Какие вектор нужный в силу. Статика, историческая справка

Размер: px

Начинать показ со страницы:

Транскрипт

1 СТАТИКА, раздел механики, предметом которого являются материальные тела, находящиеся в состоянии покоя при действии на них внешних сил. В широком смысле слова статика это теория равновесия любых тел твердых, жидких или газообразных. В более узком понимании данный термин относится к изучению равновесия твердых тел, а также нерастягивающихся гибких тел тросов, ремней и цепей. Равновесие деформирующихся твердых тел рассматривается в теории упругости, а равновесие жидкостей и газов в гидроаэромеханике. См. ГИДРОАЭРОМЕХАНИКА. Историческая справка. Статика самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы. Среди первых создателей теоретической статики был Архимед (ок до н.э.), который разработал теорию рычага и сформулировал основной закон гидростатики. Родоначальником современной статики стал голландец С.Стевин (), который в 1586 сформулировал закон сложения сил, или правило параллелограмма, и применил его в решении ряда задач. Основные законы. Законы статики вытекают из общих законов динамики как частный случай, когда скорости твердых тел стремятся к нулю, но по историческим причинам и педагогическим соображениям статику часто излагают независимо от динамики, строя ее на следующих постулируемых законах и принципах: а) законе сложения сил, б) принципе равновесия и в) принципе действия и противодействия. В случае твердых тел (точнее, идеально твердых тел, которые не деформируются под действием сил) вводится еще один принцип, основанный на определении твердого тела. Это принцип переносимости силы: состояние твердого тела не изменяется при перемещении точки приложения силы вдоль линии ее действия. Сила как вектор. В статике силу можно рассматривать как тянущее или толкающее усилие, имеющее определенные направление, величину и точку приложения. С математической точки зрения, это вектор, а потому ее можно представить направленным отрезком прямой, длина которого пропорциональна величине силы. (Векторные величины, в отличие от других величин, не имеющих направления, обозначаются полужирными буквами.) Параллелограмм сил. Рассмотрим тело (рис. 1,а), на которое действуют силы F 1 и F 2, приложенные в точке O и представленные на рисунке направленными отрезками OA и OB. Как показывает опыт, действие сил F 1 и F 2 эквивалентно одной силе R, представленной отрезком OC. Величина силы R равна длине диагонали параллелограмма, построенного на векторах OA и OB как его сторонах; ее направление показано на рис. 1,а. Сила R называется равнодействующей сил F 1 и F 2. Математически это записывается в виде R = F 1 + F 2, где сложение понимается в геометрическом смысле слова, указанном выше. Таков первый закон статики, называемый правилом параллелограмма сил.

2 Равнодействующая сила. Вместо того чтобы строить параллелограмм OACB, для определения направления и величины равнодействующей R можно построить треугольник OAC, перенеся вектор F 2 параллельно самому себе до совмещения его начальной точки (бывшей точки O) c концом (точкой A) вектора OA. Замыкающая сторона треугольника OAC будет, очевидно, иметь ту же величину и то же направление, что и вектор R (рис. 1,б). Такой способ отыскания равнодействующей можно обобщить на систему многих сил F 1, F 2,..., F n, приложенных в одной и той же точке O рассматриваемого тела. Так, если система состоит из четырех сил (рис. 1,в), то можно найти равнодействующую сил F 1 и F 2, сложить ее с силой F 3, затем сложить новую равнодействующую с силой F 4 и в результате получить полную равнодействующую R. Равнодействующая R, найденная таким графическим построением, представляется замыкающей стороной многоугольника сил OABCD (рис. 1,г). Данное выше определение равнодействующей можно обобщить на систему сил F 1, F 2,..., F n, приложенных в точках O 1, O 2,..., O n твердого тела. Выбирается точка O, называемая точкой приведения, и в ней строится система параллельно перенесенных сил, равных по величине и направлению силам F 1, F 2,..., F n. Равнодействующая R этих параллельно перенесенных векторов, т.е. вектор, представленный замыкающей стороной многоугольника сил, называется равнодействующей сил, действующих на тело (рис. 2). Ясно, что вектор R не зависит от выбранной точки приведения. Если величина вектора R (отрезок ON) не равна нулю, то тело не может находиться в покое: в соответствии с законом Ньютона всякое тело, на которое действует сила, должно двигаться с ускорением. Таким образом, тело может находиться в состоянии равновесия только при условии, что равнодействующая всех сил, приложенных к нему, равна нулю. Однако это необходимое условие нельзя считать достаточным тело может двигаться, когда равнодействующая всех приложенных к нему сил равна нулю.

3 В качестве простого, но важного примера, поясняющего сказанное, рассмотрим тонкий жесткий стержень длиной l, вес которого пренебрежимо мал по сравнению с величиной приложенных к нему сил. Пусть на стержень действуют две силы F и F, приложенные к его концам, равные по величине, но противоположно направленные, как показано на рис. 3,а. В этом случае равнодействующая R равна F F = 0, но стержень не будет находиться в состоянии равновесия; очевидно, он будет вращаться вокруг своей средней точки O. Система двух равных, но противоположно направленных сил, действующих не по одной прямой, представляет собой «пару сил», которую можно характеризовать произведением величины силы F на «плечо» l. Значимость такого произведения можно показать путем следующих рассуждений, которые иллюстрируют правило рычага, выведенное Архимедом, и приводят к заключению об условии вращательного равновесия. Рассмотрим легкий однородный жесткий стержень, способный поворачиваться вокруг оси в точке O, на который действует сила F 1, приложенная на расстоянии l 1 от оси, как показано на рис. 3,б. Под действием силы F 1 стержень будет поворачиваться вокруг точки O. Как нетрудно убедиться на опыте, вращение такого стержня можно предотвратить, приложив некоторую силу F 2 на таком расстоянии l 2, чтобы выполнялось равенство F 2 l 2 = F 1 l 1.

