Методика изучения арифметических действий. Раскрытие конкретного смысла действия «вычитание»

→ Арифметические действия

Арифметические действия

Нахождение по нескольким данным числам одного нового числа называется арифметическим действием . В арифметике рассматривается шесть действий: сложение , вычитание , умножение , деление , возведение в степень , извлечение корня .

1. Сложение . Это действие состоит в том, что по нескольким числам, называемым слагаемыми , находится число, называемое их суммой .

Пример : 4+3=7, где 4 и 3 – слагаемые, а 7 – их сумма.

2. Вычитание – действие, посредством которого по данной сумме (уменьшаемое ) и данному слагаемому (вычитаемое ) находят искомое слагаемое (разность ).
Это действие обратно сложению.

Пример : 7 – 3 = 4, где 7 – уменьшаемое, 3 – вычитаемое, а 4 – разность.

3. Умножение. Умножить некоторое число (множимое ) на целое число (множитель ) – значит повторить множимое слагаемым столько раз, сколько единиц содержится в множителе. Результат умножения называется произведением .

Пример : 2 ∙ 3 = 6, где 2 – множимое, 3 – множитель, а 6 – произведение. (2 ∙ 3 = 2 + 2+ 2 = 6)

Если множитель и множимое меняются ролями, то произведение остается тем же. Поэтому множитель и множимое также называются сомножителями .

Пример : 2 ∙ 3 = 3 ∙ 2, то есть (2 + 2 + 2 = 3 + 3)

Полагают, что если множителем является 1, то a ∙ 1 = a.

Например : 2 ∙ 1 = 2, 44 ∙ 1 = 44, 13 ∙ 1 = 13.

4. Деление. Посредством деления по данному произведению (делимое ) и данному сомножителю (делитель ) находят искомый сомножитель (частное ).
Это действие обратно умножению.

Пример : 8: 2 = 4, где 8 – делимое, 2 – делитель, а 4 – частное.

Проверка деления : произведение делителя 2 и частного 4 дает делимое 8. 2 ∙ 4 = 8

Деление с остатком

Если при делении целого числа на целое число в частном получается целое число, то такое деление целых чисел называется точным , или, что первое число нацело делится (или просто – делится) на второе.

Например : 35 делится (нацело) на 5, частное есть целое число 7.

Второе число при этом называется делителем первого, первое же – кратным второго.

Во многих случаях можно, не выполняя деления, узнать, делится ли нацело одно целое число на другое (см. признаки делимости).

Точное деление возможно далеко не всегда. В таком случае выполняют так называемое деление с остатком . В этом случае находят такое наибольшее число, которое при умножении на делитель даст произведение, не превосходящее делимого. Это число называется неполным частным . Разность между делимым и произведением делителя на неполное частное называется остатком от деления .
Делимое равно делителю, умноженное на неполное частное, плюс остаток. Остаток всегда меньше делителя.

Пример : Неполное частное от деления числа 27 на 4 равно 6, а остаток равен 3. Очевидно, 27 = 4∙6 + 3 и 3˂4.

5. Возведение в степень. Возвести некоторое число в целую степень (во вторую, в третью и т.д.) – значит взять это число сомножителем два, три раза и т.д. Иначе говоря, возведение в степень выполняется повторным умножением.
Число, которое берётся сомножителем, называется основанием степени ; число, показывающее, сколько раз повторяется основание, называется показателем степени ; результат возведения числа в степень называется степенью этого числа.

Пример : 2∙2∙2 = 2³ = 8; где 2 – основание степени, 3 – показатель степени, 8 – степень.

Вторую степень числа иначе называют квадратом , третью степень – кубом . Первой степенью числа называют само это число.

6. Извлечение корня есть действие, посредством которого по данной степени (подкоренное число ) и данному показателю степени (показатель корня ) находят искомое основание (корень ).
Это действие обратно возведению в степень.

