Открытые и замкнутые множества.

В курсе математического анализа на первом курсе ВУЗов встречается много непонятного и непривычного. Одна из первых таких «новых» тем — это открытые и замкнутые множества . Постараемся дать пояснения по данной тематике.

Перед тем, как приступить к постановке определений и задач, напомним значение используемых обозначений и кванторов :
∈ — принадлежит
∅ — пустое множество
Ε — множество действительных чисел
х* — закреплённая точка
А* — множество граничных точек
: — такое, что
⇒ — следовательно
∀ — для каждого
∃ — существует
U ε (х) — окрестность х по ε
Uº ε (х) — проколотая окрестность х по ε

Итак,
Определение 1: Множество М ∈ Ε называется открытым, если для любого у ∈ М найдётся такое ε > 0, что окрестность y по ε строго меньше М
С помощью кванторов определение запишется следующим образом:
М ∈ Ε — открытое, если ∀ у∈М ∃ ε>0: U ε (y) < M

Простым языком — открытое множество состоит из внутренних точек. Примерами открытого множества являются пустое множество, прямая, интервал (а, b)

Определение 2: Точка x* ∈ E называется граничной точкой множества М, если в любой окрестности точки х содержатся точки как из множества М, так и из его дополнения.
Теперь с помощью кванторов:
х*∈ E — граничная точка, если ∀U ε (x) ∩ М ≠ ∅ и ∀U ε (x) ∩ Е\М

Определение 3: Множество называется замкнутым, если ему принадлежат все граничные точки. Пример — отрезок

Стоит отметить, что существуют множества, которые одновременно и открытые, и замкнутые. Это, например, всё множество действительных чисел и пустое множество (позднее будет доказано, что это 2 возможных и единственных случая).

Докажем несколько теорем, связанных с открытым и замкнутым множествами.

Теорема 1: Пусть множество А — открытое. Тогда дополнение к множеству А является замкнутым множеством.

В = Е\А

Предположим, что В — незамкнутое. Тогда существует граничная точка х*, которая не принадлежит В, а значит — принадлежит А. По определению граничной точки окрестность х* имеет пересечение как с В, так и с А. Однако с другой стороны х* является внутренней точкой открытого множества А, поэтому вся окрестность точки х* лежит в А. Отсюда делаем вывод, что множества А и В пересекаются не по пустому множеству. Такого быть не может, поэтому наше предположение неверно и В является замкнутым множеством, ч. т. д.
В кванторах доказательство можно записать короче:
Предположим, что В — незамкнутое, тогда:
(1) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ∩ В ≠ ∅ (определение граничной точки)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ А ≠ ∅ (определение открытоко множества)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — замкнутое, ч. т. д.

Теорема 2: Пусть множество А — замкнутое. Тогда дополнение к множеству А является открытым множеством.
Доказательство: Обозначим дополнение множества А как множество В:
В = Е\А
Доказывать будем от противного.
Предположим, что В — замкнутое множество. Тогда любая граничная точка лежит в В. Но так как А — также замкнутое множество, то все граничные точки принадлежат и ему. Однако точка не может одновременно принадлежать множеству и его дополнению. Противоречие. В — открытое множество, ч. т. д.
В кванторах это выглядеть будет следующим образом:
Предположим, что В — замкнутое, тогда:
(1) ∀ х∈А*:х∈A (из условия)
(1) ∀ х∈А*:х∈В (из предположения)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — открытое, ч. т. д.

Теорема 3: Пусть множество А — замкнутое и открытое. Тогда А = Е или А = ∅
Доказательство: Начнём записывать подробно, но сразу использую кванторы.
Предположим, что множество С — замкнутое и открытое, причём С ≠ ∅ и С ≠ Е. Тогда очевидно, что С ⊆ Е.
(1) ∃ х∈А*:х∈С ⇒ ∀U ε (x) ∩ Е\С ≠ ∅ (определение граничной точки, которая принадлежит С)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ В (определение открытого множества С)
Из (1) и (2) следует, что Е\С ∩ С ≠ ∅, но это неверно. Противоречие. С не может быть одновременно и открытым, и замкнутым, ч. т. д.

Математический анализ — это фундаментальная математика, сложная и непривычная для нас. Но надеюсь, что-то стало понятнее после прочтения статьи. В добрый путь!