4 Таким образом, вращение можно предотвратить бесчисленными способами. Важно лишь выбрать силу и точку ее приложения так, чтобы произведение силы на плечо было равно F 1 l 1. Это и есть правило рычага. Нетрудно вывести условия равновесия системы. Действие сил F 1 и F 2 на ось вызывает противодействие в виде силы реакции R, приложенной в точке O и направленной противоположно силам F 1 и F 2. Согласно закону механики о действии и противодействии, величина реакции R равна сумме сил F 1 + F 2. Следовательно, равнодействующая всех сил, действующих на систему, равна F 1 + F 2 + R = 0, так что отмеченное выше необходимое условие равновесия выполняется. Сила F 1 создает крутящий момент, действующий по часовой стрелке, т.е. момент силы F 1 l 1 относительно точки O, который уравновешивается действующим против часовой стрелки моментом F 2 l 2 силы F 2. Очевидно, что условием равновесия тела является равенство нулю алгебраической суммы моментов, исключающее возможность вращения. Если сила F действует на стержень под углом, как показано на рис. 4,а, то эту силу можно представить в виде суммы двух составляющих, одна из которых (F p), величиной F cos, действует параллельно стержню и уравновешивается реакцией опоры F p, а другая (F n), величиной F sin, направлена под прямым углом к рычагу. В этом случае крутящий момент равен Fl sin ; он может быть уравновешен любой силой, которая создает равный ему момент, действующий против часовой стрелки. Чтобы проще было учитывать знаки моментов в тех случаях, когда на тело действует много сил, момент силы F относительно любой точки O тела (рис. 4,б) можно рассматривать как вектор L, равный векторному произведению r F вектора положения r на силу F. Таким образом, L = r F. Нетрудно показать, что если на твердое тело действует система сил, приложенных в точках O 1, O 2,..., O n (рис. 5), то эту систему можно заменить равнодействующей R сил F 1, F 2,..., F n, приложенной в любой точке O тела, и парой сил L, момент которых равен сумме + . Чтобы убедиться в этом, достаточно мысленно приложить в точке O систему пар равных, но противоположно направленных сил F 1 и F 1 ; F 2 и F 2 ;...; F n и F n, что, очевидно, не изменит состояния твердого тела.

5 Но сила F 1, приложенная в точке O 1, и сила F 1, приложенная в точке O, образуют пару сил, момент которых относительно точки O равен r 1 F 1. Точно так же силы F 2 и F 2, приложенные в точках O 2 и O соответственно, образуют пару с моментом r 2 F 2, и т.д. Суммарный момент L всех таких пар относительно точки O дается векторным равенством L = + . Остальные силы F 1, F 2,..., F n, приложенные в точке O, в сумме дают равнодействующую R. Но система не может находиться в равновесии, если величины R и L отличны от нуля. Следовательно, условие равенства нулю одновременно величин R и L является необходимым условием равновесия. Можно показать, что оно же является и достаточным, если тело первоначально покоится. Итак, задача о равновесии сводится к двум аналитическим условиям: R = 0 и L = 0. Эти два уравнения представляют собой математическую запись принципа равновесия. Теоретические положения статики широко применяются при анализе сил, действующих на конструкции и сооружения. В случае непрерывного распределения сил суммы, которые дают результирующий момент L и равнодействующую R, заменяются интегралами и в соответствии с обычными методами интегрального исчисления. См. также МЕХАНИКА; ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИЙ. ЛИТЕРАТУРА Смокотин Г.Я. Курс лекций по статике. Томск, 1984 Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М., 1986 Бабенков И.С. Основы статики и сопротивления материалов. М., 1988


Историческая справка. Статика самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы (и дошедшие

I. Введение. Введение в механику. Разделы теоретической механики. Предмет теоретической механики Современная техника ставит перед инженерами множество задач, решение которых связано с исследованием так

Техническая механика. Лекция Момент силы относительно центра как вектор. Какое-либо кинематическое состояние тел, имеющих точку или ось вращения, можно описать моментом силы, характеризующим вращательный

1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1.1. Статика. Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил. Абсолютно

Вектор-момент силы относительно точки m o (F) Вектор-моментом силы F относительно точки называется m o (F) = r F Как известно, результат векторного произведения векторов перпендикулярен каж- F r дому из

6.1. Силы, действующие на звенья механизмов 6.1.1. Классификация сил. Задачи силового анализа Силы и моменты, действующие на звенья механизмов принято делить на внешние и внутренние. К внешним относятся:

СТАТИКА ЛЕКЦИЯ 1 Введение в статику. Система сходящихся сил. 1. Основные понятия и аксиомы статики.. Связи и реакции связей. 3. Система сходящихся сил. 4. Разложение вектора силы по координатным осям.

