Какие оксиды легче всего разлагаются. Реакции получения оксидов


Число и разнообразие химических процессов безграничны, как безграничны и формы существования материи и вещества. Чтобы не заблудиться в бескрайнем многообразии химических явлений (реакций), их необходимо классифицировать. Для этого применяют различные признаки и критерии. Одним из самых распространенных способов подразделения химических реакций является их классификация по составу исходных веществ и продуктов реакции. По этому признаку химические реакции делятся на реакции соединения, разложения, замещения и обмена. Примечание. При проведении этих и других опытов не выбрасывайте полученные вещества, сохраните их для дальнейшего использования в герметически закрытой посуде с соответствующими этикетками.

Наблюдения и результаты опытов проделанных реакций каждого типа в отдельности заносятся в таблицы следующего вида:

В эти же таблицы можно внести другие примеры реакций данного типа без проведения натурного эксперимента (виртуальные опыты).
^

Реакции соединения


К реакциям соединения относятся реакции, когда из двух или более веществ получают в качестве продукта реакции только одно вещество.

^ Опыты 1-5. Простые вещества соединяются с кислородом. а) Внесите с помощью пинцета в пламя горелки ленту магния (на пламя не смотреть! ). Магний сгорает ярким пламенем с выделением большого количества тепла:

2Mg + O 2 = 2MgO.

Б) Внесите с помощью пинцета в пламя горелки медную пластинку или проволоку и подержите в средней зоне около минуты. Медь также окисляется кислородом воздуха, однако без признаков горения и выделения тепла:

2Cu + O 2 = 2CuO.

В) Внесите в пламя с помощью ложечки для сжигания веществ немного серы. Обратите внимание, что сера вначале плавится, затем загорается и горит едва заметным голубоватым пламенем с образованием резко пахнущего газа (осторожно, не вдыхать! ):

S + O 2 = SO 2 .

Погасите горящую серу, опустив ложечку в стакан с водой или с песком.

Г) Внесите в пламя с помощью ложечки для сжигания веществ немного фосфора. Обратите внимание, что фосфор воспламеняется без плавления и сгорает ярким пламенем (осторожно! ) с образованием обильного дыма:

4P + 5O 2 = 2P 2 O 5 .

Д) Налейте в пробирку до половины раствор (10%) поваренной соли и опустите в него очищенный железный гвоздь, чтобы часть его не была бы покрыта раствором. Пробирку закройте неплотно (для доступа воздуха) ватным тампоном и оставьте на несколько дней. Обратите внимание на появление ржавчины на поверхности гвоздя. Упрощенно ее образование можно выразить уравнением:

3Fe + 2O 2 = Fe 3 O 4 .

^ Опыты 6-7. Оксиды соединяются с водой . а) Налейте в стакан немного воды и внесите в воду кусочек оксида кальция. Обратите внимание на бурный характер реакции, в результате которой смесь сильно разогревается:

CaO + H 2 O = Ca(OH) 2 .

Образование гидроксида кальция подтвердите с помощью индикатора.

Б) Налейте в колбу немного воды и внесите в колбу горящий фосфор в закрепленной в пробке ложечке для сжигания веществ. Не касайтесь при этом ложечкой поверхности воды (рис. 19).

Рис. 19. Взаимодействие оксида фосфора с водой.

Когда оксид фосфора заполнит колбу, уберите ложечку с горящим веществом в стакан с водой или с песком и вновь закройте колбу другой пробкой. Энергично встряхивайте колбу с водой и оксидом до полного взаимодействия веществ:

P 2 O 5 + H 2 O = 2HPO 3 .

Образование кислоты в колбе подтвердите с помощью индикатора.

^ Опыт 8. Оксиды соединяются между собой. Смешайте и разотрите в ступке оксид свинца (II) (2,2 г) и оксид кремния (0,6 г). Изогните кончик проволочки в виде небольшой петли, наберите ею немного полученной смеси и внесите в пламя горелки. При необходимости повторите эту операцию несколько раз. Смесь сплавляется, образуя маленький стекловидный шарик силиката свинца (II):

PbO + SiO 2 = PbSiO 3 .

^ Опыты 9-10. Металлы соединяются с неметаллами . а) Нагрейте до кипения в пробирке (укрепив ее в штативе вертикально) немного серы и внесите на несколько секунд в ее пары пучок тонкой медной проволоки. Наблюдайте образование бурого дыма:

Б) В пробирку с водой (2-3 мл) добавьте 3-4 капли настойки иода и прибавьте щепотку порошка алюминия (или другого металла). Встряхивайте пробирку и наблюдайте постепенное обесцвечивание раствора:

2Al + 3I 2 = 2AlI 3 .