Пример : ³√64 = 4; где 64 – подкоренное число, 3 – показатель корня, 4 – корень.

Проверка извлечения корня : 4³=64. Возведение числа 4 в 3-ю степень даёт 64.

Корень второй степени иначе называют квадратным ; корень третьей степени – кубическим .
При знаке квадратного корня показатель корня принято опускать: √36 = 6 означает ²√36 = 6.

Использованная лит-ра:
Справочник по элементарной математике - Выгодский М.Я., "Наука", 1974 г.
Справочник по математике. Пособие для учащихся 9-11 кл. - Шахно К. У., "Учпедгиз", 1961 г.

Лекция 7. Вычислительные приемы сложения и вычитания для чисел первого и второго десятка

1. Основные понятия.

2. Вычислительные приемы для чисел первого десятка.

3. Вычислительные приемы для чисел второго десятка.

Основные понятия

В начальной школе изучают четыре арифметических действия: в 1 классе дети знакомятся со сложением и вычитанием, во 2 - с умножением и делением.

Сложение и вычитание называют действиями первой ступени. Умножение и деление называют действиями второй ступени.

Символ сложения - знак «+» (плюс), символ вычитания - знак «-» (минус). Символ умножения - знак «х», который на письме часто заменяется точкой, стоящей в центре клетки « ». Символ деления - знак «:». В старших классах в качестве символа деления используют также горизонтальную черту (в печатных текстах часто заменяемую на наклонную черту), рассматривая запись вида 3 / 4 , У 2 как запись деления.

С теоретико-множественной точки зрения сложению соответствуют такие предметные действия с совокупностями (множествами, группами предметов) как объединение и увеличение на несколько элементов либо данной совокупности, либо совокупности, сравниваемой с данной. В связи с этим, прежде, чем знакомиться с символикой записи действий и вычислениями результатов действий, ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов учителя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.

Задания, которые ребенок должен научиться выполнять по словесному описанию педагога до знакомства с символикой действия сложения:

1. Возьми три морковки и два яблока (наглядность). Положи их в корзину. Как узнать, сколько их вместе? (Надо сосчитать.)

2. На полке стоит 2 чашки и 4 стакана. Обозначь чашки кружками, стаканы квадратиками. Покажи сколько их вместе. Сосчитай.

3. Из вазы взяли 4 конфеты и 1 вафлю. Обозначь их фигурками и покажи, сколько всего сладостей взяли из вазы. Сосчитай.



Все три ниже предлагаемые ситуации моделируют объединение двух множеств.

1. У Вани 3 значка. Обозначь значки кружками. Ему дали еще и у него стало на 2 больше. Что надо сделать, чтобы узнать, сколько у него теперь значков? (Надо 2добавить.) Сделай это. Сосчитай результат.

2. У Пети было 2 игрушечных грузовика. Обозначь грузовики квадратиками. И столько же легковых машин. Обозначь легковые машины кружками. Сколько ты поставил кружков? На день рождения ему подарили еще три легковые машины. Каких машин теперь больше? Обозначь их кружками. Покажи, на сколько больше.

3. В одной коробке 6 карандашей, а в другой на 2 больше. Обозначь карандаши из первой коробки зелеными палочками, карандаши из второй коробки - красными палочками. Покажи, сколько карандашей в первой коробке, сколько во второй. В какой коробке карандашей больше? В какой меньше? На сколько?

Эти три ситуации моделируют увеличение на несколько единиц данной совокупности или совокупности, сравниваемой с данной.

Символически данные ситуации описываются с помощью действия сложения: 6 + 2 = 8.

Действию вычитания соответствуют четыре вида предметных действий:

а) удаление части совокупности (множества);

б) уменьшение данной совокупности на несколько единиц;

в) уменьшение на несколько единиц совокупности, сравниваемой с данной;

г) разностное сравнение двух множеств.

