Как работает электролизер воды. Электролиз воды: что нам о нем известно

В данной статье поговорим про электролиз обыкновенной воды.

Тот, кто не задумываясь, тешит себя роликами с Ютюба, а после этого пытается повторить преподнесённое им на блюдечке, обречён на неудачу. Интернет «кишит» роликами-обманками, и это шоу является частью жизни людей. Кто-то на этом зарабатывает деньги, а кто-то помогает ему зарабатывать деньги, просматривая это шоу. К видеороликам необходимо подходить осторожно. Я, например, знаю, что можно повысить КПД электролизной установки, но я не уверен, действительно ли Мэйер ездил на своем автомобиле на воде? Первое, я себе доказал и теоретически и практически, а второе пока нет.

Для достаточного количества газа необходимого автомобилю, площадь электродов в ячейке Мэйера слишком мала! Один из загадочных элементов в конструкции автомобиля Мэйера – красный бак, находящийся за креслом водителя. Про него ничего нигде не пишут. В бак вставлены ячейка — «Resonant Cavity», индикатор уровня воды – «water level indicator», и лазерный стимулятор. Всё кроме этого бака, так или иначе, описано, а про бак вообще ничего. Неужели это и есть топливный бак (для воды). Но на видеороликах Мэйер наливает воду непосредственно в ячейку. Это было небольшое отступление от темы статьи, а для Вас — тема для раздумий.

Мои исследования, прежде всего, направлены не на скорейшее «подключение» электролизной ячейки к автомобилю, а на максимальное повышение её производительности. Цель – уменьшить электролизный ток, или другими словами – затраты энергии, но при этом увеличить объём выхода кислородно-водородной смеси. В ходе моих экспериментальных исследований выявились определённые физические свойства воды, изучив которые и в последующем используя, удалось увеличить производительность обыкновенной электролизной установки в несколько раз. Сначала я начинал эксперименты с установки, собранной из пластин, но в ходе экспериментов пришлось от них отказаться, перейдя на трубки. Пластины, представляли собой несогласованную нагрузку на сверхвысоких частотах. Тяжело было сделать синфазный СВЧ-разветвитель без потери мощности. Самая банальная, но главная проблема – все активные элементы должны были быть равноудалены от специального СВЧ-резонатора на расстояние кратное длине волны, иначе происходило неравномерное выделение газа. Поэтому я вынужден был перейти на трубки.

Для того, чтобы было с чем сравнивать в дальнейшем, последовательность экспериментов началась с обыкновенного электролиза постоянным током. Опыты я проводил на установке изображённой ниже. Электролизную ячейку я наполнял обыкновенной, пропущенной через угольный фильтр водопроводной водой, не используя при этом кислоты и щелочи. Во время эксперимента, из электролизной ячейки, водородно-кислородная смесь поступала в «перевёрнутую» наполненную водой ёмкость 1 объёмом 100 миллилитров. В начале опыта, при включении установки запускался секундомер. Когда ёмкость наполнялась газом и появлялись выходящие из неё во внешнюю ёмкость 2 пузырьки, секундомер останавливался. Для сокращения времени на опыты, были взяты три пары трубок описанных в патентах Мейера длиной 4 дюйма. Общая площадь электролизного активного пространства (площади электродов) составила около 180 см 2 .

Указанную ёмкость я «наполнял» газом несколько раз при различных токах электролиза. Мной были выбраны токи: 0,25А; 0,5А; 1А; 1,5А; 2А.

При обыкновенном электролизе постоянным током обнаружилось, что с повышением напряжения U на пластинах электролизной установки, происходит нелинейный рост тока I. По предварительному предположению, пузырьки газа должны препятствовать прохождению тока в межэлектродном пространстве, поэтому увеличение напряжения на пластинах должно приводить к увеличению сопротивления водно-газовой смеси по параболическому закону. На самом деле происходило обратное явление.

Сопротивление R , с повышением напряжения резко падало по нелинейному графику – «гиперболе». Ожидалось, что появляющиеся на поверхности электродов пузырьки газов должны препятствовать прохождению электрического тока между электродами. Но на практике, оказалось, что при повышении тока еще на малых его значениях, происходило резкое падение сопротивления, а при токах выше 7-ми ампер, свойства проводимости воды не изменяются – выполняется Закон Ома. Описанное явление поясняется графиками.

Безусловно, при большом токе вырабатывается больше газа, ведь мы стремимся к большему количеству газа, но соотношение выхода газа к затраченной мощности резко падает, что снижает КПД установки.

Необходимо было создать такое устройство, которое бы «трясло» электролизную установку. На роль трясущего можно рассмотреть кандидатуру пенсионера — нигде не работает, сидит и трясёт, но он занимает определённый объём пространства, его надо кормить, лечить его старые косточки! Выйдет дороже! Поэтому необходимы технические средства.