^ Опыт 11. Соли соединяются с водой. Поместите в пробирку немного (0,5 г) безводного сульфата меди (II) и добавьте 2-3 капли воды. Наблюдайте изменение окраски вследствие образования медного купороса:

CuSO 4 + 5H 2 O = CuSO 4 ·5H 2 O.

^ Опыты 12-14. Сложные вещества реагируют с аммиаком. а) Два ватных тампона смочите концентрированными растворами аммиака и соляной кислоты. Поднесите оба тампона с помощью пинцетов друг к другу и наблюдайте появление белого дыма:

HCl + NH 3 = NH 4 Cl.

Б) К раствору медного купороса (2-3 мл) добавляйте по каплям концентрированный раствор аммиака до образования прозрачного раствора сульфата тетрамминмеди (II) интенсивно синего цвета:

CuSO 4 + 4NH 3 = SO 4 .

Б) К раствору нитрата серебра добавляйте по каплям раствор аммиака. Первоначально выпадает осадок гидроксида серебра, который мгновенно разлагается на воду и оксид серебра коричнево-черного цвета:

AgNO 3 + NH 3 · H 2 O = AgOH↓ + NH 4 NO 3 ;

2AgOH = Ag 2 O↓ + H 2 O.

При дальнейшем добавлении аммиака происходит растворение осадка с образованием гидроксида диамминсеребра:

Ag 2 O + 4NH 3 + H 2 O = 2OH.

^ Опыт 15. Две соли соединяются между собой. Приготовьте насыщенные при 50-60 о С растворы железного купороса и сульфата аммония и тотчас же слейте их в широкий стакан или кристаллизатор. Добавьте к смеси несколько капель концентрированной серной кислоты и охладите при помешивании. Вскоре появляются синевато-зеленые кристаллы соли Мора:

FeSO 4 + (NH 4) 2 SO 4 + 6H 2 O = FeSO 4 ·(NH 4) 2 SO 4 ·6H 2 O.

Оставьте смесь в холодном месте до следующего дня, затем отфильтруйте соль, высушите и сохраните для дальнейшего изучения.
^

Реакции разложения


Реакции разложения чаще всего протекают с поглощением тепла (эндотермические реакции), а по своей сущности противоположны реакциям соединения. Таким образом, к реакциям разложения относятся такие химические явления, когда из одного сложного вещества образуется несколько простых или сложных веществ.

^ Опыт 1. Оксиды разлагаются на исходные вещества. Проведите в приборе для электролиза (рис. 20) разложение воды электрическим током:

2H 2 O = 2H 2 +O 2 .

Если в лаборатории нет прибора для электролиза растворов, изготовьте его сами. Выньте из отработанных электрических батареек два графитовых стержня. Прикрепите к их концам по изолированному проводу (30-40 см), желательно разного цвета. Вырежьте кусочек плотного картона (5х10) и проделайте в нем на расстоянии 2-2,5 см два отверстия по диаметру графитовых стержней, чтобы они плотно держались в картонке. Подключите электроды к источнику постоянного тока напряжением 6-24 вольт (можно использовать батарейки). Опустите электроды в стакан с водой, – электролиз не наблюдается, так как чистая вода практически не проводит электрический ток. Подкислите воду серной кислотой и вновь опустите электроды в раствор. На них выделяются водород и кислород. По количеству пузырьков определите, на каком электроде, какой газ выделяется. Уточните ваше предположение по знаку заряда соответствующего полюса источника тока.

Рис. 20. Прибор для проведения электролиза в растворе.

Опыт можно провести, используя прибор, собранный по схеме (рис. 21). В этом случае легко сравнить объемы водорода и кислорода, выделяющиеся на электродах.


Рис. 21. Схема установки для разложения воды электрическим током.

^ Опыт 2. Соли разлагаются при нагревании. Поместите в пробирку немного годроксокарбоната меди (II) (малахит). Установите пробирку в штативе вертикально и нагрейте вещество. Внесите в пробирку горящую лучинку, она гаснет. Обратите внимание на появлении капель воды на стенках пробирки. На дне пробирки остается порошок оксида меди (II) черного цвета:

(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O.

Продолжайте нагревать соль до полного ее разложения. Полученный оксид меди сохраните для других опытов.

^ Опыт 3-4. Гидроксиды могут разлагаться при нагревании. а) Обмакните кончик стеклянной палочки в серную кислоту и внесите в пламя горелки. Наблюдайте образование белого "дыма" в результате разложения вещества:

H 2 SO 4 = SO 3 + H 2 O.

Б) Нагрейте в пробирке немного (1-2 г) свежеприготовленной суспензии гидроксида меди (II). Вещество легко разлагается:

Cu(OH) 2 = CuO + H 2 O.

Наблюдайте образование вещества черного цвета.