Posted by |

Одна из основных задач теории точечных множеств - изучение свойств различных типов точечных множеств. Познакомимся с этой теорией на двух примерах и изучим свойства так называемых замкнутых и открытых множеств.

Множество называется замкнутым , если оно содержит все свои предельные точки. Если множество не имеет ни одной предельной точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым , если каждая его точка является для него внутренней.

Приведем примеры замкнутых и открытых множеств .

Всякий отрезок есть замкнутое множество, а всякий интервал (a, b) - открытое множество. Несобственные полуинтервалы и замкнуты , а несобственные интервалы и открыты . Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек.

Множество, состоящее из точек:

замкнуто; это множество имеет единственную предельную точку x=0, которая принадлежит множеству.

Основная задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

  • 1. Пересечение любого числа замкнутых множеств замкнуто.
  • 2. Сумма любого числа открытых множеств есть открытое множество.
  • 3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

Пусть E - произвольное множество точек на прямой. Назовем дополнением множества E и обозначим через CE множество всех точек па прямой, не принадлежащих множеству E. Ясно, что если x есть внешняя точка для E, то она является внутренней точкой для множества CE и обратно.

4. Если множество F замкнуто, то его дополнение CF открыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть F - замкнутое множество. Интервал (a, b), обладающий тем свойством, что ни одна из его точек не принадлежит множеству F, а точки a и b принадлежат F, называется смежным интервалом множества F.

К числу смежных интервалов мы будем также относить несобственные интервалы или, если точка a или точка b принадлежит множеству F, а сами интервалы с F не пересекаются. Покажем, что если точка x не принадлежит замкнутому множеству F, то она принадлежит одному из его смежных интервалов.

Обозначим через часть множества F, расположенную правее точки x. Так как сама точка x не принадлежит множеству F, то можно представить в форме пересечения:

Каждое из множеств F и замкнуто. Поэтому, в силу предложения 1, множество замкнуто. Если множество пусто, то весь полуинтервал не принадлежит множеству F. Допустим теперь, что множество не пусто. Так как это множество целиком расположено на полуинтервале, то оно ограничено снизу. Обозначим через b его нижнюю грань. Согласно предложению 3, а значит. Далее, так как b есть нижняя грань множества, то полуинтервал (x, b), лежащий левее точки b, не содержит точек множества и, следовательно, не содержит точек множества F. Итак, мы построили полуинтервал (x, b), не содержащий точек множества F, причем либо, либо точка b принадлежит множеству F. Аналогично строится полуинтервал (a, x), не содержащий точек множества F, причем либо, либо. Теперь ясно, что интервал (a, b) содержит точку x и является смежным интервалом множества F. Легко видеть, что если и - два смежных интервала множества F, то эти интервалы либо совпадают, либо не пересекаются.

Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества F. Так как каждый интервал содержит по крайней мере одну рациональную точку, а всех рациональных точек на прямой - счетное множество, то легко убедиться, что число всех смежных интервалов не более чем счётно. Отсюда получаем окончательный вывод. Всякое замкнутое множество на прямой получается путем удаления из прямой не более чем счетного множества непересекающихся интервалов.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Открытые и замкнутые множества

Приложение 1 . Открытые и замкнутые множества

Множество M на прямой называется открытым , если каждая его точка сожержится в этом множестве вместе с некоторым интервалом. Замкнутым называется множество, содержащее все свои предельные точки (т. е. такие, что любой интервал, содержащий эту точку, пересекается со множеством еще хотя бы по одной точке). Например, отрезок является замкнутым множеством, но не является открытым, а интервал, наоборот, является открытым множеством, но не является замкнутым. Бывают множества, которые не являются ни открытыми, ни замкнутыми (например, полуинтервал). Существуют два множества, которые одновременно и замкнутые, и открытые – это пустое и все Z (докажите, что других нет). Легко видеть, что если M открыто, то [` M ] (или Z \ M – дополнение к множеству M до Z ) замкнуто. Действительно, если [` M ] не замкнуто, то оно не содержит какую-то свою предельную точку m . Но тогда m О M , причем каждый интервал, содержащий m , пересекается с множеством [` M ], т. е. имеет точку, не лежащую в M , а это противоречит тому, что M – открытое. Аналогично, тоже прямо из определения, доказывается, что если M замкнуто, то [` M ] открыто (проверьте!).