Оглавление Момент силы относительно оси... Произвольная пространственная система сил... 3 Определение главного вектора и главного момента пространственной системы сил... 3 Центральная ось системы... 4

СТАТИКА (определения и теоремы) Основные понятия статики Статика Раздел механики, в котором изучаются условия равновесия механических систем под действием сил и операции преобразования систем сил в эквивалентные.

Оглавление Принцип Германа Эйлера - Даламбера... 2 Сила инерции... 2 Принцип Даламбера для материальной точки... 2 Принцип Даламбера для системы материальных точек... 3 Принцип Даламбера для несвободной

TTÜ VIUMAA KOLLEDŽ Ehitus ja Tootmistehnika lektorat Üliõpilane: Õpperühm: Töö nr. ja nimetus: 6 Сложение сил Tehtud: Arvestatud: Tehniline füüsika Приборы:............ Теория Сила это мера взаимодействия

Введение Материя и ее основные свойства. Задачи и методы физики. Роль абстракций и моделей в физике. Физические величины и их измерение Структура механики Механика Механика Кинематика Материальной точки

1 Задачи механики. Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и полное ускорения. Структура механики Механика Механика Кинематика

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА. СТАТИКА Статика это раздел теоретической механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил Равновесие

ЛЕКЦИЯ 5 ВИРТУАЛЬНЫЕ ПЕРЕМЕЩЕНИЯ. ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ. АКСИОМЫ ДИНАМИКИ 1. Перемещения точек несвободной системы Рис. 5.1 Предположим, что имеется система материальных точек P, ν = 1, 2, N. Начало

Лекция СТАТИКА ТВЕРДОГО ТЕЛА Введение Предмет и Модели механики Классическая или Ньютонова механика является разделом физики, в котором изучаются основные законы механического взаимодействия и движения

ЛЕКЦИЯ 4 КИНЕМАТИКА СЛОЖНОГО ДВИЖЕНИЯ ТЕЛА. ОБЩИЕ ВОПРОСЫ КИНЕМАТИКИ СИСТЕМЫ. СВЯЗИ 1. Кинематика сложного движения тела Прошлая лекция закончилась рассмотрением кинематических уравнений Эйлера. Была рассмотрена

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет» В. П. Нестеренко, А. И. Зитов, С. Л. Катанухина,

5 Лекция 4 Динамика вращательного движения твердого тела План лекции гл4 6-9 Момент инерции Момент силы 3 Основное уравнение динамики вращательного движения Момент инерции При рассмотрении вращательного

ТЕОРЕМА О ТРЕХ СИЛАХ Если твердое тело находится в равновесии под действием трех непараллельных сил, то линии действия этих сил лежат в одной плоскости и пересекаются в одной точке. ТЕОРЕМА О ТРЕХ СИЛАХ

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1 СЕМЕСТР ЛЕКЦИЯ 4 ДВИЖЕНИЕ НЕСВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ РАВНОВЕСИЕ ТОЧКИ Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ 4 Новосибирск, 2016 г. 1 / 18 Материальная

Тема 1.4. Динамика вращательного движения План 1. Момент импульса частицы. Момент силы 3. Уравнение моментов 4. Собственный момент импульса 5. Динамика твердого тела 6. Момент инерции 7. Кинетическая энергия

Итоговый тест, Прикладная механика (теормех) (2523) 1 (60c) Наука о общих законах механического движения и равновесия материальных тел под действием сил 1) общая физика 2) теоретическая механика 3) сопротивление

Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «СМРСКИЙ ГОСУДРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «Механика» С Т Т

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ЛЕКЦИЯ 4, (раздел 1) (лек 7 «КЛФ, ч1») Кинематика вращательного движения 1 Поступательное и вращательное движение В предыдущих лекциях мы познакомились с механикой материальной

44 Лекция 4 Статика это часть механики, изучающая условия равновесия тел. Условия эти, очевидно, являются следствием более общих законов динамики, ибо, зная, как движется система материальных точек под

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

1 ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИНАМИКИ И УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ Наиболее общим разделом механики является динамика, имеющая особое значение для решения многих важных задач в различных областях техники Динамика

5. Динамика вращательного движения твердого тела Твердое тело это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его

ЛЕКЦИЯ 7 ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ И КИНЕТИЧЕСКОГО МОМЕНТА. МОМЕНТ ИНЕРЦИИ Рис. 7.1 Пусть система состоит из точек P, ν = 1, 2, N. Начало отсчёта обозначим как O, радиус-вектор точки P

Лекция 10 Механика твердого тела. Твердое тело как система материальных точек. Поступательное движение абсолютно твердого тела. Момент силы, момент инерции. Уравнение динамики вращательного движения тела

Министерство образования и науки Российской Федерации Ивановский государственный химико-технологический университет С.Г. Сахарова, В.П. Зарубин, М.Ю. Колобов ТЕОРЕТИЧЕСКАЯ МЕХАНИКА. Статика Учебное пособие

Динамика вращательного движения Лекция 1.4. План лекции 1. Динамика вращения точки и тела вокруг постоянной оси, понятие о моменте инерции материальной точки и тела.. Изменение момента инерции тела при

Раздел I Физические основы механики Механика часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение Механическое движение это изменение с

Тема 2. Динамика материальной точки и твердого тела 2.1. Основные понятия и величины динамики. Законы Ньютона. Инерциальные системы отсчета (ИСО). Динамика (от греческого слова dynamis сила) раздел механики,

Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

1..1. Законы Ньютона. Принцип относительности Галилея. Опыт показывает, что при определенном выборе системы отсчета справедливо следующее утверждение: свободное тело, т.е. тело, не взаимодействующее с

0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется

1 Министерство образования и науки Российской Федерации НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (ННГАСУ) Кафедра теоретической механики ИНТЕРНЕТ-ТЕСТИРОВАНИЕ ПО ТЕОРЕТИЧЕСКОЙ

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 3 УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА (ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ) ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ РАБОТА СИЛ ИНЕРЦИИ ТВЁРДОГО ТЕЛА Лектор:

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Российский государственный профессионально-педагогический

Занятие 3. Основные принципы динамики. Силы: тяжести, реакции, упругости Вариант 3... На тело массой 0 кг действуют несколько сил, равнодействующая которых постоянна и равна 5 Н. Относительно инерциальной

Тест: "Техническая механика "Статика". Задание #1 Что изучает раздел теоретической механики "Статика"? Выберите один из 3 вариантов ответа: 1) + Равновесие тел 2) - Движение тел 3) - Свойства тел Что такое

Лекция 5 1. Динамика вращательного движения материальной точки. Динамика вращательного движения абсолютно твердого тела 3. Алгоритм определения моментов инерции твердых тел (примеры) 1. Динамика вращательного

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» А А Мироненко ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ДИНАМИКА ОПРЕДЕЛЕНИЕ ДОПОЛНИТЕЛЬНЫХ ДИНАМИЧЕСКИХ РЕАКЦИЙ ПОДШИПНИКОВ

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ 6.1. КООРДИНАТЫ И ВЕКТОРЫ НА ПРЯМОЙ 6.1.1. Координатная ось. Координата точки на оси. Длина отрезка с заданными координатами концов. Координата точки, делящей отрезок в заданном

5.3. Законы Ньютона При рассмотрении движении материальной точки в рамках динамики решаются две основные задачи. Первая или прямая задача динамики заключается в определении системы действующих сил по заданным

10 класс 1 1. Механика Кинематика Вопрос Ответ 1 Что такое физика? Физика - это наука, занимающаяся изучением простейших и вместе с тем наиболее общих свойств окружающего нас материального мира. 2 Что

ЛЕКЦИЯ 6 МОМЕНТ СИЛЫ. ЭЛЕМЕНТАРНАЯ РАБОТА СИЛ СИСТЕМЫ. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ОБОБЩЁННЫЕ СИЛЫ. ИДЕАЛЬНЫЕ СВЯЗИ. ЦЕНТР МАСС 1. Главный вектор системы сил Рис. 6.1 Предположим, что имеется система материальных

Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

РАВНОВЕСИЕ ТЕЛ Раздел механики, в котором изучается равновесие тел, называется статикой Равновесным называется состояние тела, неизменное во времени, т е равновесие это такое состояние тела, при котором

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Лекция 9 Динамика относительного движения точки. Принцип Даламбера для материальной точки. Принцип Даламбера служит для определения динамических реакций связей при помощи управлений равновесия статики.

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Лекция 7 Работа. Теорема об изменении кинетической энергии. Консервативные силы. Потенциальная энергия частицы в потенциальном поле. Примеры: упругая сила, гравитационное поле точечной массы. Работа. Теорема

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же плоскости. Плоскости, в которых движутся отдельные

ЛЕКЦИЯ 13 ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА. ОБЩЕЕ УРАВНЕНИЕ СТАТИКИ. ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ 1. Общее уравнение динамики. Принцип Даламбера Лагранжа В механике рассматриваются

Контрольные вопросы по теоретической меанике ТТИК 1. сновные понятия и аксиомы статики 1.1. Наодитсся ли в состоянии равновесия тело, если оно с постоянной скоростью движется по прямой или равномерно вращается

1. ВВЕДЕНИЕ Физика это наука о наиболее общих свойствах и формах движения материи. В механической картине мира под материей понималось вещество, состоящее из частиц, вечных и неизменных. Основные законы,

Л МЕХАНИКА Материальная точка Кинематика Физическая реальность и ее моделирование Система отсчета СК+ часы, СО К Абсолютно твердое тело Механика: ньютоновская релятивистская 1 Механика часть физики, которая

Вектор-момент силы относительно точки m o (F) Вектор-моментом силы F относительно точки называется m 0 (F)=r F Как известно, результат векторного произведения векторов перпендикулярен каж- F r дому из

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Закон сохранения импульса Закон сохранения импульса Замкнутая (или изолированная) система - механическая система тел, на которую не действуют внешние силы. d v " " d d v d... " v " v v "... " v... v v

Министерство образования Российской Федерации Московский государственный университет печати П.Н. Силенко ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Конспект лекций Допущено УМО по образованию в области полиграфии и книжного

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТАТИКА Задание 1 І. Какое движение, является простейшим? 1. Молекулярное 2. Механическое 3. Движение электронов. ІІ. При исследовании движения кузова автомобиля по прямолинейному

12 Лекция 2. Динамика материальной точки. гл.2 План лекции 1. Законы Ньютона. Основное уравнение динамики поступательного движения. 2. Виды взаимодействий. Силы упругости и трения. 3. Закон Всемирного

Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «МЕХАНИКА» ДИНАМИКА

Действие пары сил на тело характеризуется: 1) величиной модуля момента пары, 2) плоскостью действия, 3) направлением поворота в этой плоскости. При рассмот­рении пар, не лежащих в одной плоскости, для характеристики каж­дой из пар необходимо бу­дет задать все эти три эле­мента. Это можно сделать, если условиться, по аналогии с моментом силы, изображать момент пары соответствую­щим образом, построенным вектором, а именно: будем изображать момент пары вектором т илиМ, мо­дуль которого равен (в выбранном масштабе) модулю момента пары, т.е. произведению одной из ее сил на плечо, и который направлен перпендикулярно плоскости действия пары в ту сто­рону, откуда поворот пары виден происходящим против хода часовой стрелки (рис. 38).