^ Опыт 5. Дегидратация кристаллогидратов. Поместите 3-5 г мелко истолченного медного купороса в фарфоровую чашку. Установите ее на кольцо штатива и нагревайте при помешивании вещества стеклянной палочкой, удерживая при этом чашечку тигельными щипцами. Наблюдайте постепенное обесцвечивание кристаллогидрата за счет отщепления воды:

CuSO 4 · 5H 2 O = CuSO 4 + 5H 2 O.

Не допускайте излишнего прокаливания, иначе начнется разложение безводного сульфата меди (II). Полученную соль охладите и сохраните в герметически закрытой баночке для других опытов. Отщепление воды от кристаллогидратов происходит также самопроизвольно при их хранении в открытой посуде и в природе. В этом случае процесс отщепления кристаллизационной воды называется выветриванием.

^ Опыт 6. Некоторые вещества разлагаются с выделением тепла. Разотрите в ступке кристаллы дихромата аммония и полученный порошок (3-4 г) насыпьте небольшой кучкой (конусом) на широкую несгораемую подставку. Сильно нагрейте кончик стеклянной палочки в пламени горелки и внесите его в порошок. Тепло стеклянной палочки инициирует реакцию разложения, которая затем протекает самопроизвольно с выделением большого количества тепла:

(NH 4)­ 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.
^

Реакции замещения


К реакциям замещения относят химическое взаимодействие между простым и сложным веществом, в процессе которого атомы простого вещества замещают какие либо атомы в сложном веществе, в результате получаются новое сложное и новое простое вещества. В общем случае реакции замещения протекают в тех случаях, когда химические связи между элементами в сложном веществе – продукте реакции прочнее, чем связи между элементами в структурных частицах исходного соединения. Следует учесть также, что если реакции замещения протекают в растворах, то в процессе может принимать участие и растворитель.

^ Опыт 1. Активные металлы вытесняют водород из воды при обычных условиях. Небольшую пробирку наполните почти доверху водой. Бросьте в нее кусочек натрия величиной с пшеничное зерно. Наблюдайте (не наклоняйтесь над пробиркой! ) бурную реакцию с выделением газа. Поднесите к отверстию пробирки горящую лучинку и убедитесь по звуку воспламенения и по характеру горения, что это – водород. По окончании реакции добавьте в раствор каплю раствора фенолфталеина и убедитесь, что образовалась также щелочь:

2Na + 2H 2 O = 2NaOH + H 2 .

^ Опыт 2. Металл вытесняет водород из кислоты. В небольшую пробирку опустите 2-3 гранулы цинка и добавьте 3-5 мл раствора (1:1) соляной кислоты. Наблюдайте выделение газа. Докажите, что это водород. Выпарите каплю раствора после реакции и убедитесь, что в растворе образовалась соль:

Zn + 2HCl = ZnCl 2 + H 2 .

^ Опыт 3. Магний вытесняет медь из оксида меди (II). Смешайте в ступке порошок магния массой 2 г и оксид меди массой 4 г и смесь поместите в фарфоровый тигель, который в целях пожаробезопасности поставьте в чашку с песком. В смесь поместите магниевую стружку и подожгите ее. Выделившееся тепло инициирует реакцию, которая дальше продолжается самопроизвольно с выделением большого количества тепла:

Mg + CuO = MgO + Cu.

Когда продукты реакции остынут, убедитесь, что образовались белый порошок – оксид магния и металлическая медь.

^ Опыт 4-5. Металлы и неметаллы вступают в реакции замещения с солями. а) Налейте в пробирку раствор (10%) сульфата меди (II) или другой соли меди (II) и опустите в раствор очищенный железный гвоздь. Наблюдайте появление налета меди на поверхности гвоздя и изменение (через некоторое время) окраски раствора:

Fe + CuSO 4 = FeSO 4 + Cu.

Б) Налейте в пробирку раствор (5%) иодида натрия и добавьте несколько капель хлорной воды или раствора отбеливателя "Белизна". Наблюдайте изменение окраски раствора вследствие реакции:

2NaI + Cl 2 = 2NaCl + I 2 .

Добавьте к раствору каплю крахмального клейстера, и вы убедитесь в образовании иода по появлению синей окраски.
^

Реакции обмена


К реакциям обмена относятся реакции между двумя сложными веществами, в процессе которых вещества как бы обмениваются своими составными частями, в результате образуются новые вещества, соответствующие исходным соединениям. Реакции обмена могут происходить и непосредственно между исходными веществами, находящимися в соответствующих агрегатных состояниях, и между их растворами. Главным условием протекания реакций обмена является образование новых более прочных, чем исходные вещества, соединений и (или) их удаление из реакционной среды в виде малорастворимого (выпадение в осадок) или газообразного вещества. Кроме того реакции обмена в водных растворах идут до конца, если одним из продуктов реакции является вода. Для прогнозирования возможности или невозможности протекания реакций обмена в растворах используйте таблицу растворимости веществ.