На некоторых сайтах встречаются статьи о том, что трубки Мэйера имеют специальные пропилы для настройки в резонанс на звуковых частотах. Пропилы вы видите на рисунке.

Конечно, такой вариант использования звуковых колебаний возможен, но крепление трубок сделано так, что не позволяет трубкам вибрировать. Зная о том, что вода хорошо передает звуковые колебания, проще установить в ёмкости один, например – ультразвуковой резонатор и эффект достигнут. Мной использовался обыкновенный генератор прямоугольных импульсов на ТТЛ-микросхеме и ультразвуковой «пятак». Эксперимент с ультразвуковым резонатором показал незначительное увеличение количества выхода газа, при неизменной затрачиваемой мощности. Характеристика этого процесса показана на графике.

Здесь первый график – отношение объёма выходящего газа V, к электрической мощности P, от самой мощности, затрачиваемой на получение кислородно-водородной смеси без ультразвукового воздействия, а второй график — с ультразвуковым воздействием. Положительный эффект имеется, но не выразительный. На малой мощности (малом токе), ультразвуковое воздействие вообще не влияет на процесс электролиза, а на большой мощности производительность установки в некоторой степени повышается. В идеале, можно предположить, чем сильнее вибрация, тем выше будет график производительности, но для удаления пузырьков газа из межэлектродного пространства всё равно необходимо время.

Один из вариантов, позволяющих удалять пузырьки газа из межэлектродного пространства – обеспечить быструю циркуляцию воды, вымывающую пузырьки кислорода и водорода. Этот способ использует в своих реакторах товарищ Канарёв. А Мэйер, помимо других способов, конструкцию трубок своей мобильной установки сделал так, чтобы обеспечить наилучшую естественную циркуляцию воды и газов.

Обратившись к патентам Мэйера, я обратил внимание на то, что в патентах он значительное место отводит лазерной стимуляции. Мерцание светодиодов происходит на частоте, приблизительно равной 30 кГц. В качестве стимуляторов, используются мощные красные светодиоды, подобные тем, которые стоят в лазерных указках. Колупать лазерные указки – не дешёвое удовольствие, поэтому я этого делать не стал. Можно конечно повозиться со сверхъяркими светодиодами, но я до этого не дошёл. Если у Вас есть желание и возможности, попробуйте.

До красного светового диапазона я не дошёл, остановившись на СВЧ-частотах. Как я писал ранее, используется резонансная частота молекул воды. Это позволяет коротким маломощным импульсом с СВЧ-заполнением «встряхнуть» практически любой объём воды. Но поскольку непрерывное колебание на сверхвысоких частотах способно только нагревать молекулы воды (подобно квазинепрерывному колебанию микроволновой СВЧ-печи), а нам этого не надо, я применил короткий импульс. Старая конструкция показала неравномерный выход газа из разных пар трубок, поэтому пришлось переделывать конструкцию ячейки с выполнением премудростей техники СВЧ. Благодаря использованию короткого сверхвысокочастотного импульса, произошло значительное увеличение количества выхода газа, при неизменной затрачиваемой мощности.

Здесь первый график – зависимость отношения объёма выходящего газа V, к мощности P, от самой электрической мощности, затрачиваемой на получение кислородно-водородной смеси без дополнительного воздействия. Второй график – с ультразвуковым воздействием, а третий — с воздействием СВЧ-импульсом. Положительный эффект от стимуляции СВЧ-импульсами выразительнее, чем стимуляция ультразвуком. В ходе экспериментов при СВЧ-стимуляции, наблюдалось незначительное падение производительности на подводимой мощности около 16-ти Ватт, а потом снова наблюдался подъём производительности. Что это за падение, объяснить пока не могу, думал – ошибка измерения, но при повторных экспериментах и проводимых с использованием других приборов «падение» повторялось. Для точности, повторные измерения проводились с шагом тока в 0,2А, в диапазоне от 0,2А, до 2,4А. На конечном участке графика происходило резкое падение производительности. Правильнее сказать – ток повышался, а количество газа не увеличивалось. Предполагаю, что на больших токах, большое количество выделяемого газа препятствовало работе установки, поэтому при более больших токах, я экспериментировать не стал, нет смысла.