Рис. 38

Как известно модуль момента пары равен моменту одной из ее сил относительно точки, где приложена другая сила, т. е. ; по направлению же векторы этих моментов совпадают. Следовательно.

Момент силы относительно оси.

Чтобы перейти к решению задач статики для случая произвольной пространственной системы сил, необходимо ввести еще понятие о моменте силы относительно оси.

Момент силы относительно оси характеризует вращательный эффект, создаваемый силой, стремящейся повернуть тело вокруг дан­ной оси. Рассмотрим твердое тело, которое может вращаться вокруг некоторой оси z (рис. 39).

Рис.39

Пусть на это тело действует сила,приложенная в точке А . Проведем через точку А плоскость ху , перпендикулярную оси z, и разложим силу на составляющие:, параллельную осиz, и , лежа­щую в плоскости ху (является одновременно проекцией силына плоскостиху ). Сила , на­правленная параллельно осиz , очевидно, не может повернуть тело вокруг этой оси (она только стре­мится сдвинуть тело вдоль оси z ). Весь вращательный эффект, создаваемый силой, будет совпадать с вращательным эффек­том ее составляющей . Отсюда заключаем, что, где символ) обозначает момент силыотносительно осиz .

Для силы же , лежащей в плоскости, перпендикулярной к оси z , вращательный эффект измеряется произведением модуля этой силы на ее расстояние h от оси. Но этой же величиной измеряется момент силы относительно точкиО , в которой ось z пересекается с пло­скостью x у . Следовательно, или, согласно преды­дущему равенству,.

В результате приходим к следующему определению: моментом силы относительно оси называется скалярная величина, равная моменту проекции этой силы на плоскость, перпендикулярную оси, взятому относительно точки пересечения оси с плоскостью.

Из чертежа (рис.40) видно, что при вычислении момента плоскость ху можно проводить через любую точку оcи z . Таким образом, чтобы найти момент силы относительно оси z (рис. 40) надо:

1) провести плоскость ху , перпендикулярную к оси z (в любом месте);

2) спроектировать силу на эту плоскость и вычислить вели­чину;

3) опустить из точки О пересечения оси с плоскостью перпендикуляр на направ­ление и найти его длинуh ;

4) вычислить произведение ;

5) определить знак момента.

При вычислении моментов надо иметь в виду следующие частные случаи:

1) Если сила параллельна оси, то ее момент относительно оси равен нулю (так как ).

2) Если линия действия силы пересекает ось, то ее момент отно­сительно оси также равен нулю (так как h = 0).

Объединяя оба случая вместе, заключаем, что момент силы от­носительно оси равен нулю, если сила и ось лежат в одной плоскости.

3) Если сила перпенди­кулярна к оси, то ее момент относительно оси равен про­изведению модуля силы на расстояние между силой и осью.

Содержание статьи

СТАТИКА, раздел механики, предметом которого являются материальные тела, находящиеся в состоянии покоя при действии на них внешних сил. В широком смысле слова статика – это теория равновесия любых тел – твердых, жидких или газообразных. В более узком понимании данный термин относится к изучению равновесия твердых тел, а также нерастягивающихся гибких тел – тросов, ремней и цепей. Равновесие деформирующихся твердых тел рассматривается в теории упругости, а равновесие жидкостей и газов – в гидроаэромеханике.
См . ГИДРОАЭРОМЕХАНИКА .

Историческая справка.

Статика – самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы. Среди первых создателей теоретической статики был Архимед (ок. 287–212 до н.э.), который разработал теорию рычага и сформулировал основной закон гидростатики. Родоначальником современной статики стал голландец С.Стевин (1548–1620), который в 1586 сформулировал закон сложения сил, или правило параллелограмма, и применил его в решении ряда задач.

Основные законы.

Законы статики вытекают из общих законов динамики как частный случай, когда скорости твердых тел стремятся к нулю, но по историческим причинам и педагогическим соображениям статику часто излагают независимо от динамики, строя ее на следующих постулируемых законах и принципах: а) законе сложения сил, б) принципе равновесия и в) принципе действия и противодействия. В случае твердых тел (точнее, идеально твердых тел, которые не деформируются под действием сил) вводится еще один принцип, основанный на определении твердого тела. Это принцип переносимости силы: состояние твердого тела не изменяется при перемещении точки приложения силы вдоль линии ее действия.

Сила как вектор.

В статике силу можно рассматривать как тянущее или толкающее усилие, имеющее определенные направление, величину и точку приложения. С математической точки зрения, это вектор, а потому ее можно представить направленным отрезком прямой, длина которого пропорциональна величине силы. (Векторные величины, в отличие от других величин, не имеющих направления, обозначаются полужирными буквами.)

Параллелограмм сил.