^ Опыты 1-3. Оксиды вступают в реакции обмена с кислотами, щелочами и солями. а) Наберите в пробирку несколько крупинок оксида меди (II) и прилейте 3-5 мл раствора (1:1) соляной кислоты. Наблюдайте растворение оксида и образование окрашенного раствора:

CuO + 2HCl = CuCl 2 + H 2 O.

Б) Налейте в коническую колбу объемом 150-200 мл 10-15 мл воды и добавьте несколько капель раствора фенолфталеина. Прилейте сюда же по каплям раствор гидроксида натрия (1%) до появления интенсивной малиновой окраски. В ложечку для сжигания веществ наберите немного серы, подожгите ее в пламени горелки и внесите в колбу (не касайтесь ложечкой поверхности раствора), закрыв отверстие влажным ватным тампоном. Наблюдайте обесцвечивание раствора (остаток горящей серы погасите в стакане с водой):

SO 2 + 2NaOH = Na 2 SO 3 + H 2 O.

В) Смешайте в ступке, а затем разотрите мел (5 г) и кварц или чистый песок (3 г). Возьмите кусочек тонкой железной проволочки (30-40 см) и изогните ее конец в виде небольшой петли. Наберите смесь на петлю и, стараясь не рассыпать ее, внесите в пламя горелки. Повторите эту процедуру несколько раз и наблюдайте образование твердой бусинки:

SiO 2 + CaCO 3 = CaSiO 3 + CO 2 .

^ Опыты 4-6. Соли вступают в реакции обмена с кислотами, щелочами и солями. а) Налейте в пробирку немного раствора силиката натрия (Разбавьте силикатный клей в 2-3 раза) и добавьте несколько капель раствора соляной кислоты. Наблюдайте образование бесцветного осадка:

Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl.

Б) Налейте в пробирку немного раствора (5%) соли меди и добавьте несколько капель раствора (5%) щелочи, не допуская ее избытка. Наблюдайте образование голубого осадка:

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4 .

В) Налейте в пробирку немного раствора (5%) хлорида кальция и добавьте по каплям раствор (5%) карбоната натрия. Наблюдайте образование белого осадка:

CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl.

^ Опыт 7. Реакция нейтрализации является реакцией обмена. Налейте в колбу унифицированного прибора 20-30 мл разбавленного раствора любой щелочи и добавьте несколько капель раствора фенолфталеина до появления интенсивной малиновой окраски жидкости. В делительную воронку унифицированного прибора налейте 30-40 мл разбавленного раствора (2-3%) любой, например, азотной кислоты. Концентрации растворов должны быть примерно эквивалентными. Поворачивая кран делительной воронки, добавляйте кислоту к раствору щелочи вначале небольшими порциями, а затем по каплям (при постоянном перемешивании раствора круговыми движениями колбы) до полной нейтрализации щелочи, то есть до обесцвечивания раствора:

NaOH + HNO 3 = NaNO 3 + H 2 O.
^

Опыты, иллюстрирующие несколько типов реакций в одном процессе


Многие процессы протекают значительно сложнее, чем мы их записываем в виде химических уравнений. Зачастую происходят побочные явления или продукты реакции мгновенно претерпевают самопроизвольно дальнейшие превращения. Кроме того, во многих реакциях в растворах активное участие принимает растворитель (вода).

^ Опыт 1. Реакции обмена и разложения в одном процессе. Поместите кусочек мела в пробирку и добавьте немного разбавленной соляной кислоты (1:5). Наблюдайте растворение мела и вспучивание смеси за счет двух реакций:

CaCO 3 + 2HCl = CaCl 2 + H 2 CO 3 ;

H 2 CO 3 = H 2 O + CO 2 .

Обе реакции протекают одновременно, поэтому процесс выражают одним уравнением:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

^ Опыт 2. Реакции обмена и соединения в одном процессе. К раствору (5%) сульфата железа (II) прилейте немного раствора (5%) щелочи. Наблюдайте образование светлого осадка гидроксида железа (II), который тут же превращается в бурый осадок гидроксида железа (III):

FeSO 4 + 2NaOH = Fe(OH) 2 ↓ + Na 2 SO 4 ;

4 Fe(OH) 2 + 2H 2 O + O 2 = 4Fe(OH) 3 ↓.

Оба процесса можно выразить одним уравнением:

4FeSO 4 + 8NaOH+ 2H 2 O + O 2 = 4Fe(OH) 3 ↓ + 4Na 2 SO 4 .

^ Опыт 3. Реакции обмена и разложения с участием воды в одном процессе. К раствору соли алюминия в пробирке прилейте раствор карбоната натрия. Наблюдайте образование осадка и выделение углекислого газа в результате гидролиза образовавшегося карбоната алюминия и разложения угольной кислоты:

3Na 2 CO 3 + 2AlCl 3 = 6NaCl + Al 2 (CO 3) 3 ;

Al 2 (CO 3) 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 CO 3 ;

H 2 CO 3 = H 2 O + CO 2 .

