Какие величины относятся к элементам земного магнетизма. Формы и размеры Земли

Лабораторная работа 230ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ Теоретическая частьI. Элементы земного магнетизма. Земля представляет собой огромный шаровой магнит. В любой точке пространства, окружающего Землю, и на ее поверхности обнаруживается действие магнитных сил, т.е. создается магнитное поле, которое подобно полю магнитного диполя “ав” помещенного в центре Земли (рис.I). Магнитные полюса Земли лежат вблизи географических полюсов:вблизи северного географического полюса С расположен южный магнитный S, а вблизи южного географического Ю " северный магнитный N. Магнитное поле Земли на магнитном экваторе направлено горизонтально (точка В), а у магнитных полюсов - вертикально (точка А). В остальных точках земной по- верхности магнитное поле Земли поправлено под некоторым углом к поверхности (точка К). Убедиться в существовании магнитного поля Земли можно с помощью магнитной стрелки. Если подвесить стрелку на нити так,Рис.1 чтобы точка подвеса совпадала с центром тяжести, то она установится по направлению касательной к силовой линии магнитного поля Земли. Ознакомиться с основами теории Максвелла , свойствами электромагнитных волн и механизмом распространения электромагнитных волн в двухпроводной линии Магнетизм - раздел физики, изучающий взаимодействие между электрическими токами , между токами и магнитами (телами с магнитным моментом) и между магнитами. Взаимодействие двух параллельных проводников с током. Законы Био – Савара – Лапласа и Ампера применяются для определения силы взаимодействия двух параллельных проводников с током. Поток вектора магнитной индукции . Теорема Гаусса для магнитного поля. Магнитные моменты атомов . Для полного описания атома необходимы знания квантовой механики, которую мы будем изучать позднее. Однако магнитные свойства вещества хорошо объясняются с помощью простой и наглядной планетарной модели атома, предложенной Э.Резерфордом. Намагниченность вещества. Ранее мы предполагали, что провода, несущие ток и создающие магнитное поле, находятся в вакууме. Если же провода находятся в какой-либо среде, то величина создаваемого ими магнитного поля изменится. Виды магнетиков . Проведем опыт с сильным магнитным полем, создаваемым, например, соленоидом. Соленоид (цилиндр с намотанным на него проводом, по которой течет ток) может создать внутри себя магнитное поле в 100000 раз больше магнитного поля Земли. Будем помещать в такое магнитное поле различные вещества и наблюдать, как действует на них сила магнитного поля. Качественные результаты подобных опытов получаются довольно разнообразными. Доменная структура ферромагнетиков . Классическая теория ферромагнетизма была развита французским физиком П.Вейсом (1907 г.). Согласно этой теории, весь объем ферромагнитного образца, находящегося при температуре ниже точки Кюри, разбит на небольшие области – домены,– которые самопроизвольно намагничены до насыщения. Основной закон электромагнитной индукции . Величайший физик XIX века Майкл Фарадей считал, что между электрическими и магнитными явлениями существует тесная взаимосвязь. Ампер, Био и другие ученые выяснили одну сторону этой взаимосвязи, с которой мы уже знакомы, а именно – магнитное действие тока. Явление взаимной индукции Теория Максвелла для электромагнитного поля . В 60-х годах XIX столетия Д.К. Максвелл, ознакомившись с работами Фарадея, решил придать теории электричества и магнетизма математическую форму. Обобщив законы, установленные экспериментальным путем – закон полного тока, закон электромагнитной индукции и теорему Остроградского-Гаусса, - Максвелл дал полную картину электромагнитного поля Второе уравнение Максвелла. Максвелл ввел понятие полного тока. Плотность полного тока Вертикальная плоскость, в которой располагается стрелка, называется плоскостью магнитного меридиана. Все плоскости магнитных меридианов пересекаются по прямой NS, а следы магнитных меридианов на поверхности Земли сходятся в магнитных полюсах N и S. Угол, образованный плоскостями магнитного и географического меридианов называется углом склонения (на рис.1 - угол β). Угол, образованный направлением магнитного поля Земли и горизонтальной плоскостью, называется углом наклонения (на рис.2 – угол α).Вектор напряженности магнитного поля Земли можно разложить на две составляющие: горизонтальную и вертикальную . На рис.2 показано положение магнитной стрелки NS подвешенной на нити L в магнитном поле Земли. Направление северного конца N стрелки совпадает с направлением напряженности магнитного поля Земли. Плоскость чертежа совпадает с плоскостью магнитного меридиана. Знание углов склонения и на-клонения, а также горизонтальной составляющей дает возможность определить величину и направление на­пряженности магнитного поля Земли в определенной точке поверхности. Горизонтальная составляющая ,угол склонения β и угол наклонения α являются основными элементами земного магнетизма. С течением времени все элемента земного маг-нетизма, а также положение магнитных полюсов изменяются. Происхождение земного магнетизма в настоящее время до конца не выяснено. По последним гипотезам магнитное поле Земли связано с токами, циркулирующими по поверхности ядра Земли, а также с намагниченностью горных пород. 2. Метод тангенс-гальванометра. Если магнитная стрелка может вращаться лишь вокруг вертикальной оси, то она будет устанавливаться под действием горизонтальной составляющей магнитного поля Землив плоскости магнитного меридиана. Это свойство магнитной стрелки ис­пользуется в тангенс-гальванометре. Рассмотрим круговой проводник из N витков, плотно прилегающих друг к другу, которые расположены вертикально в плоскости магнитного меридиана. В центре проводника поместим магнитную стрелку, способную поворачиваться вокруг вертикальной оси. Если по катушке пропустить ток I. то возникает магнитное поле с напряженностью , пер­пендикулярной к плоскости витков катушки (рис.З). На магнитную стрелку N1 S1, в этом случае будут действовать два взаимно перпендикулярных магнитных поля: горизонтальная составляющая магнитного поля Земли и магнитное поле тока . На рис.3 изображены сечения витка катушки (А и В) горизонтальной плоскостью. В сечении А ток направлен "из-за" плоскости чертежа перпендикулярно к ней. В сочетай В ток направлен за плоскость чертежа перпендикулярно к ней. Пунктирные кривые выражают силовые линии магнитного поля тока. Стрелкой NS показано направление магнитного меридиана.Рис.З