Приведем задания, которые ребенок должен научиться выполнять по словесному описанию педагога до знакомства с символикой действия вычитания:

1. Удав нюхал цветы на полянке. Всего цветов было 7. Обозначь цветы кружками. Пришел Слоненок и нечаянно наступил на 2 цветка. Что надо сделать, чтобы это показать? Покажи, сколько цветов теперь сможет понюхать Слоненок.

2. У Мартышки было 6 бананов. Обозначь их кружками. Несколько бананов она съела и у нее стало на 4 меньше. Что надо сделать, чтобы это показать? Почему ты убрал 4 банана? (Стало на 4меньше.) Покажи оставшиеся бананы. Сколько их?

3. У жука 6 ног. Обозначь количество ног жука красными палочками. А у слона ног на 2 меньше. Обозначь количество ног слона зелеными палочками. Покажи, у кого ног меньше. У кого ног больше? На сколько?

4. На одной полке стоит 5 чашек. Обозначь чашки кружками. А на другой полке - 8 стаканов. Обозначь стаканы квадратиками. Поставь их так, чтобы сразу было видно, чего больше - стаканов или чашек. Чего меньше? На сколько?

Следующие задания приведены в соответствии с видами предметных действий, указанных выше.

Символически данные ситуации описываются с помощью действия вычитания: 8-5 = 3.

После того, как ребенок научится понимать на слух и моделировать все означенные виды предметных действий, его можно знакомить со знаками действий. На этом этапе последовательность указаний педагога такова:

1) обозначьте то, о чем говорится в задании кружками (палочками и т. п.);

2) обозначьте указанное число кружков (палочек) цифрами;

3) поставьте между ними нужный знак действия. Например:

В вазе 4 тюльпана белых и 3 розовых. Обозначьте цифрами число белых тюльпанов и число розовых тюльпанов. Какой знак нужно поставить в записи, чтобы показать, что все тюльпаны стоят в одной вазе!

Составляется запись: 4 + 3.

Такую запись называют «математическое выражение». Она

характеризует количественные признаки ситуации и взаимоотношения рассматриваемых совокупностей.

Число 7, получаемое в ответе, называют значением выражения.

Запись вида 3 + 4 = 7 называют равенством. Не стоит сразу ориентировать ребенка на получение полного равенства с записью значения выражения:

выражение \

значение выражения

равенство

Прежде чем переходить к равенству, полезно предлагать детям задания:

а) на соотнесение ситуации и выражения (подбери выражение к данной ситуации или измени ситуацию в соответствии с выражением - ситуация может быть изображена на картинке, нарисована на доске, смоделирована на фланелеграфе);

б) на составление выражений по ситуациям (составь выражение в соответствии с ситуацией).

После того, как дети научатся правильно выбирать знак действия и объяснять свой выбор, можно перейти к составлению равенства и фиксированию результата действия.

В стабильном учебнике математики действия сложения и вычитания изучаются одновременно. В некоторых альтернативных учебниках (И.И. Аргинская, Н.Б. Истомина) сначала изучается сложение, а затем - вычитание.

Выражение вида 3 + 5 называют суммой.

Числа 3 и 5 в этой записи называют слагаемыми.

Запись вида 3 + 5 = 8 называют равенством. Число 8 называют значением выражения. Поскольку число 8 в данном случае получено в результате суммирования, его также часто называют суммой.

Например:

Найдите сумму чисел 4 и 6. (Ответ: сумма чисел 4 и 6 - это 10.)

Выражение вида 8-3 называют разностью.

Число 8 называют уменьшаемым, а число 3 - вычитаемым.

Значение выражения - число 5 также могут называть разностью.

Например:

Найдите разность чисел 6 и 4. (Ответ: разность чисел 6 и 4 - это 2.)

Поскольку названия компонентов действий сложения и вычитания вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи. Например:

1. Среди данных выражений найдите такие, в которых первое слагаемое (уменьшаемое, вычитаемое) равно 3:

3 + 2; 7 - 3; 6 + 3; 8 + 1; 3 + 5; 3 - 2; 7 - 3; 3 + 4; 3 - 1.