Процесс можно выразить одним суммарным химическим уравнением реакций:

3Na 2 CO 3 + 2AlCl 3 + 3H 2 O = 6NaCl + 2Al(OH) 3 ↓+ 3CO 2 .
^

Вопросы и задания


1. Приведите примеры различных химических реакций, используемых в быту. К какому типу относятся эти реакции?

2. Реакции часто классифицируют по признаку поглощения и выделения тепла (энергии). Какие из проведенных вами реакций являются эндотермическими, какие – экзотермическими?

3. Реакции, протекающие с выделением света и тепла, называются реакциями горения. Какие из проведенных вами реакций относятся к реакциям горения?

4. Полистайте ваш учебник химии, увидев запись уравнения какой-либо реакции, определите (используя различные способы классификации), к какому типу реакция относится.

2.1. ОКИСЛЕНИЕ МЕТАЛЛОВ И НЕМЕТАЛЛОВ КИСЛОРОДОМ

4Li + O 2 = 2Li 2 O 2Cu + O2 = 2CuO - черный на проволоке

в пламени

2Ba + O 2 = 2BaO 4P + 5O 2 = 2P 2 O 5

2C + O 2 = 2CO Si + O 2 = SiO 2 (1300 о С)

4P + 3O 2 = 2P 2 O 3 S + O 2 = SO 2 ─ сернистых газ;

SO 3 не получается

N 2 + O 2 =2NO (3000 о С) С + O 2 = CO 2

3Fe + 2O 2 = Fe 3 O 4 ─ 4Сr +3O 2 = 2Cr 2 O 3 ─ зеленый

горение железа на воздухе, железная окалина, магнитный железняк, черного цвета.

Кислород не реагирует с галогенами (кроме фтора), серебром, золотом, платиной.

Щелочные металлы, кроме лития, образуют с кислородом не оксиды, а пероксиды и надпероксиды: Na 2 O 2 , KO 2

2.2. ГОРЕНИЕ (ОБЖИГ) СУЛЬФИДОВ, ФОСФИДОВ, ВОДОРОДНЫХ СОЕДИНЕНИЙ

При горении вещества образуются высшие оксиды элементов данного вещества, кроме азота. При горении азотсодержащих веществ без катализатора образуется простое вещество N 2 .

2ZnS + 3O 2 = 2ZnO + 2SO 2 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

4NH 3 +5O 2 = кat 4NO + 6H 2 O 2PH 3 + 4O 2 = 2P 2 O 5 + 6H 2 O

CS 2 + 3О 2 = CO 2 + 2SO 2 CH 4 + 2O 2 = CO 2 + 2H 2 O

2Ca 3 P 2 + 8O 2 = 6CaO + P 4 O 10

2.3. РАЗЛОЖЕНИЕ ОСНОВАНИЙ

Гидроксиды щелочных металлов не разлагаются до плавления, остальные разлагаются на оксид и воду при нагревании.

Неустойчивые основания распадаются без нагревания:

2AgOH = Ag 2 O + H 2 O 2CuOH = Cu 2 O + H 2 O

(оксид серебра ─ красно-коричневый, гидроксид меди (I) ─ желтый, оксид меди (I) ─ красный)

2.4. ОТНЯТИЕ ВОДЫ ОТ КИСЛОТЫ ВОДООТНИМАЮЩИМИ ВЕЩЕСТВАМИ: P 2 O 5 , H 2 SO 4 конц.

2HNO 3 + P 2 O 5 = 2HPO 3 + N 2 O 5

2HClO = Cl 2 O + H 2 O

Так получают оксиды: CrO 3 , Mn 2 O 7 , Cl 2 O 7 и др.из соответствующих кислот.

Серная концентрированная кислота может вытеснить более летучую кислоту из твердой соли и одновременно отнять воду:

2KMnO4 + H2SO4 =K2SO4 + Mn2O7 + H2O

2KClO4 + H2SO4 = K2SO4 + Cl2O7 + H2O

2.5. РАЗЛОЖЕНИЕ КИСЛОТ ПРИ НАГРЕВАНИИ, ОБЛУЧЕНИИ, ДЛИТЕЛЬНОМ ХРАНЕНИИ

1. Без изменения степени окисления:

H 2 SiO 3 =t SiO 2 + H 2 O H 2 CO 3 = CO 2 + H 2 O

H 2 SO 4 =t SO 3 + H 2 O H 2 SO 3 = SO 2 + H 2 O

2. С изменением степени окисления:

4HMnO 4 = 4MnO 2 + 3O 2 + 2H 2 O

2.6. ВЫТЕСНЕНИЕ БОЛЕЕ ЛЕТУЧЕГО ОКСИДА ИЗ КРИСТАЛЛИЧЕСКОЙ СОЛИ

Na 2 CO 3 + SiO 2 =t Na 2 SiO 3 + CO 2 Ca 3 (PO 4) 2 +3SiO 2 =t 3CaSiO 3 + 2P 2 O 5

2.7. РАЗЛОЖЕНИЕ ОКСИДОВ ПРИ НАГРЕВАНИИ С ПОНИЖЕНИЕМ СТЕПЕНИ ОКИСЛЕНИЯ

Mn 2 O 7 = Mn 2 O 3 +2O 2 2SO 3 = 2SO 2 +O 2 4CuO = 2Cu 2 O + O 2

6Fe 2 O 3 = 4Fe 3 O 4 + O 2 2Fe 3 O 4 = 6FeO + O 2 2N 2 O 5 = 4NO 2 + O 2

P 2 O 5 не разлагается

2.8. ОКИСЛЕНИЕ КИСЛОРОДОМ С ПОВЫШЕНИЕМ СТЕПЕНИ ОКИСЛЕНИЯ



6FeO + O 2 = 2Fe 3 O 4 2FeO + 3/2O 2 = Fe 2 O 3 4Fe 3 O 4 + O 2 = 6Fe 2 O 3

2NO + O 2 = 2NO 2 (быстрая реакция)

2SO 2 + O 2 ↔ 2SO 3 (только с катализатором и t)

2.9. ВОССТАНОВЛЕНИЕ МЕТАЛЛОМ С ПОНИЖЕНИЕМ СТЕПЕНИ ОКИСЛЕНИЯ

Fe 2 O 3 + Fe =3FeO Fe 3 O 4 + Fe =4FeO CuO + Cu = Cu 2 O

Или неполное восстановление металла из оксида

Fe 2 O 3 + CO = 2FeO + CO 2 2Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2

2.10. ПОЛУЧЕНИЕ ОКСИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ ИЗ ИХ ПЕРОКСИДОВ И НАДПЕРОКСИДОВ

Na 2 O 2 + 2Na = 2Na 2 O KO 2 + 3K = 2K 2 O 2Na 2 O 2 = 2Na 2 O + O 2

2.11. РАЗЛОЖЕНИЕ СОЛЕЙ ПРИ ПРОКАЛИВАНИИ

1. Карбонаты щелочных металлов плавятся без разложения, средние, кислые и основные карбонаты остальных металлов разлагаются на оксиды:

ZnCO 3 = t ZnO + CO 2 Ca(HCO 3) 2 =t CaCO 3 + CO 2 + H 2 O =t CaO+ 2CO 2 +H 2 O

Cu 2 (OH) 2 CO 3 =t 2CuO + CO 2 + H 2 O ─ разложение малахита.

2. Сульфаты щелочных металлов не разлагаются. Остальные сульфаты разлагаются на оксиды. Однако температуры разложения сульфатов выше температуры разложения SO 3 , поэтому продуктами являются:

2Al 2 (SO 4) 3 =t 2Al 2 O 3 + 6SO 2 + O 2

2Fe2(SO 4) 3 =t 2Fe 2 O 3 + 6SO 2 + O 2

Так разлагаются все сульфаты, кроме сульфата железа (+2) и сульфата хрома (+2):

4FeSO 4 = 2Fe 2 O 3 + 4SO 2 + O 2

3. Фосфаты плавятся без разложения. При высокой температуре после плавления идет процесс:

Сa 3 (PO 4) 2 = 3CaO + P 2 O 5

4. Нитраты

Нитраты металлов от Mg до Cu разлагаются с образованием оксидов:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

ИСКЛЮЧЕНИЕ:

4Fe(NO 3) 2 = 2Fe 2 O 3 + 8NO 2 + O 2 (Fe +2 ─ сильный восстановитель) и

Mn(NO 3) 2 = MnO 2 + 2NO 2 ─ без кислорода

Нитраты металлов, стоящих после меди:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты металлов до магния образуют при разложении нитрит металла и кислород:

2NaNO 3 = 2NaNO 2 + O 2

Нитрат аммония

NH 4 NO 3 = N 2 O + 2H 2 O

5. Бихромат аммония

(NH 4) 2 Cr 2 O 7 = N 2 + 4H 2 O + Cr 2 O 3

Бихромат калия

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 + 3O 2

6. Перманганат

2KMnO 4 =t K 2 MnO 4 + MnO 2 + O 2

2.12. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

1. Реакции металлов и неметаллов с концентрированной серной кислотой, азотной кислотой и другими окислителями

