точное значение падения напряжения на сопротивлении V=IR = mR/k t = 4,91 В. Разность между показанием вольтметра и точным значением падения напряжения

10 Для серебрения ложек через раствор соли серебра в течение времени t =5 ч пропускается ток I =1,8 А. Катодом служат n =12 ложек, каждая из которых имеет площадь поверхности S =50 см2. Какой толщины слой серебра отложится на ложках? Молярная масса серебра m = 0,108 кг/моль, его валентность z= 1 и плотность .

Решение:
Толщина слоя

11 Две электролитические ванны включены последовательно. В первой ванне находится раствор хлористого железа (FeCl 2 ), во второй - раствор хлорного железа (FeCl 3 ). Найти массы выделившегося железа на катодах и хлора на анодах в каждой ванне при прохождении через ванну заряда . Молярные массы железа и хлора .

Решение:
В первой ванне железо двухвалентно (z1=2), во второй - трехвалентно (z2 = 3). Поэтому при прохождении через растворы одинаковых зарядов выделяются различные массы железа на катодах: в первой ванне

во второй ванне

Так как валентность атомов хлора z=1, то на аноде каждой ванны выделяется масса хлора

12 При электролизе раствора серной кислоты (CuS O 4 ) расходуется мощность N=37 Вт. Найти со-противление электролита, если за время t = 50 мин выделяется масса водорода m = 0,3 г. Молярная масса водорода m = 0,001 кг/моль, его валентность z= 1 .

Решение:

13 При электролитическом способе получения никеля на единицу массы расходуется W m = 10 кВт Ч ч/кг электроэнергии. Электрохимический эквивалент никеля . При каком напряжении производится электролиз?

Решение:

14 Найти массу выделившейся меди, если для ее получения электролитическим способом затрачено W= 5 кВт Ч ч электроэнергии. Электролиз проводится при напряжении V =10 В, к.п.д. установки h =75%. Электрохимический эквивалент меди .

Решение:
К.п.д. установки

где q-заряд, прошедший через ванну. Масса выделившейся меди m=kq; отсюда

15 Какой заряд проходит через раствор серной кислоты (CuS O 4 ) за время t =10с, если ток за это время равномерно возрастает от I 1 =0 до I 2 = 4А? Какая масса меди выделяется при этом на катоде? Электрохимический эквивалент меди .

Решение:
Средний ток

Заряд, протекший через раствор,

Нахождение заряда графическим путем показано на рис. 369. На графике зависимости тока от времени заштрихованная площадь численно равна заряду. Масса меди, выделившейся на катоде,

16 При рафинировании меди с помощью электролиза к последовательно включенным электролитическим ваннам, имеющим общее сопротивление R = 0,5 Ом, подведено напряжение V=10 В. Найти массу чистой меди, выделившейся на катодах ванны за время t =10ч. Э.д.с. поляризации e = 6 В. Электрохимический эквивалент меди .

Решение:

17 При электролизе воды через электролитическую ванну в течение времени t = 25 мин шел ток I =20 А. Какова температура t выделившегося кислорода, если он находится в объеме V= 1 л под давлением р = 0,2 МПа? Молярная масса воды m =0,018 кг/моль. Электрохимический эквивалент кислорода .

Решение:

где R= 8,31 Дж/(молъ К)-газовая постоянная.

18 При электролитическом способе получения алюминия на единицу массы расходуется W 1 m = 50 кВт Ч ч/кг электроэнергии. Электролиз проводится при напряжении V1 = 1 6,2 В. Каким будет расход электроэнергии W 2m на единицу массы при напряжении V2 = 8, 1 В?
Решение:

Окислительно-восстановительный процесс, принудительно протекающий под действием электрического тока, называется электролизом.

Электролиз проводят в электролизере, заполненном электролитом, в который погружены электроды, подсоединенные к внешнему источнику тока.

Электрод, подсоединенный к отрицательному полюсу внешнего источника тока, называется катодом . На катоде протекают процессы восстановления частиц электролита. Электрод, подсоединенный к положительному полюсу источника тока, называется анодом . На аноде протекают процессы окисления частиц электролита или материала электрода.

Анодные процессы зависят от природы электролита и материала анода. В связи с этим различают электролиз с инертным и растворимым анодом.

Инертным называется анод, материал которого не окисляется в ходе электролиза. К инертным электродам относятся, например, графитовый (угольный) и платиновый.

Растворимым называется анод, материал которого может окисляться в ходе электролиза. Большинство металлических электродов являются растворимыми.

В качестве электролита могут быть использованы растворы или расплавы. В растворе или расплаве электролита ионы находятся в хаотичном движении. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к катоду, а анионы - к аноду и, соответственно, на электродах они могут разряжаться.