2. Составьте выражение, в котором второе слагаемое (уменьшаемое, вычитаемое) равно 5. Найдите его значение.

3. Выберите примеры, в которых сумма равна 6. Подчеркните их красным цветом. Выберите примеры, в которых разность равна 2. Подчеркните их синим цветом.

4. Как называют число 4 в выражении 5 - 4? Как называют число 5? Найдите разность. Составьте другой пример, в котором разность равна тому же числу.

5. Уменьшаемое 18, вычитаемое 9. Найдите разность.

6. Найдите разность чисел 11 и 7. Назовите уменьшаемое, вычитаемое.

Во 2 классе дети знакомятся с правилами проверки результатов действий сложения и вычитания:

Сложение можно проверить вычитанием: 57 + 8 = 65. Проверка: 65-8 = 57.

Из суммы вычли одно слагаемое, получили другое слагаемое. Значит, сложение выполнено верно.

Данное правило применимо к проверке действия сложения в любом концентре (при проверке вычислений с любыми числами).

Вычитание можно проверить сложением: 63 - 9 =54. Проверка: 54 + 9 = 63.

К разности прибавили вычитаемое, получили уменьшаемое. Значит, вычитание выполнено верно.

Данное правило также применимо к проверке действия вычитания с любыми числами.

В 3 классе дети знакомятся с правилами взаимосвязи компонентов сложения и вычитания, которые являются обобщением представлений ребенка о способах проверки сложения и вычитания: ш

Если из суммы вычесть одно слагаемое, то получится другое слагаемое.

Если сложить разность и вычитаемое, то получится уменьшаемое.

Если из уменьшаемого вычесть разность, то получится вычитаемое.

Данные правила являются основой для подготовки к решению уравнений, которые в начальной школе решаются с опорой на правило нахождения соответствующего неизвестного компонента равенства.

Например:

Решите уравнение 24 - х= 19.

В уравнении неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность: х = 24 - 19, х = 5.

.

Для действительных чисел можно определить арифметические действия – сложение, вычитание, умножение и деление. Как это делается, можно узнать из приводимых ниже мелким шрифтом рассуждений. Читатель, который найдет нужным познакомиться с этими рассуждениями, увидит, что арифметические действия над бесконечными дробями сопряжены с необходимостью совершать некоторые бесконечные процессы. На практике арифметические действия над действительными числами производятся приближенно.

На этом пути возможны и формальные определения этих действий. Об этом будет идти речь в § 1.8.

В следующем параграфе перечисляются свойства действительных чисел, вытекающие из сделанных определений. Мы формулируем эти свойства. Их можно доказать, но мы доказываем их лишь в отдельных случаях (полное доказательство см., например, в учебнике С. М. Никольского «Математический анализ», т. I, гл. 2). Эти свойства собраны в пять групп (I – V). Первые три из них содержат элементарные свойства, которыми мы руководствуемся при арифметических вычислениях и решении неравенств. Группа IV составляет одно свойство (Архимеда). Наконец, группа V также состоит из одного свойства. Это свойство формулируется на языке пределов. Оно будет доказано, но позже – в § 2.5.

Арифметических действий

Задачи изучения темы:

2) Познакомить учащихся с правилами порядка выполнения действий над числами и в соответствии с ними выработать умение находить числовые значения выражений.

3) Познакомить учащихся с тождественными преобразованиями выражений на основе свойств арифметических действий.

В работе над числовыми выражениями можно выделить 2 основных этапа:

1) Изучение простейших выражений вида: сумма (2 + 3); разность (5 -1); произведение (3 4); частное (12:4).

2) Изучение усложненных выражений, содержащих два и более дей­ствий, со скобками и без них.