Теперь докажем следующую важную теорему.

Теорема. Любое открытое множество M можно представить в виде объединения интервалов с рациональными концами (т. е. с концами в рациональных точках).

Доказательство . Рассмотрим объединение U всех интервалов с рациональными концами, являющихся подмножествами нашего множества. Докажем, что это объединение совпадает со всем множеством. Действительно, если m – какая-то точка из M , то существует интервал (m 1 , m 2) М M , содержащий m (это следует из того, что M – открытое). На любом интервале можно найти рациональную точку. Пусть на (m 1 , m ) – это m 3 , на (m , m 2) – это m 4 . Тогда точка m покрыта объединением U , а именно, интервалом (m 3 , m 4). Таким образом, мы доказали, что каждая точка m из M покрыта объединением U . Кроме того, как очевидно следует из построения U , никакая точка, не содержащаяся в M , не покрыта U . Значит, U и M совпадают.

Важным следствием из этой теоремы является тот факт, что любое открытое множество есть счетное объединение интервалов.

Нигде не~плотные множества и~множества меры~ноль. Канторово множество>

Приложение 2 . Нигде не плотные множества и множества меры ноль. Канторово множество

Множество A называется нигде не плотным , если для любых различных точек a и b найдется отрезок [c , d ] М [a , b ], не пересекающийся с A . Например, множество точек последовательности a n = [ 1/(n )] является нигде не плотным, а множество рациональных чисел – нет.

Теорема Бэра. Отрезок нельзя представить в виде счетного объединения нигде не плотных множеств.

Доказательство . Предположим, что существует последовательность A k нигде не плотных множеств, таких что И i A i = [a , b ]. Построим следующую последовательность отрезков. Пусть I 1 – какой-нибудь отрезок, вложенный в [a , b ] и не пересекающийся с A 1 . По определению нигде не плотного множества на отрезке I 1 найдется отрезок, не пересекающийся с множеством A 2 . Назовем его I 2 . Далее, на отрезке I 2 возьмем аналогичным образом отрезок I 3 , не пересекающийся с A 3 , и т. д. У последовательности I k вложенных отрезков есть общая точка (это одно из основных свойств действительных чисел). Эта точка по построению не лежит ни в одном из множеств A k , значит, эти множества не покрывают весь отрезок [a , b ].

Назовем множество M имеющим меру ноль , если для любого положительного e найдется последовательность I k интервалов с суммарной длиной меньше e , покрывающая M . Очевидно, что любое счетное множество имеет меру ноль. Однако бывают и несчетные множества, имеющие меру ноль. Построим одно такое, очень известное, называемое канторовым.

Рис. 11

Возьмем отрезок . Поделим его на три равные части. Средний отрезок выкинем (рис. 11, а ). Останется два отрезка суммарной длины [ 2/3]. С каждым из них проделаем точно такую же операцию (рис. 11, б ). Останется четыре отрезка суммарной длины [ 4/9] = ([ 2/3]) \ B 2 . Продолжая так далее (рис. 11, в е ) до бесконечности, получаем множество, которое имеет меру меньше любой наперед заданной положительной, т. е. меру ноль. Можно установить взаимно однозначное соответствие между точками этого множества и бесконечными последовательностями нулей и единиц. Если при первом "выкидывании" наша точка попала в правый отрезок, поставим в начале последовательности 1, если в левый – 0 (рис. 11, а ). Далее, после первого "выкидывания", получаем маленькую копию большого отрезка, с которой поступаем точно так же: если наша точка после выкидывания попала в правый отрезок, поставим 1, если в левый – 0, и т. д. (проверьте взаимную однозначность), рис. 11, б , в . Поскольку множество последовательностей нулей и единиц имеет мощность континуум, канторово множество также имеет мощность континуум. Кроме того, несложно доказать, что оно нигде не плотно. Однако неверно, что оно имеет строгую меру ноль (см. определение строгой меры). Идея доказательства этого факта в следующем: возьмем последовательность a n , очень быстро стремящуюся к нулю. Для этого подойдет, например, последовательность a n = [ 1/(2 2 n )]. После чего докажем, что этой последовательностью нельзя покрыть канторово множество (проделайте это!).

Приложение 3 . Задачи

Операции над множествами

Множества A и B называются равными , если каждый элемент множества A принадлежит множеству B , и наоборот. Обозначение: A = B .