К основным характеристикам магнитного поля Земли, которые называют элементами земного магнетизма, относятся: напряженность (Н т), горизонтальная (Н) и вертикальная (Z) составляющие полного вектора напряженности Н т, магнитное склонение (D) и наклонение (I). Направление полного вектора напряженности определяет направление магнитных силовых линий, т. е. линий,в каждой точке которых вектор Н т, направлен по касательной к ним. Магнитным склонением называют угол между направлением географического меридиана и вектором Н (или направлением магнитного меридиана). Если магнитная стрелка отклоняется вправо от географического меридиана, то склонение называют восточным (или положительным), если влево, то склонение будет западным (отрицательным). Наклонение – это угол между горизонтальной плоскостью и полным вектором напряженности Н т. Величина I изменяется от –90 0 (Южное полушарие) до +90 0 (Северное полушарие).Таким образом, при направлении вектора Н т к поверхности Земли наклонение считается положительным, а от Земли вверх – отрицательным.

Элементы земного магнетизма измеряют в различных точках земного шара в процессе проведения магнитных съемок на суше, в морях, океанах, атмосфере. Первая магнитная съемка в России была проведена в 1586 г. в устье р.Печоры. К 1917 г. уже насчитывалось 8000 съемок; в период 1931 – 1936 гг. была осуществлена генеральная магнитная съемка, в ходе которой проведено 12000 измерений. К 1950 г. число магнитометрических пунктов достигло 26000. Результаты измерений представляют в виде магнитных карт, которые отражают в изолиниях пространственное распределение какого-либо одного элемента (Н, Z, D, I). Первую карту построил Галлей (1700 г.) Карты строятся для регионов и земного шара в целом на определенный момент времени, в качестве такого момента выбрана середина года (1 июля) – это так называемая магнитная эпоха. Мировые карты строят Англия, Россия, США. Кроме карт составляется каталог магнитных данных.

Изолинии значений D называются изогонами. Карта изогон напоминает ход меридианов: изогоны выходят из одной области, сходятся в другой, почти противоположной. Отличие от меридианов, которые сходятся в районе полюсов, состоит в том, что в каждом полушарии имеются по две области сходимости изогон: одна – это магнитный полюс, другая – географический. Там значения D изменяются в пределах ±180 0 .