C + 2H 2 SO 4 к. = CO 2 + 2SO 2 + H 2 O

C + 4HNO 3 к. = CO 2 + 4NO 2 + 2H 2 O

S + 2H 2 SO 4 к. = 3SO 2 + 2H 2 O

S + 6HNO 3 к. = H 2 SO 4 +6NO 2 + 2H 2 O

2P + 5H 2 SO 4 к. = 2H 3 PO 4 + 5SO 2 + 2H 2 O

P + 5HNO 3 к. = H 3 PO 4 + 5NO 2 + H 2 O

I 2 + 10HNO 3 к. = 2HIO 3 + 10NO 2 + 4H 2 O ─

реакция, в которой галоген восстановитель

Cu + 2H 2 SO 4 к. = СuSO 4 + SO 2 + 2H 2 O

Cu + 4HNO 3 к. = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

3Cu +8HNO 3 р. = 3Cu(NO 3) 2 + 2NO + 4H 2 O

8Al + 30HNO 3 р. = 8Al(NO 3) 3 + 3N 2 O + 15H 2 O

C + 2KNO 3 = CO 2 + 2KNO 2

6P + 5HClO 3 = 3P 2 O 5 + 5HCl

3S + 2KClO 3 = 3SO 2 + 2KCl

2. В результате ОВР, протекающих в растворе, можно получить оксиды NO 2 , NO (окислитель азотная кислота, нитриты), SO 2 (окислитель концентрированная серная кислота), MnO 2 (окислитель MnO 4 - , MnO 4 -2 в нейтральной среде), CO 2 (окисление органических веществ):

CrCl 2 + 4HNO 3 = Cr(NO 3) 3 + NO 2 + 2HCl + H 2 O

2FeSO 4 + 2NaNO 2 + 2H 2 SO 4 = 2NO + Fe 2 (SO 4) 3 + Na 2 SO 4 + 2H 2 O

H 2 S + H 2 SO 4 = S + SO 2 + 2H 2 O

MnO4- + 2H2O + 3e = MnO 2 + 4OH - (pH = 6─8)

бурый осадок

5СH 3 OH + 6KMnO 4 + 9H 2 SO 4 = 5CO 2 + 3K 2 SO 4 + 6MnSO 4 + 19H 2 O

2. Классификация, получение и свойства оксидов

Из бинарных соединений наиболее известны оксиды. Оксидами называются соединения, состоящие из двух элементов, одним из которых является кислород, имеющий степень окисления -2. По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные) . Солеобразующие оксиды, в свою очередь, подразделяются на основные, кислотные и амфотерные.

Названия оксидов образуются с применением слова «оксид» и русского названия элемента в родительном падеже с указанием римскими цифрами валентности элемента, например: SO 2 - оксид серы (IV ), SO 3 - оксид серы (VI ), CrO - оксид хрома (II ), Cr 2 O 3 - оксид хрома (III ).

2.1. Основные оксиды

Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей.

К основным оксидам относятся оксиды типичных металлов , им соответствуют гидроксиды, обладающие свойствами оснований (основные гидроксиды), причем степень окисления элемента не изменяется при переходе от оксида к гидроксиду, например,

Получение основных оксидов

1. Окисление металлов при нагревании в атмосфере кислорода:

2Mg + O 2 = 2MgO,

2Cu + O 2 = 2CuO.

Этот метод неприменим для щелочных металлов, которые при окислении обычно дают пероксиды и супероксиды, и только литий, сгорая, образует оксид Li 2 O .

2. Обжиг сульфидов:

2 CuS + 3 O 2 = 2 CuO + 2 SO 2 ,

4 FeS 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2 .

Метод неприменим для сульфидов активных металлов , окисляющихся до сульфатов.

3. Разложение гидроксидов (при высокой температуре):

С u (OH ) 2 = CuO + H 2 O .

Этим методом нельзя получить оксиды щелочных металлов.

4. Разложение солей кислородсодержащих кислот (при высокой температуре):

ВаСО 3 = ВаО + СО 2 ,

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2 ,

4 FeSO 4 = 2 Fe 2 O 3 + 4 SO 2 + O 2 .

Этот способ получения оксидов особенно легко осуществляется для нитратов и карбонатов, в том числе и для основных солей:

(ZnOH) 2 CO 3 = 2ZnO +CO 2 + H 2 O.

Свойства основных оксидов

Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера, в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с оксид-ионами О —2 , поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

1. Большинство основных оксидов не распадаются при нагревании, исключение составляют оксиды ртути и благородных металлов:

2HgO = 2Hg + O 2 ,

2Ag 2 O = 4Ag + O 2 .

2. Основные оксиды при нагревании могут вступать в реакции с кислотными и амфотерными оксидами, с кислотами:

BaO + SiO 2 = BaSiO 3 ,

MgO + Al 2 O 3 = Mg(AlO 2) 2 ,

ZnO + H 2 SO 4 = ZnSO 4 + H 2 O.