Множество A называется подмножеством множества B , если каждый элемент множества A принадлежит множеству B . Обозначение: A М B .

1. Для каждых двух из следующих множеств указать, является ли одно из них подмножеством другого:

{1}, {1,2}, {1,2,3}, {{1},2,3}, {{1,2},3}, {3,2,1}, {{2,1}}.

2. Докажите, что множество A тогда и только тогда является подмножеством множества B , когда каждый элемент, не принадлежащий B , не принадлежит A .

3. Докажите, что для произвольных множеств A , B и C

а) A М A ; б) если A М B и B М C , то A М C ;

в) A = B , если и только если A М B и B М A .

Множество называется пустым , если оно не содержит ни одного элемента. Обозначение: Ж .

4. Сколько элементов у каждого из следующих множеств:

Ж , {1}, {1,2}, {1,2,3}, {{1},2,3}, {{1,2},3}, {Ж }, {{2,1}}?

5. Сколько подмножеств у множества из трех элементов?

6. Может ли у множества быть ровно а) 0; б*) 7; в) 16 подмножеств?

Объединением множеств A и B x , что x О A или x О B . Обозначение: A И B .

Пересечением множеств A и B называется множество, состоящее из таких x , что x О A и x О B . Обозначение: A З B .

Разностью множеств A и B называется множество, состоящее из таких x , что x О A и x П B . Обозначение: A \ B .

7. Даны множества A = {1,3,7,137}, B = {3,7,23}, C = {0,1,3, 23}, D = {0,7,23,1998}. Найдите множества:

а) A И B ; б) A З B ; в) (A З B D ;
г) C З (D З B ); д) (A И B )З (C И D ); е) (A И (B З C ))З D ;
ж) (C З A )И ((A И (C З D ))З B ); з) (A И B ) \ (C З D ); и) A \ (B \ (C \ D ));
к) ((A \ (B И D )) \ C B .

8. Пусть A – множество четных чисел, а B – множество чисел, делящихся на 3. Найдите A З B .

9. Докажите, что для любых множеств A , B , C

а) A И B = B И A , A З B = B З A ;

б) A И (B И C ) = (A И B C , A З (B З C ) = (A З B C ;

в) A З (B И C ) = (A З B )И (A З C ), A И (B З C ) = (A И B )З (A И C );

г) A \ (B И C ) = (A \ B )З (A \ C ), A \ (B З C ) = (A \ B )И (A \ C ).

10. Верно ли, что для любых множеств A , B , C

а) A З Ж = Ж , A И Ж = A ; б) A И A = A , A З A = A ; в) A З B = A Ы A М B ;
г) (A \ B B = A ; 7 д) A \ (A \ B ) = A З B ; е) A \ (B \ C ) = (A \ B )И (A З C );
ж) (A \ B )И (B \ A ) = A И B ?

Отображения множеств

Если каждому элементу x множества X поставлен в соотвествие ровно один элемент f (x ) множества Y , то говорят, что задано отображение f из множества X в множество Y . При этом, если f (x ) = y , то элемент y называется образом элемента x при отображении f , а элемент x называется прообразом элемента y при отображении f . Обозначение: f : X ® Y .

11. Нарисуйте всевозможные отображения из множества {7,8,9} в множество {0,1}.

Пусть f : X ® Y , y О Y , A М X , B М Y . Полным прообразом элемента y при отображении f называется множество {x О X | f (x ) = y }. Обозначение: f - 1 (y ). Образом множества A М X при отображении f называется множество {f (x ) | x О A }. Обозначение: f (A ). Прообразом множества B М Y называется множество {x О X | f (x ) О B }. Обозначение: f - 1 (B ).

12. Для отображения f : {0,1,3,4} ® {2,5,7,18}, заданного картинкой, найдите f ({0,3}), f ({1,3,4}), f - 1 (2), f - 1 ({2,5}), f - 1 ({5,18}).

а) б) в)

13. Пусть f : X ® Y , A 1 , A 2 М X , B 1 , B 2 М Y . Всегда ли верно, что

а) f (X ) = Y ;

б) f - 1 (Y ) = X ;

в) f (A 1 И A 2) = f (A 1)И f (A 2);

г) f (A 1 З A 2) = f (A 1)З f (A 2);

д) f - 1 (B 1 И B 2) = f - 1 (B 1)И f - 1 (B 2);

е) f - 1 (B 1 З B 2) = f - 1 (B 1)З f - 1 (B 2);

ж) если f (A 1) М f (A 2), то A 1 М A 2 ;

з) если f - 1 (B 1) М f - 1 (B 2), то B 1 М B 2 ?