Если Вы посмотрите на последний график, то сможете сделать вывод: эта экспериментальная установка с полезной площадью электродов равной 180 см 2 (три пары трубок), способна при затрате 27 Ватт электрической мощности вырабатывать около 2,2 литров кислородно-водородной смеси в час. При указанной мощности и напряжении 12 вольт, ток потребления приблизительно будет равен 2,25 ампера. Отсюда следует, что для выработки 22 литров кислородно-водородной смеси в час, требуется 270 Вт электрической энергии, что при бортовом напряжении в 12 вольт соответствует току 22,5 ампер. При этом необходимо 30 пар трубок высотой около 10 сантиметров. Как видите, ток не малый, но он вполне «вписывается» в затраты энергии штатным генератором автомобиля. Можно и по другому: на 1 киловатт затраченной электрической мощности вырабатывается 81 литр газа, или с пересчётом на метры кубические – необходимо приблизительно 12,3 киловат*час. для выработки одного кубического метра кислородно-водородной смеси.

Если сравнивать с известными электролизными установками, например ИФТИ, затрачивающими 4…5 киловат*час на кубический нормированный метр водорода, то описанная в этой статье установка проигрывает в производительности, поскольку она затрачивает на кубический нормированный метр водорода 18,5 киловат*час. Поэтому из приведённых мной цифр делайте выводы сами.

Какой объем газа необходим для работы двигателя внутреннего сгорания, я пока не разбирался. Но то, что показывают на Ютюбе, мало соответствует действительности.

На отрицательно заряженном электроде - катоде происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на положительно заряженном электроде - аноде идет электрохимическое окисление частиц (атомов, молекул, анионов). Ниже приведены классические формулы электролизов

1.Соль активного металла и кислородсодержащей кислоты

Na 2 SO 4 ↔2Na + +SO 4 2−

A(+): 2H 2 O — 4e = O 2 + 4H +

Вывод: 2H 2 O (электролиз) → H 2 + O 2

2. Гидроксид: активный металл и гидроксид-ион

NaOH ↔ Na + + OH −

K(-): 2H 2 O + 2e = H 2 + 2OH −

A(+): 2H 2 O — 4e = O 2 + 4Н +

Вывод: 2H 2 O (электролиз) → 2H 2 + O 2

При электролизе воды на аноде выделяется Кислород (), а на катоде Водород ()

Первый опыт проведём с целью получения водорода и кислорода.
Сделайте электролит из раствора пищевой соды (можно взять кальцинированную соду), опустите туда электроды и включите источник питания. Как только ток пойдёт через раствор, сразу станут заметны пузырьки газа, которые образуются у электродов: у "+" будет выделяться кислород, у "-" водород. Именно такое распределение газов происходит из-за того, что возле анода "+" происходит скопление отрицательных ионов OH-, и восстановление кислородда, а возле катода "-" скапливаются ионы щелочного металла, которые содержатся в кальцинированной соде (Na2CO3), имеющие положительный заряд (Na+) и одновременно происходит восстановление водорода. Восстановлении ионов натрия до чистого металла Na не происходит, так как металл натрий стоит в ряду напряжений металлов левее водорода
Li < K < Rb < Cs < Ba < Ca < Na < Mg < Al < Mn < Cr < Zn < Fe < Cd < Co < Ni < Sn < Pb < H2 < Cu < Ag < Hg < Pt < Au

Традиционно для получения водорода и кислорода из воды на автомобилях используют так называемые сухие электролизеры . Еще их называют Генераторы ННО

Водород и кислород, полученный в двигателе, через генератор ННО путем электролиза, будет значительно ускорять зажигание топливной смеси в цилиндрах вашего двигателя, увеличивая выходную мощность бензинового или дизельного ДВС (Двигателя внутреннего сгорания). Водород зажигается в 1000 раз быстрее, чем испаренное жидкое топливо, тем самым, водород зажигая испаренное жидкое топливо и увеличивая работу взрывной силы поршня, на первой фазе его работы. Преимущества добавления ННО в топливную смесь двигателя внутреннего сгорания, включая дизельные двигатели, были хорошо изучены и документированы как правительством США, так и правительствами других стран, многими крупными университетами и исследовательскими центрами по всему миру.

ЭЛЕКТРОЛИЗ

совокупность электрохим. окислит.-восстановит. процессов, происходящих при прохождении электрич. тока через электролит с погруженными в него электродами. На катоде катионы восстанавливаются в ионы более низкой степени окисления или в атомы, напр.: Fe 3+ + eFe 2+ , Сu 2+ + 2е Сu (е - электрон). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с продуктами катодного процесса, к-рые рассматриваются в этом случае как промежут. в-ва Э. На аноде происходит окисление ионов или молекул, поступающих из объема электролита или принадлежащих материалу анода; в последнем случае анод растворяется или окисляется (см. Анодное растворение). Напр.:


Э. включает два процесса: миграцию реагирующих частиц под действием электрич. поля к пов-сти электрода и переход заряда с частицы на электрод или с электрода на частицу. Миграция ионов определяется их подвижностью и числами переноса (см. Электропроводность электролитов}. Процесс переноса неск. электрич. зарядов осуществляется, как правило, в виде последовательности одноэлектронных р-ций, т. е. постадийно, с образованием промежут. частиц (ионов или радикалов), к-рые иногда существуют нек-рое время на электроде в адсорбир. состоянии.
Скорости электродных р-ций зависят от состава и концентрации электролита, материала электродов, электродного потенциала, т-ры, гидродинамич. условий (см. Электрохимическая кинетика). Мерой скорости служит плотность тока -кол-во переносимых электрич. зарядов через единицу площади пов-сти электрода в единицу времени. Кол-во образующихся при Э. продуктов определяется Фарадея законами. Дня выделения 1 грамм-эквивалента в-ва на электроде необходимо кол-во электричества, равное 26,8 А* ч. Если на каждом из электродов одновременно образуется неск. продуктов в результате ряда электрохим. р-ций, доля тока (в %), идущая на образование продукта одной из р-ций, наз. выходом данного продукта по току.
В электродном процессе участвуют в-ва, требующие для переноса заряда наименьшего электрич. потенциала; это м. б. не те в-ва, к-рые обусловливают перенос электричества в объеме р-ра. Напр., при Э. водного р-ра NaCl в миграции участвуют ионы Na + и Сl + , однако на твердых катодах ионы Na + не разряжаются, а протекает энергетически более выгодный процесс разряда протонированных молекул воды: Н 3 О+ + е --> 1/2H 2 + Н 2 О.

Применение Э. Получение целевых продуктов путем Э. позволяет сравнительно просто (регулируя силу тока) управлять скоростью и направленностью процесса, благодаря чему можно осуществлять процессы как в самых "мягких", так и в предельно "жестких" условиях окисления или восстановления, получая сильнейшие окислители и восстановители. Путем Э. производят Н 2 и О 2 из воды, С1 2 из водных р-ров NaCl, F 2 из расплава KF в KH 2 F 3 .
Гидроэлектрометаллургия - важная отрасль металлургии цветных металлов (Сu, Bi, Sb, Sn, Pb, Ni, Co, Cd, Zn); она применяется также для получения благородных и рассеянных металлов, Мn, Сr. Э. используют непосредственно для катодного выделения металла после того, как он переведен из руды в р-р, а р-р подвергнут очистке. Такой процесс наз. электроэкстракцией. Э. применяют также для очистки металла - электролитич. рафинирования (электрорафинирование). Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов.
Э. расплавов электролитов - важный способ произ-ва мн. металлов. Так, напр., алюминий-сырец получают Э. криолит-глиноземного расплава (Na 3 AlF 6 + A1 2 O 3), очистку сырца осуществляют электролитич. рафинированием. При этом анодом служит расплав А1, содержащий до 35% Сu (для утяжеления) и потому находящийся на дне ванны электролизера. Средний жидкий слой ванны содержит ВаС1 2 , A1F 3 и NaF, a верхний - расплавленный рафинир. А1 и служит катодом.
Э. расплава хлорида магния или обезвоженного карналлита - наиб. распространенный способ получения Mg. В пром. масштабе Э. расплавов используют для получения щелочных и щел.-зем. металлов, Be, Ti, W, Mo, Zr, U и др.
К электролитич. способам получения металлов относят также восстановление ионов металла другим, более электро-отрицат. металлом. Выделение металлов восстановлением их водородом также часто включает стадии Э.- электрохим. ионизацию водорода и осаждение ионов металла за счет освобождающихся при этом электронов. Важную роль играют процессы совместного выделения или растворения неск. металлов, совместного выделения металлов и мол. водорода на катоде и адсорбции компонентов р-ра на электродах. Э. используют для приготовления металлич. порошков с заданными св-вами.
Другие важнейшие применения Э.- гальванотехника, электросинтез, электрохимическая обработка металлов, защита от коррозии (см. Электрохимическая защита).