Рассмотрим тело (рис. 1,а ), на которое действуют силы F 1 и F 2 , приложенные в точке O и представленные на рисунке направленными отрезками OA и OB . Как показывает опыт, действие сил F 1 и F 2 эквивалентно одной силе R , представленной отрезком OC . Величина силы R равна длине диагонали параллелограмма, построенного на векторах OA и OB как его сторонах; ее направление показано на рис. 1,а . Сила R называется равнодействующей сил F 1 и F 2 . Математически это записывается в виде R = F 1 + F 2 , где сложение понимается в геометрическом смысле слова, указанном выше. Таков первый закон статики, называемый правилом параллелограмма сил.

Равнодействующая сила.

Вместо того чтобы строить параллелограмм OACB, для определения направления и величины равнодействующей R можно построить треугольник OAC, перенеся вектор F 2 параллельно самому себе до совмещения его начальной точки (бывшей точки O) c концом (точкой A) вектора OA . Замыкающая сторона треугольника OAC будет, очевидно, иметь ту же величину и то же направление, что и вектор R (рис. 1,б ). Такой способ отыскания равнодействующей можно обобщить на систему многих сил F 1 , F 2 ,..., F n , приложенных в одной и той же точке O рассматриваемого тела. Так, если система состоит из четырех сил (рис. 1,в ), то можно найти равнодействующую сил F 1 и F 2 , сложить ее с силой F 3 , затем сложить новую равнодействующую с силой F 4 и в результате получить полную равнодействующую R . Равнодействующая R , найденная таким графическим построением, представляется замыкающей стороной многоугольника сил OABCD (рис. 1,г ).

Данное выше определение равнодействующей можно обобщить на систему сил F 1 , F 2 ,..., F n , приложенных в точках O 1 , O 2 ,..., O n твердого тела. Выбирается точка O, называемая точкой приведения, и в ней строится система параллельно перенесенных сил, равных по величине и направлению силам F 1 , F 2 ,..., F n . Равнодействующая R этих параллельно перенесенных векторов, т.е. вектор, представленный замыкающей стороной многоугольника сил, называется равнодействующей сил, действующих на тело (рис. 2). Ясно, что вектор R не зависит от выбранной точки приведения. Если величина вектора R (отрезок ON) не равна нулю, то тело не может находиться в покое: в соответствии с законом Ньютона всякое тело, на которое действует сила, должно двигаться с ускорением. Таким образом, тело может находиться в состоянии равновесия только при условии, что равнодействующая всех сил, приложенных к нему, равна нулю. Однако это необходимое условие нельзя считать достаточным – тело может двигаться, когда равнодействующая всех приложенных к нему сил равна нулю.

В качестве простого, но важного примера, поясняющего сказанное, рассмотрим тонкий жесткий стержень длиной l , вес которого пренебрежимо мал по сравнению с величиной приложенных к нему сил. Пусть на стержень действуют две силы F и -F , приложенные к его концам, равные по величине, но противоположно направленные, как показано на рис. 3,а . В этом случае равнодействующая R равна F F = 0, но стержень не будет находиться в состоянии равновесия; очевидно, он будет вращаться вокруг своей средней точки O. Система двух равных, но противоположно направленных сил, действующих не по одной прямой, представляет собой «пару сил», которую можно характеризовать произведением величины силы F на «плечо» l . Значимость такого произведения можно показать путем следующих рассуждений, которые иллюстрируют правило рычага, выведенное Архимедом, и приводят к заключению об условии вращательного равновесия. Рассмотрим легкий однородный жесткий стержень, способный поворачиваться вокруг оси в точке O, на который действует сила F 1 , приложенная на расстоянии l 1 от оси, как показано на рис. 3,б . Под действием силы F 1 стержень будет поворачиваться вокруг точки O. Как нетрудно убедиться на опыте, вращение такого стержня можно предотвратить, приложив некоторую силу F 2 на таком расстоянии l 2 , чтобы выполнялось равенство F 2 l 2 = F 1 l 1 .

Таким образом, вращение можно предотвратить бесчисленными способами. Важно лишь выбрать силу и точку ее приложения так, чтобы произведение силы на плечо было равно F 1 l 1 . Это и есть правило рычага.

Нетрудно вывести условия равновесия системы. Действие сил F 1 и F 2 на ось вызывает противодействие в виде силы реакции R , приложенной в точке O и направленной противоположно силам F 1 и F 2 . Согласно закону механики о действии и противодействии, величина реакции R равна сумме сил F 1 + F 2 . Следовательно, равнодействующая всех сил, действующих на систему, равна F 1 + F 2 + R = 0, так что отмеченное выше необходимое условие равновесия выполняется. Сила F 1 создает крутящий момент, действующий по часовой стрелке, т.е. момент силы F 1 l 1 относительно точки O, который уравновешивается действующим против часовой стрелки моментом F 2 l 2 силы F 2 . Очевидно, что условием равновесия тела является равенство нулю алгебраической суммы моментов, исключающее возможность вращения. Если сила F действует на стержень под углом q , как показано на рис. 4,а , то эту силу можно представить в виде суммы двух составляющих, одна из которых (F p), величиной F cosq , действует параллельно стержню и уравновешивается реакцией опоры -F p , а другая (F n), величиной F sinq , направлена под прямым углом к рычагу. В этом случае крутящий момент равен F l sinq ; он может быть уравновешен любой силой, которая создает равный ему момент, действующий против часовой стрелки.