Линии равных значений I – изоклины. Карты изоклин представляют собой семейство кривых широтного направления. Нулевая изоклина (магнитный экватор) огибает земной шар вблизи экватора, удаляясь от него на 15 0 в районе Южной Америки.В районе южного магнитного полюса (Северное полушарие) I = +90 0 , в районе Северного магнитного полюса (Южное полушарие) I = -90 0 .

Линии равных значений Н и Z – изодины. Карты изодин (Z) повторяют карты изоклин: на магнитном экваторе Z = 0; на полюсах Z = Н т = 48-55 А/м. Значения горизонтальной составляющей Н т – Н изменяются от Н = 0 на полюсах до Н = 32 А/м на магнитном экваторе, где Н = Н т.

На картах изопор показывается скорость смещения какого-либо ЭЗМ. Период полного обращения МПЗ примерно 2 тыс. лет.

Земля в целом представляют собой шаровой магнит, полюса которого лежат вблизи географических полюсов: вблизи северного географического полюса расположен южный магнитный S (~11,5º к оси вращения Земли), а вблизи южного географического-северный магнитный полюс N. Магнитные полюса дрейфуют, предположительно южный магнитный полюс на северо-запад.

Угол между географическим и магнитным меридианом называется магнитным склонением β (рис. 1) .

Вектор полной напряженности (магнитной индукции B=μ 0 H) направлен по касательной к силовым линиям магнитного поля Земли. Магнитная стрелка, подвешенная на нити, устанавливается в направление вектора полной напряженности магнитного поля Земли, который можно разложить на две составляющие: горизонтальную H г и вертикальную H в (рис. 4).

α
S
N
в

Соотношение между горизонтальной и вертикальной составляющей зависит от географического положения. Чем ближе к северу, тем стрелка устанавливается круче вниз. Поэтому для характеристики магнитного поля Земли вводится угол α – угол наклонения .

Магнитная стрелка, которая может вращаться лишь около вертикальной оси, будет отклоняться только под действием вектораН г, устанавливаясь в плоскости магнитного меридиана. Это свойство магнитной стрелки используется в компасах.

Итак, для характеристики магнитного поля Земли используются:

1. Магнитное склонение β

2. Угол наклонения α

3. Горизонтальная составляющая магнитного поля Земли H г:

Н г =Нcosα или B г =Bcosα

Методика измерений горизонтальной (H г)и вертикальной H в составляющих магнитного поля Земли.

Величины, характеризующие магнитное поле Земли можно измерить двумя методами.

1)Метод тангенс-буссоли позволяет определить горизонтальную составляющую магнитного поля H г .

Внутри катушки помещается компас. Плоскость катушки устанавливается в плоскости магнитного меридиана, т.е. вдоль магнитной стрелки компаса. Когда через катушку проходит ток в ней создается магнитное поле перпендикулярное плоскости катушки и стрелка компаса устанавливается по направлению результирующего магнитного поля.



На рис.5 изображено сечение катушки.

α
Рис. 5.

Напряженность магнитного поля в центре кругового тока , а в центре круговой катушки с током с учетом числа витков:

Из рис.5 следует, что , тогда:

.

После логарифмического дифференцирования этой формулы, получим формулу для расчета погрешности

(2)

отсюда следует, что погрешность будет минимальной, если sin 2α =1 т.е. α =45°. Значит, нужно выбирать такую силу тока в цепи, чтобы отклонение магнитной стрелки было близким к 45° и тогда

где N – число витков катушки, N =400 витков; R средний радиус катушки, R =35 мм.

2)Метод, использующий явление электромагнитной индукции, позволяет определить горизонтальную H г и вертикальнуюH в составляющие индукции магнитного поля Земли .

Установка состоит из индуктора (рис.1) и измерительного устройства, которое высчитывает среднее значение потока ЭДС индукции возникающее в катушке при её вращение.

Магнитная индукция В г и В в определяется по формуле.

где S – площадь катушки.

Если рамка на которой закреплена катушка установлена горизонтально, то (ось вращения катушки горизонтальна) измерительное устройство измеряетпоток <E i Δt>, создаваемую вертикальной составляющей B в.