Композицией отображений f : X ® Y и g : Y ® Z называется отображение, сопоставляющее элементу x множества X элемент g (f (x )) множества Z . Обозначение: g ° f .

14. Докажите, что для произвольных отображений f : X ® Y , g : Y ® Z и h : Z ® W выполняется следующее: h ° (g ° f ) = (h ° g f .

15. Пусть f : {1,2,3,5} ® {0,1,2}, g : {0,1,2} ® {3,7,37,137}, h : {3,7,37,137} ® {1,2,3,5}– отображения, показанные на рисунке:

f : g : h :

Нарисуйте картинки для следующих отображений:

а) g ° f ; б) h ° g ; в) f ° h ° g ; г) g ° h ° f .

Отображение f : X ® Y называется биективным , если для каждого y О Y найдется ровно один x О X такой, что f (x ) = y .

16. Пусть f : X ® Y , g : Y ® Z . Верно ли, что если f и g биективны, то и g ° f биективно?

17. Пусть f : {1,2,3} ® {1,2,3}, g : {1,2,3} ® {1,2,3}, – отображения, изображенные на рисунке:

18. Про каждые два из следующих множеств выясните, существует ли биекция из первого во второе (надлежит считать, что ноль – натуральное число):

а) множество натуральных чисел;

б) множество четных натуральных чисел;

в) множество натуральных чисел без числа 3.

Метрическим пространством называется множетсво X с заданной метрикой r : X ×X ® Z

1) " x ,y О X r (x ,y ) і 0, причем r (x ,y ) = 0, если и только если x = y (неотрицательность ); 2) " x ,y О X r (x ,y ) = r (y ,x ) (симметричность ); 3) " x ,y ,z О X r (x ,y ) + r (y ,z ) і r (x ,z ) (неравенство треугольника ). 19 19. X

а) X = Z , r (x ,y ) = | x - y | ;

б) X = Z 2 , r 2 ((x 1 ,y 1),(x 2 ,y 2)) = Ц {(x 1 - x 2) 2 + (y 1 - y 2) 2 };

в) X = C [a ,b a ,b ] функций,

где D

Открытым (соответственно, замкнутым ) шаром радиуса r в пространстве X с центром в точке x называется множество U r (x ) = {y О x : r (x ,y ) < r } (соответственно, B r (x ) = {y О X : r (x ,y ) Ј r }).

Внутренней точкой множества U М X U

открытым окрестностью этой точки.

Предельной точкой множества F М X F .

замкнутым

20. Докажите, что

21. Докажите, что

б) объединение множества A замыкание A

Отображение f : X ® Y называется непрерывным

22.

23. Докажите, что

F (x ) = inf y О F r (x ,y

F .

24. Пусть f : X ® Y – . Верно ли, что обратное к нему непрерывно?

Непрерывное взаимно однозначное отображение f : X ® Y гомеоморфизмом . Пространства X , Y гомеоморфными .

25.

26. Для каких пар X , Y f : X ® Y , которое не склеивает точки (т. е. f (x ) № f (y ) при x y вложениями )?

27*. локальным гомеоморфизмом (т. е. у каждой точки x плоскости и f (x ) тора существуют такие окрестности U и V , что f гомеоморфно отображает U на V ).

Метрические пространства и непрерывные отображения

Метрическим пространством называется множетсво X с заданной метрикой r : X ×X ® Z , удовлетворяющее следующим аксиомам:

1) " x ,y О X r (x ,y ) і 0, причем r (x ,y ) = 0, если и только если x = y (неотрицательность ); 2) " x ,y О X r (x ,y ) = r (y ,x ) (симметричность ); 3) " x ,y ,z О X r (x ,y ) + r (y ,z ) і r (x ,z ) (неравенство треугольника ). 28. Докажите, что следующие пары (X ,r ) являются метрическими пространствами:

а) X = Z , r (x ,y ) = | x - y | ;

б) X = Z 2 , r 2 ((x 1 ,y 1),(x 2 ,y 2)) = Ц {(x 1 - x 2) 2 + (y 1 - y 2) 2 };

в) X = C [a ,b ] – множество непрерывных на [a ,b ] функций,

где D – круг единичного радиуса с центром в начале координат.