Чтобы проще было учитывать знаки моментов в тех случаях, когда на тело действует много сил, момент силы F относительно любой точки O тела (рис. 4,б ) можно рассматривать как вектор L , равный векторному произведению r ґ F вектора положения r на силу F . Таким образом, L = r ґ F . Нетрудно показать, что если на твердое тело действует система сил, приложенных в точках O 1 , O 2 ,..., O n (рис. 5), то эту систему можно заменить равнодействующей R сил F 1 , F 2 ,..., F n , приложенной в любой точке Oў тела, и парой сил L , момент которых равен сумме [r 1 ґ F 1 ] + [r 2 ґ F 2 ] +... + [r n ґ F n ]. Чтобы убедиться в этом, достаточно мысленно приложить в точке Oў систему пар равных, но противоположно направленных сил F 1 и -F 1 ; F 2 и -F 2 ;...; F n и -F n , что, очевидно, не изменит состояния твердого тела.

Но сила F 1 , приложенная в точке O 1 , и сила –F 1 , приложенная в точке Oў, образуют пару сил, момент которых относительно точки Oў равен r 1 ґ F 1 . Точно так же силы F 2 и -F 2 , приложенные в точках O 2 и Oў соответственно, образуют пару с моментом r 2 ґ F 2 , и т.д. Суммарный момент L всех таких пар относительно точки Oў дается векторным равенством L = [r 1 ґ F 1 ] + [r 2 ґ F 2 ] +... + [r n ґ F n ]. Остальные силы F 1 , F 2 ,..., F n , приложенные в точке Oў, в сумме дают равнодействующую R . Но система не может находиться в равновесии, если величины R и L отличны от нуля. Следовательно, условие равенства нулю одновременно величин R и L является необходимым условием равновесия. Можно показать, что оно же является и достаточным, если тело первоначально покоится. Итак, задача о равновесии сводится к двум аналитическим условиям: R = 0 и L = 0. Эти два уравнения представляют собой математическую запись принципа равновесия.

Теоретические положения статики широко применяются при анализе сил, действующих на конструкции и сооружения. В случае непрерывного распределения сил суммы, которые дают результирующий момент L и равнодействующую R , заменяются интегралами и в соответствии с обычными методами интегрального исчисления.

Сила - вектор. Единицы измерения сил

Материальная точка. Абсолютно твердые и деформируемые тела

Остановимся на основных понятиях статики, которые вошли в науку как результат многовековой практической деятельности человека.

Одно из таких основных понятий - понятие мате­риальной точки. Тело можно рассматривать как мате­риальную точку, т. е. его можно представить геометри­ческой точкой, в которой сосредоточена вся масса тела, в том случае, когда размеры тела не имеют значения в рассматриваемой задаче. Например, при изучении дви­жения планет и спутников их считают материальными точками, так как размеры планет и спутников пренебре­жимо малы по сравнению с размерами орбит. С другой стороны, изучая движение планеты (например, Земли) вокруг оси, ее уже нельзя считать материальной точкой. Тело можно считать материальной точкой во всех слу­чаях, когда при движении все его точки имеют одинаковые траектории.

Системой называется совокупность материальных то­чек, движения и положения которых взаимозависимы. Из этого следует, что любое физическое тело можно рассматривать как систему материальных точек.

При изучении равновесия тела считают абсолютно твердыми, недеформируемыми (или абсолютно жесткими), т. е. предполагают, что никакие внешние воздействия не вызывают изменения их размеров и формы и что расстояние между любыми двумя точками тела всегда остается неизменным. В дей­ствительности все тела под влиянием силовых воздей­ствий со стороны других тел изменяют свои размеры и форму. Так, если стержень, например, из стали или дерева, сжать, его длина уменьшится, а при растяжении она соответственно увеличится (рис. 1, а). Изменяется также форма стержня, лежащего на двух опорах, при действии нагрузки, перпендикулярной его оси (рис. 1, б). Стержень при этом изгибается.

В подавляющем большинстве случаев деформации тел (деталей), из которых состоят машины, аппараты и соору­жения, очень малы, и при изучении движения и равнове­сия этих объектов деформациями можно пренебречь. Таким образом, понятие абсолютно твердого тела является условным (абстракцией). Это понятие вводят с целью упрощения исследования законов равновесия и движения тел. Лишь изучив механику абсолютно твер­дого тела, можно приступить к изучению равновесия и движения деформируемых тел, жидкостей и др. При рас­четах на прочность, рассматриваемых после изучения статики абсолютно твердого тела, необходимо учитывать деформации тел. В этих расчетах деформации играют существенную роль и пренебрегать ими нельзя.

Сила - вектор. Единицы измерения сил

В механике вводится понятие силы, которое чрезвы­чайно широко используется и в других науках. Физиче­ская сущность этого понятия ясна каждому человеку непосредственно из опыта.

Рис.1.Деформация тел под действием силы:

а - деформации сжатия – растяжения;

б - деформация изгиба.

Остановимся на определении силы для абсолютно твердых тел. Эти тела могут вступать во взаимодействие, в результате которого изменяется характер их движения. Сила–это мера взаимодействия тел. Например, взаимодействие планет и Солнца определяется силами тяготения, взаимодействие Земли и различных тел на ее поверхности - силами тяжести и т. д.

Следует подчеркнуть, что при взаимодействии реаль­ных, а не абсолютно твердых тел, возникающие силы могут не только приводить к изменению характера их движения, но и вызы­вать изменение формы или размеров этих тел. Иными словами, в реальных физических телах силы служат причиной возникновения деформаций.