1) При работе с простейшими выражениями в соответствии с требо­ваниями программы перед учителем стоит задача сформировать у детей умения читать и записывать такие выражения.

Первая встреча учащихся с выражениями происходит в первом клас­се в теме "Числа от 1 до 10", где дети впервые знакомятся со знаками действий "+" и "-". На этом этапе дети записывают выражения, и читают их, ориентируясь на смысл знаков действий, которые осознаются ими как краткое обозначение слов "добавить" и "отбросить". Это находит отражение в чтении выражений: 3 + 2 (3 да 2); 3 - 1 (3 без одного).

Постепенно представления детей об этих действиях расширяются. Учащиеся узнают, что, прибавляя несколько единиц к числу, мы увеличи­ваем его на столько же единиц, а вычитая - уменьшаем. Это находит отражение при чтении выражений: 4 + 2 (4 увеличить на две единицы); 7 - 1 (7 уменьшить на одну единицу).

Затем дети узнают названия знаков действий "плюс" и "минус". (При изучении сложения и вычитания чисел первого десятка). Этиже выра­жения читаются иначе: 4 + 2 (4 "плюс" 2); 7 - 1 (7 "минус" 1).

И только при ознакомлении с названиями компонентов и результатов действия сложения вводится строгая математическая терминология, да­ется название данного математического выражения – «сумма», а несколько позже аналогично вводится термин «разность».

Названия следующих двух математических выражений «произведение» и «частное» вводятся аналогично при изучении действий умножения и де­ления во втором классе. Здесь же во втором классе вводятся термины "выражение", "значение выражения", которые как и другие математи­ческие термины должны усваиваться детьми естественно, как усваива­ются ими другие новые для них слова, если они часто употребляются окружающими и находят применение в практике.

2) Наряду с простейшими математическими выражениями изучаются и усложненные выражения, содержащие два и более действий, со скобками и без них. Такие выражения появляются в зависимости от рассмотрения соответствую­щих вопросов курса математики. Однако их рассмотрение в основном подчинено одной дидактической цели – сформировать умение находить значение выражения, а это непосредственно связано с правилами поряд­ка выполнения арифметических действий.

а) Первым рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами либо только сложение и вычитание, либо только умножение и деление. Первые такие выражения вида 5 + 1 + 1, 7 - 1 - 1 встречаются в самом начале изучения сложения и вычитания чисел в пределах 10. Уже здесь основное внимание уделяется выяснению вопроса, как вести рассужде­ния при вычислении значения выражений. В I-II классе встречаются упражнения: 70 – 26 + 10, 90 – 20 – 15, 42 + 18 – 19; во II классе встречаются упражнения: 4 · 10: 5, 60: 10 · 3, 36: 9: 2. При дальнейшем рассмотрении аналогичных выражений делается вывод: в выражениях без скобок действия сложения и вычитания (умножения и деления) выполняются в том порядке, как они записаны: слева направо.

б) Затем появляются выражения, содержащие скобки и опять главное внимание уделяется правилу о порядке выполнения действий в выраже­ниях со скобками. Так мы фактически знакомим детей со вторым прави­лом о порядке выполнения действий в выражениях, содержащих скобки. Упражнения: 80 – (34+13), 85 – (46 – 14), 60: (30 – 20), 90: (2 ·5).

Во втором классе при изучении действий умножения и деления про­исходит встреча с выражениями, содержащими действия сложения, вы­читания, умножения и деления. Чтобы выяснить вопрос о порядке вы­полнения действий в таких выражениях, целесообразно для первого рассмотрения взять выражение 3 · 5 + 3. Используя смысл действия умножения, приходим к выводу, что значение этого выражения равно 18. Отсюда следует порядок выполнения действий. В результате мы фактически получаем третье правило о порядке выполнения действий в выра­жениях без скобок, содержащих действия сложения, вычитания, умно­жения и деления: в выражениях без скобок вначале выполняются дей­ствия умножения или деления, а затем действия сложения или вычита­ния в том порядке, как они записаны. При этом дается и образец рассуж­дении, где обращается внимание на проговаривание промежуточного результата, что позволяет предупреждать возможные ошибки детей. Упражнения: 21 + 9: 3, 34 – 12 · 2, 90: 30 – 2, 25 · 4 + 100.