Открытым (соответственно, замкнутым ) шаром радиуса r в пространстве X с центром в точке x называется множество U r (x ) = {y О x : r (x ,y ) < r } (соответственно, B r (x ) = {y О X : r (x ,y ) Ј r }).

Внутренней точкой множества U М X называется такая точка, которая содержится в U вместе с некоторым шаром ненулевого радиуса.

Множество, все точки которого внутренние, называется открытым . Открытое множество, содержащее данную точку, называется окрестностью этой точки.

Предельной точкой множества F М X называется такая точка, в любой окрестности которой содержится бесконечно много точек множества F .

Множество, которое содержит все свои предельные точки, называется замкнутым (сравните это определение с тем, которое было дано в приложении 1).

29. Докажите, что

а) множество открыто тогда и только тогда, когда его дополнение замкнуто;

б) конечное объединение и счетное пересечение замкнутых множеств замкнуто;

в) счетное объединение и конечное пересечение открытых множеств открыто.

30. Докажите, что

а) множество предельных точек любого множества является замкнутым множеством;

б) объединение множества A и множества его предельных точек ( замыкание A ) является замкнутым множеством.

Отображение f : X ® Y называется непрерывным , если прообраз каждого открытого множества открыт.

31. Докажите, что это определение согласуется с определением непрерывности функций на прямой.

32. Докажите, что

а) расстояние до множества r F (x ) = inf y О F r (x ,y ) является непрерывной функцией;

б) множество нулей функции пункта а) совпадает с замыканием F .

33. Пусть f : X ® Y

Непрерывное взаимно однозначное отображение f : X ® Y , обратное к которому также непрерывно, называется гомеоморфизмом . Пространства X , Y , для которых такое отображение существует, называются гомеоморфными .

34. Для каждой пары из следующих множеств установите, гомеоморфны ли они:

35. Для каких пар X , Y пространств из предыдущей задачи существует непрерывное отображение f : X ® Y , которое не склеивает точки (т. е. f (x ) № f (y ) при x y – такие отображения называют вложениями )?

36*. Придумайте непрерывное отображение плоскости на тор, которое было бы локальным гомеоморфизмом (т. е. у каждой точки x плоскости и f (x ) тора существуют такие окрестности U и V , что f гомеоморфно отображает U на V ).

Полнота. Теорема Бэра

Пусть X метрическое пространство. Последовательность x n его элементов называется фундаментальной , если

" e > 0 $ n " k ,m > n r (x k ,x m ) < e .

37. Докажите, что сходящаяся последовательность фундаментальна. Верно ли обратное утверждение?

Метрическое пространство называется полным , если всякая фундаментальная последовательность в нем сходится.

38. Верно ли, что пространство, гомеоморфное полному, полно?

39. Докажите, что замкнутое подпространство полного пространства само полно; полное подпространство произвольного пространства замкнуто в нем.

40. Докажите, что в полном метрическом пространстве последовательность вложенных замкнутых шаров с радиусами, стремящимися к нулю, имеет общий элемент.

41. Можно ли в предыдущей задаче убрать условие полноты пространства или стремления к нулю радиусов шаров?

Отображение f метрического пространства X в себя называется сжимающим , если

$ c (0 Ј c < 1): " x ,y О X r (f (x ),f (y )) < c r (x ,y ).

42. Докажите, что сжимающее отображение непрерывно.

43. а) Докажите, что сжимающее отображение полного метрического пространства в себя имеет ровно одну неподвижную точку.

б) На карту России масштаба 1:5 000 000 положили карту России масштаба 1:20 000 000. Докажите, что найдется точка, изображения которой на обеих картах совпадут.

44*. Существует ли неполное метрическое пространство, в котором верно утверждение задачи , а?

Подмножество метрического пространства называется всюду плотным , если его замыкание совпадает со всем пространством; нигде не плотным – если его замыкание не имеет непустых открытых подмножеств (сравните это определение с тем, которое было дано в приложениие 2).

45. а) Пусть a , b , a , b О Z и a < a < b < b . Докажите, что множество непрерывных функций на [a ,b ], монотонных на , нигде не плотно в пространстве всех непрерывных функций на [a ,b ] c равномерной метрикой.