3. Присоединяя (непосредственно или косвенно) воду, основные оксиды образуют основания (основные гидроксиды). Оксиды щелочных и щелочноземельных металлов непосредственно реагируют с водой:

Li 2 O + H 2 O = 2 LiOH ,

CaO + H 2 O = Ca (OH ) 2 .

Исключение составляет оксид магния MgO . Из него нельзя получить гидроксид магния Mg (OH ) 2 при взаимодействии с водой.

4. Как и все другие типы оксидов, основные оксиды могут вступать в окислительно-восстановительные реакции:

Fe 2 O 3 + 2Al = Al 2 O 3 + 2Fe,

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O,

4 FeO + O 2 = 2 Fe 2 O 3 .

М.В. Андрюxoва, Л.Н. Бopoдина


Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N 2 O и SiO.

Классификация оксидов

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов : большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O 2 → 2Al 2 O 3

Не взаимодействуют с кислородом золото, платина, палладий .

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na 2 O 2 ,

2Na + O 2 → 2Na 2 O 2

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO 2:

K + O 2 → KO 2

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

4Fe + 3O 2 → 2Fe 2 O 3

4Cr + 3O 2 → 2Cr 2 O 3

Железо также горит с образованием железной окалины — оксида железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

1.2. Окисление простых веществ-неметаллов .

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

4P + 5O 2(изб.) → 2P 2 O 5

4P + 3O 2(нед.) → 2P 2 O 3

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

S + O 2 → SO 2

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO 2 + O 2 = 2SO 3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

N 2 + O 2 = 2NO

Не окисляется кислородом фтор F 2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl 2 , бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS 2 образуются оксид железа (III) и оксид серы (IV):

4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

2H 2 S + 3O 2(изб.) → 2H 2 O + 2SO 2

2H 2 S + O 2(нед.) → 2H 2 O + 2S

А вот аммиак горит с образованием простого вещества N 2 , т.к. азот реагирует с кислородом только в жестких условиях:

4NH 3 + 3O 2 →2N 2 + 6H 2 O

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

4NH 3 + 5O 2 → 4NO + 6H 2 O

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

H 2 CO 3 → H 2 O + CO 2

H 2 SO 3 → H 2 O + SO 2

NH 4 OH → NH 3 + H2O

2AgOH → Ag 2 O + H 2 O

2CuOH → Cu 2 O + H 2 O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

H 2 SiO 3 → H 2 O + SiO 2

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Li 2 CO 3 → H 2 O + Li 2 O

CaCO 3 → CaO + CO 2

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

2Zn(NO 3) 2 → 2ZnO + 4NO 2 + O 2

Более подробно про разложение нитратов можно прочитать в статье .

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор , который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.

Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.

Классификация оксидов

Все оксиды, по способности образовать соли, можно разделить на две группы:

  1. Солеобразующие оксиды (CO 2 , N 2 O 5 ,Na 2 O, SO 3 и т. д.)
  2. Несолеобразующие оксиды(CO, N 2 O,SiO, NO и т. д.)

В свою очередь, солеобразующие оксиды подразделяют на 3 группы:

  • Основные оксиды — (Оксиды металлов — Na 2 O, CaO, CuO и т д)
  • Кислотные оксиды — (Оксиды неметаллов, а так же оксиды металлов в степени окисления V-VII — Mn 2 O 7 ,CO 2 , N 2 O 5 , SO 2 , SO 3 и т д)
  • (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)

Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты . Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:Аналогично, амфотерным оксидам соответствуют амфотерные основания , которые могут проявлять как кислотные, так и основные свойства:Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность .

CO 2 – оксид углерода (IV)

N 2 O 3 – оксид азота (III)

Физические свойства оксидов

Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (Н 2 О), так и газами (СО 2 , SO 3) или твёрдыми веществами (Al 2 O 3 , Fe 2 O 3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (Н 2 О, СО) и белой (ZnO, TiO 2) до зелёной (Cr 2 O 3) и даже чёрной (CuO).

  • Основные оксиды

Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):Основные оксиды реагируют с кислотными оксидами с образованием солей:Аналогично реагируют и с кислотами, но с выделением воды:Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:

  • Кислотные оксиды

Кислотные оксиды в реакции с водой образуют кислоты:Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.

Кислотные оксиды взаимодействуют с основными оксидами, образую соли:Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:

Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей: И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:

Получение оксидов

Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.

Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом: При обжиге или горении различных бинарных соединений:Термическое разложение солей, кислот и оснований:Взаимодействие некоторых металлов с водой:

Применение оксидов

Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO 3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.

Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.

Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.

Оксид кремния SiO 2 является основным компонентом стекла. Оксид хрома Cr 2 O 3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты ГОИ).

Оксид углерода CO 2 , который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.



Понравилась статья? Поделитесь с друзьями!