Правила о порядке выполнения арифметических действий заслуживают особого внимания. Это один из сложных и отвлеченных вопросов начального курса математики. Работа над ним требует многочисленных распределенных во времени тренировочных упражнений. Умение применять эти правила в практике вычислений вынесено в основные требования программы в конце каждого года, начиная со второго класса и на конец обучения в начальных классах.

Упражнения:

1. Из заданных пар примеров выбрать только те, где вычисления выполнены по правилам порядка выполнения действий: 20 + 30: 5 = 10, 20 + 30: 5 = 26, 42 – 12: 6 = 40,

42 – 12: 6 = 5, 6 · 5 + 40: 2 = 50, 6 · 5 + 40: 2 = 35.

После объяснения ошибок дать задание: изменить порядок действия так, чтобы выражение имело заданное значение.

2. Расставить скобки так, чтобы выражение имело заданное значение:

72 – 24: 6 + 2 = 66, 72 – 24: 6 + 2 = 6, 72 – 24: 6 + 2 = 10, 72 – 24: 6 + 2 = 69

На последнем году обуче­ния в начальных классах рассмотренные правила дополняются новыми для детей правилами о порядке выполнения действий в выражениях содержащих две пары скобок или два действия внутри скобок. Например: 90 · 8 – (240 + 170) + 190, 469 148 – 148 · 9 + (30 100 – 26 909), 65 6500: (50 + (654 – 54)).

Ознакомление с тождественными преобразованиями выражений. Тождественное преобразование выражения – это замена данного выражения другим, значение которого равно значению заданного выражения. Выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и др.) Например: Продолжить запись так, чтобы знак «=» сохранился:



76 – (20 + 4) = 76 – 20…

(10 + 7) · 5 = 10 · 5…

60: (2 · 10) = 60: 10…

Применяя знания свойств действий для обоснования приемов вычислений, учащиеся выполняют преобразования выражений вида:

36 + 20 + (30 + 6) =+ 20 = (30 + 20) + 6 = 56

72: 3 = (60 + 12) : 3 = 60: 3 + 12: 3 = 24

18 · 30 = 18 · (3 · 10) = (18 · 3) · 10 = 540

Необходимо понять, что все эти выражения соединены знаком «=», потому что имеют одинаковые значения.

Тождественные преобразования выражений выполняют также и на основе конкретного смысла действий. Например, сумму одинаковых слагаемых заменяют произведением: 6 + 6 + 6 + 6 = 6 · 4, и наоборот, 6 · 4 = 6 + 6 + 6 + 6. Опираясь также на смысл действия умножения, преобразуют более сложные выражения: 8 · 4 + 8 = 8 · 5, 7 · 6 – 7 = 7 · 5.

Если в выражениях со скобками скобки не влияют на порядок действий, то их можно не ставить: (30 + 20) + 10 = 30 + 20 + 10, (10 · 6) : 4 = 10 · 6: 4 и т.п.

В дальнейшем, используя изученные свойства действий и правила порядка действий, учащиеся упражняются в преобразовании выражений со скобками в тождественные им выражения без скобок. Например: записать выражения без скобок так, чтобы их значения не изменились: (65 + 30) – 20, (20 + 4) · 3, 96 – (46 + 30)

Задачи изучения темы:

2) Познакомить учащихся с правилами порядка выполнения действий над числами и в соответствии с ними выработать умение находить числовые значения выражений.

3) Познакомить учащихся с тождественными преобразованиями выражений на основе свойств арифметических действий.