Если рамка установлена вертикально, то измерительное устройство измеряет потока <E i Δt>, создаваемую горизонтальной составляющей B г.

Т.к. в отсутствии среды магнитная индукция и напряженность магнитного поля связаны соотношением:

где - магнитная постоянная =4 10 -7 Гн/м.

§ 15. Земной магнетизм и его элементы. Магнитные карты

Пространство, в котором действуют магнитные силы Земли, называют магнитным полем Земли. Принято считать, что магнитные силовые линии земного поля выходят из южного магнитного полюса и сходятся в северном, образуя замкнутые кривые.

Положение магнитных полюсов не остается неизменным, координаты их медленно меняются. Приближенные координаты магнитных полюсов в 1950 г. были следующие:

Северного - φ ~ 76°N; Л ~ 96°W;

Южного - φ ~ 75°S; Л ~ 150° O st .

Магнитная ось Земли - прямая, соединяющая магнитные полюса, проходит вне центра Земли, и составляет с ее осью вращения приближенно угол около 1Г,5.

Сила магнитного поля Земли характеризуется вектором напряженности Т, который в любой точке земного магнитного поля направлен по касательным к силовым линиям. На рис. 18 сила земного магнетизма в точке А изображена по величине и направлению вектора AF. Вертикальную плоскость NmAZF, в которой располагается вектор AF, а следовательно, и ось свободно подвешенной магнитной стрелки, называют плоскостью магнитного меридиана. Эта плоскость составляет с плоскостью истинного меридиана NuAZM угол РАН, который называют магнитным склонением и обозначают буквой d.

Рис. 18.


Магнитное склонение d отсчитывается от северной части истинного меридиана к востоку и западу от 0 до 180°. Восточному магнитному склонению приписывают знак «плюс», а западному - знак «минус». Например: d=+4°, 6 или d = -11°,0.

Угол NmAF, образуемый вектором AF с плоскостью истинного горизонта NuAH, называют магнитным наклонением и обозначают буквой в.

Магнитное наклонение в отсчитывают от горизонтальной плоскости вниз от 0 до 90° и считают положительным, если опущен северный конец магнитной стрелки, и отрицательным, - если опущен южный конец.

Точки на земной поверхности, в которых вектор Т направлен горизонтально, образуют замкнутую линию, дважды пересекающую географический экватор и называемую магнитным экватором. Полную силу земного магнетизма - вектор Т - можно разложить на горизонтальную Н и вертикальную Z составляющие в плоскости магнитного меридиана. Из рис. 18 имеем:

H = TcosO, Z=Tsin O или Z = HtgO.

Величины d, Н, Z и O, определяющие магнитное поле Земли в данной точке, называют элементами земного магнетизма.

Распределение элементов земного магнетизма по поверхности земного шара принято изображать на специальных картах в виде кривых линий, соединяющих точки с одинаковым значением того или иного элемента. Такие линии называют изолиниями. Кривые равного магнитного склонения - изогоны наносят на карты изогон (рис. 19); кривые, соединяющие точки с равным магнитным напряжением, называют изодинами , или изодинамами. Кривые, соединяющие точки с равным магнитным наклонением - изоклины, наносят на карты изоклин.


Рис. 19.


Магнитное склонение - наиболее важный элемент для судовождения, поэтому его, помимо специальных магнитных карт, указывают на навигационных морских картах, на которых записывают, например, так: «Скл. к. 16°,5 W».

Все элементы земного магнетизма в любой точке земной поверхности подвержены изменениям, носящим название вариаций. Изменения элементов земного магнетизма делятся на периодические и непериодические (или возмущения).

К периодическим относятся вековые, годовые (сезонные) и суточные изменения. Из них суточные и годовые вариации невелики и для судовождения во внимание не принимаются. Вековые же вариации представляют собой сложное явление с периодом, равным нескольким столетиям. Величина векового изменения магнитного склонения колеблется в различных точках земной поверхности в пределах от 0 до 0,2-0°,3 в год. Поэтому на морских картах магнитное склонение компаса приводится к определенному году с указанием величины годового увеличения или уменьшения.