Электролизеры. Конструкция пром. аппаратов для проведения электролитич. процессов определяется характером процесса. В гидрометаллургии и гальванотехнике используют преим. т. наз. ящичные электролизеры, представляющие собой открытую емкость с электролитом, в к-рой размещают чередующиеся катоды и аноды, соединенные соотв. с отрицат. и положит. полюсами источника постоянного тока. Для изготовления анодов применяют графит, углеграфитовые материалы, платину, оксиды железа, свинца, никеля, свинец и его сплавы; используют малоизнашивающиеся титановые аноды с активным покрытием из смеси оксидов рутения и титана (оксидные рутениево-титановые аноды, или ОРТА), а также из платины и ее сплавов. Для катодов в большинстве электролизеров применяют сталь, в т. ч. с разл. защитными покрытиями с учетом агрессивности электролита и продуктов Э., т-ры и др. условий процесса. Нек-рые электролизеры работают в условиях высоких давлений, напр, разложение воды ведется под давлением до 4 МПа; разрабатываются электролизеры и для более высоких давлений. В совр. электролизерах широко применяют пластич. массы, стекло и стеклопластики, керамику.
Во мн. электрохим. произ-вах требуется разделение катодного и анодного пространств, к-рое осуществляют с помощью диафрагм, проницаемых для ионов, но затрудняющих мех. смешение и диффузию. При этом достигается разделение жидких и газообразных продуктов, образующихся на электродах или в объеме р-ра, предотвращается участие исходных, промежут. и конечных продуктов Э. в р-циях на электроде противоположного знака и в приэлектродном пространстве. В пористых диафрагмах через микропоры переносятся как катионы, так и анионы в кол-вах, соответствующих числам переноса. В ионообменных диафрагмах (мембранах) происходит перенос либо только катионов, либо анионов, в зависимости от природы входящих в их состав ионогенных групп. При синтезе сильных окислителей используют обычно без-диафрагменные электролизеры, но в р-р электролита добавляют К 2 Сr 2 О 7 . В процессе Э. на катоде образуется пористая хромит-хроматная пленка, выполняющая ф-ции диафрагмы. При получении хлора используют катод в виде стальной сетки, на к-рую наносят слой асбеста, играющий роль диафрагмы. В процессе Э. рассол подают в анодную камеру, а из анодной камеры выводят р-р NaOH.
Электролизер, применяемый для получения магния, алюминия, щелочных и щел.-зем. металлов, представляет собой футерованную огнеупорным материалом ванну, на дне к-рой находится расплавленный металл, служащий катодом, аноды же в виде блоков располагают над слоем жидкого металла. В процессах мембранного получения хлора, в электросинтезе используют электролизеры фильтр-прессного типа, собранные из отд. рам, между к-рыми помещены ионообменные мембраны.
По характеру подключения к источнику питания различают монополярные и биполярные электролизеры (рис.). Монополярный электролизер состоит из одной электролитич. ячейки с электродами одной полярности, каждый из к-рых может состоять из неск. элементов, включенных параллельно в цепь тока. Биполярный электролизер имеет большое число ячеек (до 100-160), включенных последовательно в цепь тока, причем каждый электрод, за исключением двух крайних, работает одной стороной как катод, а другой как анод. Монополярные электролизеры обычно рассчитаны на большой ток и малые напряжения, биполярные - на сравнительно небольшой ток и высокие напряжения. Совр. электролизеры допускают высокую токовую нагрузку: монополярные до 400-500 кА, биполярные эквивалентную 1600 кА.

Получите гремучую смесь и потушите ей свечу!

Сложность:

Опасность:

Сделайте этот эксперимент дома

Реагенты

Безопасность

  • Перед началом опыта наденьте защитные перчатки и очки.
  • Проводите эксперимент на подносе.
  • При проведении опыта держите поблизости емкость с водой.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Сколько раз можно сделать «БАХ»?

Много раз! Просто набирайте в бутылочку гремучую смесь и тушите ей свечу.

Свеча не погасла. Что делать?

Вы можете многократно повторять шаги 3 и 4. Попробуйте снова! Дайте реакции электролиза идти подольше, чтобы скопилось побольше газа. Еще можно попробовать изменить угол направления бутылочки на свечу.

Штекер позеленел. Почему?

Металлические части штекера содержат медь. При окислении медь может становиться зеленой.

Пипетка протекает! Что делать?

Сперва отсоедините держатель батареек от электролизёра. Затем осторожно выньте штекер из пипетки. Чтобы устранить протечку, оберните штекер липкой лентой или даже кусочком защитной перчатки. Снова вставьте штекер в пипетку. Если протечка устранена, продолжайте опыт.

Другие эксперименты

Пошаговая инструкция

Соберем установку для электролиза воды (электролизёр).

Теперь заправим электролизёр водным раствором гидроксида натрия NaOH.

Установим емкость для сбора гремучей смеси и запустим процесс.

Теперь попробуем при помощи реакции кислорода и водорода затушить свечу.

Чтобы повторить опыт, подключите электролизёр к батарейкам и повторите шаги 3 и 4.

Ожидаемый результат

В ходе электролиза вода разлагается на два газа: кислород O 2 и водород H 2 . Водорода образуется в два раза больше, чем воды: H 2 O → O 2 + 2H 2 Такую смесь газов называют гремучей . Если баночку со смесью поднести к пламени свечи, смесь мгновенно разгорится и при этом потушит свечу.