Механика рассматривает и изучает не природу дей­ствующих сил, а производимый ими эффект. Эффект действия силы определяется тремя факторами, полностью её определяющими:

2. Численным значением (модулем);

3. Точкой приложения.

Иными словами, сила является векторной величиной.

Кроме сил, в механике часто встречаются другие векторные величины - в частности, скорость, ускорение.

Величина, не имеющая направления, называется ска­ляром, или скалярной величиной, К скалярным величинам относятся, например, время, температура, объем и др.

Вектор изображается отрезком, на конце которого ставится стрелка. Направление стрелки указывает направ­ление вектора, длина отрезка - величину вектора, отложенную в выбранном масштабе.

Мы не знаем, как у вас в школе обстояли дела с физикой и насколько вам нравился этот предмет, но после сегодняшнего поста, ваше отношение к ней определенно изменится. Потому что если заглянуть внутрь всех упражнений, то можно обнаружить любопытную вещь - они все строятся на принципах ньютоновской механики! И именно механика определяет то, насколько эффективным будет то или иное упражнение для конкретной группы мышц.


Начнем с рассмотрения схематичного изображения человека. Красным обозначены основные суставы, потому что все движения происходят именно в них. Как вы знаете, мышцы крепятся к костям (с помощью сухожилий), при этом наш организм так замечательно устроен, что для каждого сустава есть две группы мышц (антагонисты), позволяющие осуществлять вращение в противоположных направлениях.

самой силы на её плечо . Под плечом в данном случае понимается кратчайшее расстояние от линии, вдоль которой проходит сила, до оси вращения.

Рассмотрим это на примере отжиманий от пола со стандартной постановкой рук:

Видно, что сила тяжести, которая воздействует на спортсмена, проходит через три сустава - плечевой, локтевой и лучезапястный. При этом нагрузка уменьшается при прохождении силы через каждый последующий сустав. То есть основная нагрузка идет на плечевой сустав (и, соответственно, грудные мышцы), а трицепс нагрузку недополучает, поскольку нагрузка на сгибание в локтевом суставе минимальна.

Можно ли изменить технику отжиманий таким образом, чтобы увеличить нагрузку на трицепс? Конечно, поскольку теперь мы знаем о том, что нужно создать вращательный момент, направленный на сгибание в локтевом суставе. Тогда трицепс включится в работу, противодействуя такому усилию. Для достижения этого эффекта необходимо сделать так, чтобы у силы тяжести появилось плечо относительно локтевого сустава. Этого можно добиться, например, сместив руки ближе друг к другу.

Казалось бы мы только немного изменили положение рук, но при этом мы смогли значительно увеличить нагрузку на трицепс и сделать упражнение более целевым! И таких моментов огромное количество! Поэтому, если вы хотите, чтобы ваши тренировки были эффективными, вам нужно всегда думать о том, что, как и почему вы делаете, стараясь выжать максимум из каждого повторения в каждом подходе!


http://сайт/uploads/userfiles/5540.jpg Мы не знаем, как у вас в школе обстояли дела с физикой и насколько вам нравился этот предмет, но после сегодняшнего поста, ваше отношение к ней определенно изменится. Потому что если заглянуть внутрь всех упражнений, то можно обнаружить любопытную вещь - они все строятся на принципах ньютоновской механики! И именно механика определяет то, насколько эффективным будет то или иное упражнение для конкретной группы мышц. Начнем с рассмотрения схематичного изображения человека. Красным обозначены основные суставы, потому что все движения происходят именно в них. Как вы знаете, мышцы крепятся к костям (с помощью сухожилий), при этом наш организм так замечательно устроен, что для каждого сустава есть две группы мышц (антагонисты), позволяющие осуществлять вращение в противоположных направлениях..jpg Вращательная нагрузка, которая приводит все в движение, называется моментом силы и равна произведению самой силы на её плечо. Под плечом в данном случае понимается кратчайшее расстояние от линии, вдоль которой проходит сила, до оси вращения..jpg Видно, что сила тяжести, которая воздействует на спортсмена, проходит через три сустава - плечевой, локтевой и лучезапястный. При этом нагрузка уменьшается при прохождении силы через каждый последующий сустав. То есть основная нагрузка идет на плечевой сустав (и, соответственно, грудные мышцы), а трицепс нагрузку недополучает, поскольку нагрузка на сгибание в локтевом суставе минимальна. Можно ли изменить технику отжиманий таким образом, чтобы увеличить нагрузку на трицепс? Конечно, поскольку теперь мы знаем о том, что нужно создать вращательный момент, направленный на сгибание в локтевом суставе. Тогда трицепс включится в работу, противодействуя такому усилию. Для достижения этого эффекта необходимо сделать так, чтобы у силы тяжести появилось плечо относительно локтевого сустава. Этого можно добиться, например, сместив руки ближе друг к другу..jpg Казалось бы мы только немного изменили положение рук, но при этом мы смогли значительно увеличить нагрузку на трицепс и сделать упражнение более целевым! И таких моментов огромное количество! Поэтому, если вы хотите, чтобы ваши тренировки были эффективными, вам нужно всегда думать о том, что, как и почему вы делаете, стараясь выжать максимум из каждого повторения в каждом подходе! 100-дневный воркаут - Содержание



Понравилась статья? Поделитесь с друзьями!