При электролизе расплавов с инертными электродами на катоде возможно восстановление только катионов металла, а на аноде − окисление анионов.

При электролизе водных растворов на катоде кроме катионов металла, могут восстанавливаться молекулы воды, а в кислых растворах - ионы водорода Н + . Таким образом, на катоде возможны следующие конкурирующие реакции:

(-) К: Ме n + + → Me

2H 2 O + 2 ē → H 2 + 2 OH -

2Н + + 2 ē → Н 2

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала.

При электролизе водных растворов с растворимым анодом , кроме окисления анионов, возможны реакции окисления самого электрода, молекул воды и в щелочных растворах гидроксид-ионов (ОН -):



(+) А: Me - n ē → Ме n +

окисление аниона Е 0

2H 2 O – 4 ē O 2 + 4 H +

4OH – - 4 ē = O 2 +2H 2 O

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала.

Для электродных реакций приведены равновесные потенциалы в отсутствии электрического тока.

Электролиз - процесс неравновесный, поэтому потенциалы электродных реакций под током отличаются от своих равновесных значений. Смещение потенциала электрода от его равновесного значения под влиянием внешнего тока называется электродной поляризацией. Величина поляризации называется перенапряжением. На величину перенапряжения влияют многие факторы: природа материала электрода, плотность тока, температура, рН-среды и др.

Перенапряжения катодного выделения металлов сравнительно невелики.

С высоким перенапряжением, как правило, протекает процесс образования газов, таких как водород и кислород. Минимальное перенапряжение водорода на катоде в кислых растворах наблюдается на Pt (h=0,1 В), а максимальное −на свинце, цинке, кадмии и ртути. Перенапряжение изменяется при замене кислых растворов на щелочные. Например, на платине в щелочной среде перенапряжение водорода h=0,31 В (см. приложение).

Анодное выделение кислорода также связано с перенапряжением. Минимальное перенапряжение выделения кислорода наблюдается на Pt-электродах (h=0,7 В), а максимальное − на цинке, ртути и свинце (см. приложение).

Из вышеизложенного следует, что при электролизе водных растворов:

1) на катоде восстанавливаются ионы металлов, электродные потенциалы которых больше потенциала восстановления воды (-0,82В). Ионы металлов, имеющие более отрицательные электродные потенциалы чем -0,82В, не восстанавливаются. К ним относятся ионы щелочных и щелочноземельных металлов и алюминия.

2) на инертном аноде с учетом перенапряжения кислорода протекает окисление тех анионов, потенциал которых меньше потенциала окисления воды (+1,23В). К таким анионам относятся, например, I - , Br - , Cl - , NO 2 - , ОН - . Анионы СO 3 2- , РO 4 3- , NO 3 - , F - - не окисляемы.

3) при электролизе с растворимым анодом, в нейтральных и кислых средах растворяются электроды из тех металлов, электродный потенциал которых меньше +1,23В, а в щелочных – меньше, чем +0,413В.

Суммарными продуктами процессов на катоде и аноде являются электронейтральные вещества.

Для осуществления процесса электролиза на электроды необходимо подать напряжение. Напряжение электролиза U эл-за – это разность потенциалов, необходимая для протекания реакций на катоде и аноде. Теоретическое напряжение электролиза (U эл-за, теор) без учета перенапряжения, омического падения напряжения в проводниках первого рода и в электролите

U эл-за, теор = E а – E к, (7)

где E а, E к - потенциалы анодных и катодных реакций.

Связь между количеством выделившегося при электролизе вещества и количеством прошедшего через электролит тока выражается двумя законами Фарадея.

I закон Фарадея. Количество вещества, образовавшегося на электроде при электролизе, прямо пропорционально количеству электричества, прошедшему через раствор (расплав) электролита:

где k – электрохимический эквивалент, г/Кл или г/А·ч; Q – количество электричества, Кулон, Q =It ; t -время, с; I -ток, А; F = 96500 Кл/моль (А·с/моль) = 26,8 А·ч/моль – постоянная Фарадея; Э- эквивалентная масса вещества, г/моль.

В электрохимических реакциях эквивалентная масса вещества определяется:

n –число электронов, участвующих в электродной реакции образования этого вещества.

II закон Фарадея. При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на электродах, пропорциональны их эквивалентным массам:

где m 1 и m 2 – массы веществ 1 и 2, Э 1 и Э 2, г/моль – эквивалентные массы веществ 1 и 2.

На практике часто вследствие протекания конкурирующих окислительно-восстановительных процессов на электродах образуется меньше вещества, чем соответствует прошедшему через раствор электричеству.