Утилизация

Твердые отходы эксперимента утилизируйте вместе с бытовым мусором. Растворы слейте в раковину и затем тщательно промойте ее водой.

Что произошло

Почему содержимое баночки загорается?

Химическая формула молекулы воды выглядит как H 2 O. Это означает, что она состоит из двух атомов водорода и одного атома кислорода. Баночка как раз наполнена смесью из газообразного водорода и кислорода в отношении 2 к 1, полученной электролизом воды.

Когда эта смесь воспламеняется, тут же запускается реакция образования воды, которая сопровождается характерным хлопком.

Узнать больше

Реакция образования воды выглядит довольно просто:

2H 2 + O 2 → H 2 O

Однако всё не так уж и просто. Это окислительно-восстановительная реакция, в которой кислород является окислителем (забирает электроны водорода), а водород - восстановителем (отдает свои электроны кислороду):

O 2 o + 4e - → 2O 2-

H 2 o - 2e - → 2H +

Реакция протекает весьма интенсивно, особенно когда кислород смешивается с водородом в соотношении 1:2, как это было в нашем эксперименте. Это связано с тем, что водяной пар, который мы получили, содержит один атом кислорода и два атома водорода, то есть соотношение как раз равно 1:2.

Как кислород и водород оказались в баночке?

Эти газы появились там благодаря электролизу - процессу, в котором вода под действием электричества разлагается на кислород и водород. В ходе электролиза кислород и водород переходят в газообразную форму в соотношении 1:2. Образуется гремучая смесь, которая и гасит свечу.

Как протекает электролиз?

Для этого процесса нужна щелочная среда, поэтому мы добавляем гидроксид натрия NaOH. Теперь вода может расщепляться на ионы в жидком состоянии:

H 2 O → H + + OH -

Щелочная среда повышает концентрацию гидроксид-ионов OH - . Электролизёр (устройство для электролиза воды) имеет положительно заряженный анод, который притягивает анионы, и отрицательно заряженный катион, который привлекает катионы. Таким образом, катионы H + мигрируют к катоду, а анионы OH - - к аноду. Тогда ионы H + берут электроны с катода и превращаются в водород H 2 , а гидроксидные ионы OH - отдают свои электроны аноду и превращаются в кислород O 2 .

В нашем эксперименте электролизёром выступает штекер RCA, в котором металлическое кольцо служит катодом, а штифт - анодом. Однако полюса можно менять, соединяя провода вилки и держателя батареи наоборот - это не повлияет на эксперимент.

Что такое штекер RCA?

Штекер RCA когда-то широко использовался для аудио- и видеосистем. Он может подключить, например, видеопроигрыватель к телевизору. Он по-прежнему используется для некоторого визуального оборудования, но уже не так массово. Он состоит из двух металлических частей, внешнего кольца, штифта и пластмассового изолирующего кольца между ними. Отдельные провода подключаются к каждой металлической части: короткие провода -к металлическому кольцу, а длинные - к штифту.

Водород и кислород: ракетное топливо

Если поджечь смесь газов О 2 и Н 2 , мы услышим громкий хлопок - так протекает экзотермическая реакция, в ходе которой высвобождается много тепловой энергии. Необязательно использовать чистый кислород из баллона - с водородом, хоть и не так бурно, реагирует и кислород из воздуха.

Смесь водорода и кислорода в соотношении 2:1 (как в молекуле воды - продукте их реакции) благодаря «взрывным» свойствам назвали гремучей . Однако без искры или огня реакция не произойдет. Представьте, сколько энергии может выделиться, если взять те же газы, только сжиженными и в большом количестве!

Реакцию горения водорода используют при запуске ракеты и выведения ее на орбиту. Иными словами, водород и кислород - это жидкое ракетное топливо. Энергии горения достаточно, чтобы оторвать от земли ракету весом в несколько тысяч тонн! Водород выполняет роль горючего, а кислород - окислителя. Вода (продукт этой реакции) тут же превращается в пар. На таком топливе летали все шаттлы, в том числе Space shuttle, и некоторые модели американской ракеты Delta. В 2019 году планируется впервые использовать водородное топливо для запуска ракеты Space Launch System, ранее побившей рекорд грузоподъемности на другой горючей смеси.

Пара «Водород+кислород» - самое перспективное жидкое ракетное топливо. Оно намного экологичнее и дешевле, чем керосин, а также эффективнее твердого топлива. Однако и у него есть недостатки. Транспортировка сжиженных газов достаточно сложна и опасна. Жидкие водород и кислород криогенны, то есть обладают очень низкой температурой (температура кипения жидкого водорода и кислорода примерно -253 o C и -183 o C соответственно). Ракетные баки должны иметь хорошую теплоизоляцию, чтобы из них не испарялся водород, ведь если он вступит в реакцию с кислородом воздуха, может произойти взрыв и ракета сгорит еще до старта.