В работе над числовыми выражениями можно выделить 2 основных этапа:

1) Изучение простейших выражений вида: сумма (2 + 3); разность (5 -1); произведение (3 4); частное (12:4).

2) Изучение усложненных выражений, содержащих два и более дей­ствий, со скобками и без них.

1) При работе с простейшими выражениями в соответствии с требо­ваниями программы перед учителем стоит задача сформировать у детей умения читать и записывать такие выражения.

Первая встреча учащихся с выражениями происходит в первом клас­се в теме "Числа от 1 до 10", где дети впервые знакомятся со знаками действий "+" и "-". На этом этапе дети записывают выражения, и читают их, ориентируясь на смысл знаков действий, которые осознаются ими как краткое обозначение слов "добавить" и "отбросить". Это находит отражение в чтении выражений: 3 + 2 (3 да 2); 3 - 1 (3 без одного).

Постепенно представления детей об этих действиях расширяются. Учащиеся узнают, что, прибавляя несколько единиц к числу, мы увеличи­ваем его на столько же единиц, а вычитая - уменьшаем. Это находит отражение при чтении выражений: 4 + 2 (4 увеличить на две единицы); 7 - 1 (7 уменьшить на одну единицу).

Затем дети узнают названия знаков действий "плюс" и "минус". (При изучении сложения и вычитания чисел первого десятка). Этиже выра­жения читаются иначе: 4 + 2 (4 "плюс" 2); 7 - 1 (7 "минус" 1).

И только при ознакомлении с названиями компонентов и результатов действия сложения вводится строгая математическая терминология, да­ется название данного математического выражения – «сумма», а несколько позже аналогично вводится термин «разность».

Названия следующих двух математических выражений «произведение» и «частное» вводятся аналогично при изучении действий умножения и де­ления во втором классе. Здесь же во втором классе вводятся термины "выражение", "значение выражения", которые как и другие математи­ческие термины должны усваиваться детьми естественно, как усваива­ются ими другие новые для них слова, если они часто употребляются окружающими и находят применение в практике.



2) Наряду с простейшими математическими выражениями изучаются и усложненные выражения, содержащие два и более действий, со скобками и без них. Такие выражения появляются в зависимости от рассмотрения соответствую­щих вопросов курса математики. Однако их рассмотрение в основном подчинено одной дидактической цели – сформировать умение находить значение выражения, а это непосредственно связано с правилами поряд­ка выполнения арифметических действий.

а) Первым рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами либо только сложение и вычитание, либо только умножение и деление. Первые такие выражения вида 5 + 1 + 1, 7 - 1 - 1 встречаются в самом начале изучения сложения и вычитания чисел в пределах 10. Уже здесь основное внимание уделяется выяснению вопроса, как вести рассужде­ния при вычислении значения выражений. В I-II классе встречаются упражнения: 70 – 26 + 10, 90 – 20 – 15, 42 + 18 – 19; во II классе встречаются упражнения: 4 · 10: 5, 60: 10 · 3, 36: 9: 2. При дальнейшем рассмотрении аналогичных выражений делается вывод: в выражениях без скобок действия сложения и вычитания (умножения и деления) выполняются в том порядке, как они записаны: слева направо.

б) Затем появляются выражения, содержащие скобки и опять главное внимание уделяется правилу о порядке выполнения действий в выраже­ниях со скобками. Так мы фактически знакомим детей со вторым прави­лом о порядке выполнения действий в выражениях, содержащих скобки. Упражнения: 80 – (34+13), 85 – (46 – 14), 60: (30 – 20), 90: (2 ·5).