Для характеристики потерь электричества при электролизе введено понятие «Выход по току». Выходом по току В т называется выраженное в процентах отношение количества фактически полученного продукта электролиза m факт. к теоретически рассчитанному m теор:

Пример 10 . Какие процессы будут протекать при электролизе водного раствора сульфата натрия с угольным анодом? Какие вещества будут выделяться на электродах, если угольный электрод заменить на медный?

Решение: В растворе сульфата натрия в электродных процессах могут участвовать ионы натрия Na + , SO 4 2- и молекулы воды. Угольные электроды относятся к инертным электродам.

На катоде возможны следующие процессы восстановления:

(-) К: Na + + ē → Na

2H 2 O + 2 ē → H 2 + 2 OH -

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала. Поэтому на катоде будет происходить восстановление молекул воды, сопровождающееся выделением водорода и образованием в прикатодном пространстве гидроксид- ионов ОН - . Имеющиеся у катода ионы натрия Na + совместно с ионами ОН - будут образовывать раствор щелочи NaOH.

(+)А: 2 SO 4 2- - 2 ē → S 2 O 8 2-

2 H 2 O - 4 ē → 4H + + O 2 .

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала. Поэтому на аноде будет протекать окисление молекул воды с выделением кислорода, а в прианодном пространстве накапливаются ионы Н + . Имеющиеся у анода ионы SO 4 2- с ионами Н + будут образовывать раствор серной кислоты H 2 SO 4 .

Суммарная реакция электролиза выражается уравнением:

2 Na 2 SO 4 + 6H 2 O = 2H 2 + 4 NaOH + O 2 + 2H 2 SO 4 .

катодные продукты анодные продукты

При замене угольного (инертного) анода на медный на аноде становится возможным протекание еще одной реакции окисления – растворение меди:

Cu – 2 ē → Cu 2+

Этот процесс характеризуется меньшим значением потенциала, чем остальные возможные анодные процессы. Поэтому при электролизе Na 2 SO 4 с медным анодом на аноде пройдет окисление меди, а в анодном пространстве будет накапливаться сульфат меди CuSO 4 . Cуммарная реакция электролиза выразится уравнением:

Na 2 SO 4 + 2H 2 O + Cu = H 2 + 2 NaOH + CuSO 4 .

катодные продукты анодный продукт

Пример 11 . Составьте уравнение процессов, протекающих при электролизе водного раствора хлорида никеля NiCl 2 с инертным анодом.

Решение: В растворе хлорида никеля в электродных процессах могут участвовать ионы никеля Ni 2+ , Cl - и молекулы воды. В качестве инертного анода можно использовать графитовый электрод.

На катоде возможны следующие реакции:

(-) К: Ni 2+ + 2 ē → Ni

2H 2 O + 2 ē → H 2 + 2 OH -

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов никеля.

На аноде возможны следующие реакции:

(+) А: 2 Cl - - 2 ē → Cl 2

2H 2 O – 4 ē O 2 + 4 H + .

Согласно величинам стандартных электродных потенциалов на аноде

должен выделяться кислород. В действительности, из-за высокого перенапряжения кислорода на электроде выделяется хлор. Величина перенапряжения зависит от материала, из которого изготовлен электрод. Для графита перенапряжение кислорода составляет 1,17 В при плотности тока равной 1а/см 2 , что повышает потенциал окисления воды до 2,4 В.

Следовательно, электролиз раствора хлорида никеля протекает с образованием никеля и хлора:

Ni 2+ + 2Cl - = Ni + Cl 2 .

на катоде на аноде

Пример 12 . Вычислить массу вещества и объем газа, выделившихся на инертных электродах при электролизе водного раствора нитрата серебра AgNO 3 , если время электролиза составляет 25 мин, а сила тока 3 А.

Решение. При электролизе водного раствора AgNO 3 в случае с нерастворимым анодом (например, графитовый) на электродах протекают процессы:

(-) К: Ag + + ē → Ag ,

2H 2 O + 2 ē → H 2 + 2OH - .

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов серебра.

(+) A: 2H 2 O – 4 ē O 2 + 4 H + ,

анион NO 3 - не окисляем.

Г или в литрах л.

Задания

5. Записать реакции электролиза на инертных электродах и вычислить массу вещества, полученного на катоде, и объем газа, выделившегося на аноде, при электролизе растворов электролитов, если время электролиза 20 минут, сила тока I =2А, если выход по току В т =100%. Какие вещества будут выделяться на электродах при замене инертного анода на металлический, указанный в задании?

№№ Электролит Металлический электрод
CuSO 4 Cu
MgCl 2 Ni
Zn(NO 3) 2 Zn
SnF 2 Sn
CdSO 4 Cd
FeCl 2 Fe
AgNO 3 Ag
HCl Co
CoSO 4 Co
NiCl 2 Ni

Окончание таблицы



Понравилась статья? Поделитесь с друзьями!