История дирижабля «Гинденбург»

В 1937 году утечка водорода на дирижабле Гинденбург спровоцировала самую масштабную трагедию в истории пассажирского воздухоплавания. При посадке дирижабль загорелся и рухнул на землю, сгорев дотла всего за 34 секунды. По основной версии следствия, был поврежден один из водородных баллонов. В итоге водород смешался с кислородом воздуха, и образовался гремучий газ. Дирижабль проходил через грозовой фронт, влажность «за бортом»и плохое заземление внутренней оболочки вызвали разность потенциалов и как следствие - искру. В результате горения водорода образовалось примерно 150 тонн воды, которая немедленно испарилась из-за высоких температур.

После этой катастрофы большинство стран отказалось от дирижаблей как от пассажирского транспорта. Со временем прекратились и разработки воздухоплавательного флота.

Строить дирижабли продолжали лишь в США. Вместо водорода их наполняли гелием. Это инертный невзрывоопасный газ,утечка которого не может стать причиной пожара. Однако вскоре самолеты окончательно заменили громоздкие и малоскоростные воздухоплавательные аппараты.

Электролизом воды называется физико-химический процесс, при котором под действием постоянного электрического тока вода разлагается на кислород и водород. Постоянное напряжение для ячейки получается, как правило, выпрямлением трехфазного переменного тока. В электролитической ячейке дистиллированная вода подвергается электролизу, при этом химическая реакция идет по следующей известной схеме: 2Н2O + энергия -> 2H2+O2.

В результате разделения на части молекул воды, водорода по объему получается вдвое больше чем кислорода. Перед использованием газы в установке обезвоживаются и охлаждаются. Выходные трубопроводы установки всегда защищены возвратными клапанами для предотвращения возгораний.

Непосредственно каркас конструкции изготавливается из стальных труб и толстых листов стали, что придает всей конструкции высокую жесткость и механическую прочность. Газовые резервуары обязательно тестируются под давлением.

Электронный блок устройства контролирует все стадии процесса производства, и позволяет оператору следить за параметрами на панели и на манометрах, чем обеспечивает безопасность. Эффективность электролиза такова, что из 500 мл воды получается около кубометра обоих газов с затратами около 4 квт/ч электрической энергии.

По сравнению с прочими методами получения водорода, электролиз воды отличается целым рядом преимуществ. Во-первых, в ход идет доступное сырье - деминерализованная вода и электроэнергия. Во-вторых, во время производства отсутствуют загрязняющие выбросы. В-третьих, процесс целиком автоматизирован. Наконец, на выходе получается достаточно чистый (99,99%) продукт.

Поэтому электролизные установки и получаемый на них водород, находят сегодня применение во многих отраслях: в химическом синтезе, в термической обработке металлов, в производстве растительных масел, в стекольной промышленности, в электронике, в системах охлаждения в энергетике и т. д.


Установка для электролиза устроена следующим образом. Снаружи расположена панель управления генератором водорода. Далее установлены выпрямитель, трансформатор, распределительное устройство, система деминерализованной воды и блок для ее пополнения.

В электролитической ячейке на стороне катодной пластины получается водород, а на стороне анодной - кислород. Здесь газы покидают ячейку. Они разделяются и подаются в сепаратор, затем охлаждаются деминерализованной водой, после чего отделяются под действием гравитации от жидкой фазы. Водород направляется в промыватель, где из газа удаляются капли щелока и происходит охлаждение в змеевике.

Наконец, водород проходит фильтрацию (фильтр на верху сепаратора), где капельки воды полностью устраняются, и поступает в сушильную камеру. Кислород обычно направляется в атмосферу. Деминерализованная вода подается в промыватель насосом.

Щелок используют здесь для повышения электропроводности воды. Если эксплуатация электролизера идет штатно, то щелок пополняют единожды в год в небольшом количестве. Твердое едкое кали кладется в резервуар для щелока, заполненный на две трети деминерализованной водой, после чего насос перемешивает его в раствор.

Система водяного охлаждения электролизера служит двум целям: охлаждает щелок до 80-90°C и охлаждает полученные газы до 40°C.

Система анализа газа принимает пробы водорода. Капли щелока в сепараторе отделяются, газ подается к анализатору, давление понижается, проверяется содержание в водороде кислорода. Прежде чем водород будет направлен в резервуар, во влагомере будет измерена точка росы. Сигнал будет подан оператору или на ПК, чтобы решить, подходит ли полученный водород для направления в накопительный резервуар, соответствует ли газ условиям приема.