Во втором классе при изучении действий умножения и деления про­исходит встреча с выражениями, содержащими действия сложения, вы­читания, умножения и деления. Чтобы выяснить вопрос о порядке вы­полнения действий в таких выражениях, целесообразно для первого рассмотрения взять выражение 3 · 5 + 3. Используя смысл действия умножения, приходим к выводу, что значение этого выражения равно 18. Отсюда следует порядок выполнения действий. В результате мы фактически получаем третье правило о порядке выполнения действий в выра­жениях без скобок, содержащих действия сложения, вычитания, умно­жения и деления: в выражениях без скобок вначале выполняются дей­ствия умножения или деления, а затем действия сложения или вычита­ния в том порядке, как они записаны. При этом дается и образец рассуж­дении, где обращается внимание на проговаривание промежуточного результата, что позволяет предупреждать возможные ошибки детей. Упражнения: 21 + 9: 3, 34 – 12 · 2, 90: 30 – 2, 25 · 4 + 100.

Правила о порядке выполнения арифметических действий заслуживают особого внимания. Это один из сложных и отвлеченных вопросов начального курса математики. Работа над ним требует многочисленных распределенных во времени тренировочных упражнений. Умение применять эти правила в практике вычислений вынесено в основные требования программы в конце каждого года, начиная со второго класса и на конец обучения в начальных классах.

Упражнения:

1. Из заданных пар примеров выбрать только те, где вычисления выполнены по правилам порядка выполнения действий: 20 + 30: 5 = 10, 20 + 30: 5 = 26, 42 – 12: 6 = 40,

42 – 12: 6 = 5, 6 · 5 + 40: 2 = 50, 6 · 5 + 40: 2 = 35.

После объяснения ошибок дать задание: изменить порядок действия так, чтобы выражение имело заданное значение.

2. Расставить скобки так, чтобы выражение имело заданное значение:

72 – 24: 6 + 2 = 66, 72 – 24: 6 + 2 = 6, 72 – 24: 6 + 2 = 10, 72 – 24: 6 + 2 = 69

На последнем году обуче­ния в начальных классах рассмотренные правила дополняются новыми для детей правилами о порядке выполнения действий в выражениях содержащих две пары скобок или два действия внутри скобок. Например: 90 · 8 – (240 + 170) + 190, 469 148 – 148 · 9 + (30 100 – 26 909), 65 6500: (50 + (654 – 54)).

Ознакомление с тождественными преобразованиями выражений. Тождественное преобразование выражения – это замена данного выражения другим, значение которого равно значению заданного выражения. Выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и др.) Например: Продолжить запись так, чтобы знак «=» сохранился:

76 – (20 + 4) = 76 – 20…

(10 + 7) · 5 = 10 · 5…

60: (2 · 10) = 60: 10…

Применяя знания свойств действий для обоснования приемов вычислений, учащиеся выполняют преобразования выражений вида:

36 + 20 + (30 + 6) =+ 20 = (30 + 20) + 6 = 56

72: 3 = (60 + 12) : 3 = 60: 3 + 12: 3 = 24

18 · 30 = 18 · (3 · 10) = (18 · 3) · 10 = 540

Необходимо понять, что все эти выражения соединены знаком «=», потому что имеют одинаковые значения.

Тождественные преобразования выражений выполняют также и на основе конкретного смысла действий. Например, сумму одинаковых слагаемых заменяют произведением: 6 + 6 + 6 + 6 = 6 · 4, и наоборот, 6 · 4 = 6 + 6 + 6 + 6. Опираясь также на смысл действия умножения, преобразуют более сложные выражения: 8 · 4 + 8 = 8 · 5, 7 · 6 – 7 = 7 · 5.

Если в выражениях со скобками скобки не влияют на порядок действий, то их можно не ставить: (30 + 20) + 10 = 30 + 20 + 10, (10 · 6) : 4 = 10 · 6: 4 и т.п.

В дальнейшем, используя изученные свойства действий и правила порядка действий, учащиеся упражняются в преобразовании выражений со скобками в тождественные им выражения без скобок. Например: записать выражения без скобок так, чтобы их значения не изменились: (65 + 30) – 20, (20 + 4) · 3, 96 – (46 + 30)



Понравилась статья? Поделитесь с друзьями!