Чтобы привести склонение к году плавания, надо рассчитать его изменение за истекшее время и на полученную поправку увеличить или уменьшить склонение, указанное на карте в районе плавания.

Пример 18. Плавание происходит в 1968 г. Склонение компаса, снято с карты, d = 11°, 5 О st приведено к 1960 г. Годовое увеличение склонения 5" .Привести склонение к 1968 г.

Решение. Промежуток времени с 1968 по 1960 г. равен восьми годам; изменение Аd = 8 х 5 = 40" ~0°,7. Склонение компаса в 1968 г. d = 11°.5 + 0°,7 = - 12°, 2 O st

Внезапные кратковременные изменения элементов земного магнетизма (возмущения) называются магнитными бурями, возникновение которых обусловлено северными сияниями и количеством пятен на Солнце. При этом наблюдаются изменения склонения в умеренных широтах до 7°, а в полярных областях - до 50°.

В некоторых районах земной поверхности склонение резко отличается по величине и знаку от его значений в прилегающих точках. Это явление носит название магнитной аномалии. На морских картах указывают границы районов магнитной аномалии. При плавании в этих районах необходимо внимательно следить за работой магнитного компаса, так как точность работы нарушается.

Элементы земного магнетизма

Земля в целом представляет собой огромный шаровой магнит. В любой точке пространства, окружающего Землю, и ее поверхности обнаруживается действие магнитных силовых линий. Иными словами, в пространстве, окружающем Землю, создается магнитное поле, силовые линии которого изображены на рисунок 19.1. Северный магнитный полюс находится у южного географического, а южный магнитный – у северного. Магнитное поле Земли на экваторе направлено горизонтально, а у магнитных полюсов вертикально. В остальных точках земной поверхности магнитное поле Земли направлено под некоторым углом.

Существование магнитного поля в любой точке Земли можно установить с помощью магнитной стрелки. Если подвесить магнитную стрелку NS на нити L (рис. 19.2) так, чтобы точка подвеса совпадала с центром тяжести стрелки, то стрелка установится по направлению касательной к силовой линии магнитного поля Земли. В северном полушарии южный конец будет наклонен к Земле и ось стрелки составит с горизонтом угол наклонения q (на магнитном экваторе наклонение равно 0). Вертикальная плоскость, в которой расположится ось стрелки, называется плоскостью магнитного меридиана. Все плоскости магнитных меридианов пересекаются по прямой NS , а следы магнитных меридианов на поверхности Земли сходятся в магнитных полюсах N и S. Так как магнитные полюса не совпадают с географическими полюсами, то ось стрелки будет отклоняться от географического меридиана.


Угол, который образует вертикальная плоскость, проходящая через ось магнитной стрелки (магнитный меридиан) с географическим меридианом, называется магнитным склонением a (рис. 19.2). Вектор полной напряжённости магнитного поля земли можно разложить на две составляющие: горизонтальную и вертикальную (рис. 19.3). Знание углов склонения и наклонения, а также горизонтальной составляющей даст возможность определить величину и направление полной напряженности магнитного поля Земли в данной точке. Если магнитная стрелка может свободно вращаться лишь вокруг вертикальной оси, то она будет устанавливаться под действием горизонтальной составляющей магнитного поля Земли в плоскости магнитного меридиана. Горизонтальная составляющая , магнитное склонение a и наклонение q называются элементами земного магнетизма.

Магнитное поле кругового тока

Согласно теории, напряженность магнитного поля в центре О , создаваемого элементом длины dl кругового витка радиусом R , по которому протекает ток I , может быть определена по закону Био-Савара- Лапласа

и векторная запись этого закона имеет вид

В этом выражении: r – модуль радиуса-вектора , проведенного из элемента проводника dl в рассматриваемую точку поля; 1/4p - коэффициент пропорциональности для записи формулы в системе единиц СИ.

В рассматриваемом примере радиус-вектор перпендикулярен к элементу тока , а по модулю равен радиусу витка, так что

Вектор напряженности магнитного поля направлен перпендикулярно к плоскости чертежа, в которой лежат векторы и , ориентирован по правилу буравчика.

| Устройство экспериментальной установки. В данной работе применяется прибор, называемый тангенс гальванометром, который состоит из нескольких витков провода

Понравилась статья? Поделитесь с друзьями!