Рабочее давление установки регулируется при помощи системы автоматического контроля. Датчик получает информацию о давлении внутри электролизера, затем данные направляются на ПК, где сравниваются с заданными параметрами. Далее результат преобразуется в сигнал порядка 10 мА, и рабочее давление удерживается на заданном уровне.


Рабочая температура установки регулируется пневматическим мембранным клапаном. Компьютер аналогичным образом сравнит температуру с заданной, и разница будет преобразована в соответствующий сигнал для .

Безопасность работы электролизера обеспечивается системой блокировки и сигнализации. В случае утечки водорода, обнаружение происходит автоматически детекторами. Программа при этом сразу отключает генерацию и запускает вентилятор для проветривания помещения. Переносной детектор утечки находится обязательно у оператора. Все эти меры позволяют достичь высокой степени безопасности при эксплуатации электролизеров.

Многие из нас наверняка любили эксперименты, проводимые на школьных уроках химии. Всегда интересно наблюдать, как взаимодействуют друг с другом различные вещества и что получается в итоге. А такую вещь, как электролиз воды, некоторые экспериментаторы вполне успешно повторяют дома. Как известно, данный процесс приводит к выделению кислорода и водорода. Но как именно все это происходит? Зачем вообще нужен электролиз воды и каковы его перспективы? Давайте разберемся с этим поподробнее.

Как протекает электролиз воды

Если взять обычный блок питания, подсоединить к полюсам графитовые стержни и опустить их в водопроводную воду, то через нее потечет постоянный ток, в жидкости начнут происходить различные электрохимические реакции. Их активность напрямую зависит от напряжения и наличия в воде всевозможных солей. Если рассматривать электролиз воды в домашних условиях с использованием обычной кухонной соли, то в самом упрощенном виде, то в нем можно выделить несколько самостоятельных процессов.

Электрохимический процесс

Заключается в том, что на аноде выделяется кислород - и в этом месте жидкость подкисляется, а на катоде - водород - и жидкость здесь подщелачивается. Но это еще не все. Если использовать специальные электроды, то электролиз воды позволит получить на отрицательном полюсе озон, а на положительном - перекись водорода. В составе пресной (не дистиллированной воды) всегда имеются минеральные соли - хлориды, сульфаты, карбонаты. Когда происходит электролиз воды, они также участвуют в реакциях. К примеру, когда через воду с растворенной кухонной солью начинает проходить постоянный ток, на аноде начинает образовываться хлор - и вода здесь подкисляется, а на катоде формируется гидроокись натрия - и вода подщелачивается. Такая реакция является скоротечной, и появившиеся химические элементы вновь начинают между собой взаимодействовать. В итоге вскоре начинает появляться гипохлорит натрия - 2NaOCl. Примерно то же самое происходит с хлоридами калия и кальция. Как мы видим, в результате разложения пресной воды формируется смесь сильных окислителей: озон, кислород, гипохлорит натрия и перекись водорода.

Электромагнитный процесс

Он заключается в том, что молекулы воды ориентируются параллельно движению тока так, что их водородная часть (со знаком «+») притягивается к катоду, а кислородная часть (со знаком «-») - к аноду. Сила воздействия на них настолько сильна, что приводит к ослаблению и порой к разрыву водородных связей. В результате образуется атомарный кислород, что влияет на снижение жесткости воды. Он окисляет ионы кальция до окиси (Са + + О → СаО), которая, в свою очередь, соединяется с водой и образует соответствующий гидрат: СаО + Н 2 О → Са(ОН) 2 .

Кавитационный процесс

Схлопывание микроскопических пузырьков водорода и кислорода, которые возникают благодаря электролизу, происходит с высвобождением огромной энергии, которая разрушает молекулы воды, образующие их стенки. В результате появляются ионы и атомарные частицы кислорода и водорода, гидроксилы и прочие вещества.

Применение

Электролиз воды представляет собой огромную практическую ценность для современной промышленности. Его часто используют для очистки воды от различных примесей. Также он является простым способом получения водорода. Последний интересен как возможная альтернатива обычному топливу. В настоящее время ученые изучают плазменный электролиз воды, который гораздо эффективнее обычного. А кроме этого, существует теория, согласно которой для разложения «эликсира жизни» можно использовать особых бактерий, способных вырабатывать небольшой по силе ток. Как видим, электролиз воды вовсе не так уж прост, как кажется поначалу, и наверняка можно ожидать, что дальнейшее его изучение вполне может привести к переходу на водородное топливо.



Понравилась статья? Поделитесь с друзьями!