б) Пусть a , b , c , e О Z и a < b , c > 0, e > 0. Тогда множество непрерывных функций на [a ,b ], таких что

$ x О [a ,b ]: " y (0 < | x - y | < e ) Ю | f (x ) - f (y )| | x - y |
Ј c ,
нигде не плотно в пространстве всех непрерывных функций на [a ,b ] c равномерной метрикой.

46. (Обобщенная теорема Бэра .) Докажите, что полное метрическое пространство нельзя представить в виде объединения счетного числа нигде не плотных множеств.

47. Докажите, что множество непрерывных, не монотонных ни на каком непустом интервале и нигде не дифференцируемых функций, определенных на отрезке , всюду плотно в пространстве всех непрерывных функций на с равномерной метрикой.

48*. Пусть f – дифференцируемая функция на отрезке . Докажите, что ее производная непрерывна на всюду плотном множестве точек. Это определение лебеговой меры ноль. Если счетное число интервалов заменить на конечное, то получится определение жордановой меры ноль.

Пусть дано топологическое пространство (X,\mathcal{T}). Множество V \subset X называется замкнутым относительно топологии \mathcal{T}, если существует открытое множество U \in \mathcal{T} такое, что U = X \setminus V.

Замыкание

Замыканием множества U топологического пространства X называют минимальное по включению замкнутое множество Z, содержащее U.

Замыкание множества U \subset X обычно обозначается \bar U, \mathop{\rm Cl}U или \mathrm{Cl}_X U; последнее обозначение используется, если надо подчеркнуть, что \bar U рассматривается как множество в пространстве X.

Свойства

  • Множество U замкнуто тогда и только тогда, когда \bar U=U.

Примеры

  • Пустое множество \varnothing всегда замкнуто (и, в то же время, открыто).
  • Отрезок \subset \mathbb{R} замкнут в стандартной топологии на вещественной прямой , так как его дополнение открыто.
  • Множество \mathbb{Q} \cap замкнуто в пространстве рациональных чисел \mathbb{Q}, но не замкнуто в пространстве всех вещественных чисел \mathbb{R}.

Вариации и обобщения

См. также

Напишите отзыв о статье "Замкнутое множество"

Примечания

Литература

  • Завало С. Т. Елементи аналізу. Алгебра многочленів. - Київ: Радянська школа, 1972.
  • Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. - М .: Физматлит, 2004. - 575 с. - ISBN 5-9221-0266-4 .
  • Фихтенгольц Г. М. Основы математического анализа. - М .: Наука, 1954.

Отрывок, характеризующий Замкнутое множество

Наташа одна из первых встретила его. Она была в домашнем синем платье, в котором она показалась князю Андрею еще лучше, чем в бальном. Она и всё семейство Ростовых приняли князя Андрея, как старого друга, просто и радушно. Всё семейство, которое строго судил прежде князь Андрей, теперь показалось ему составленным из прекрасных, простых и добрых людей. Гостеприимство и добродушие старого графа, особенно мило поразительное в Петербурге, было таково, что князь Андрей не мог отказаться от обеда. «Да, это добрые, славные люди, думал Болконский, разумеется, не понимающие ни на волос того сокровища, которое они имеют в Наташе; но добрые люди, которые составляют наилучший фон для того, чтобы на нем отделялась эта особенно поэтическая, переполненная жизни, прелестная девушка!»
Князь Андрей чувствовал в Наташе присутствие совершенно чуждого для него, особенного мира, преисполненного каких то неизвестных ему радостей, того чуждого мира, который еще тогда, в отрадненской аллее и на окне, в лунную ночь, так дразнил его. Теперь этот мир уже более не дразнил его, не был чуждый мир; но он сам, вступив в него, находил в нем новое для себя наслаждение.
После обеда Наташа, по просьбе князя Андрея, пошла к клавикордам и стала петь. Князь Андрей стоял у окна, разговаривая с дамами, и слушал ее. В середине фразы князь Андрей замолчал и почувствовал неожиданно, что к его горлу подступают слезы, возможность которых он не знал за собой. Он посмотрел на поющую Наташу, и в душе его произошло что то новое и счастливое. Он был счастлив и ему вместе с тем было грустно. Ему решительно не об чем было плакать, но он готов был плакать. О чем? О прежней любви? О маленькой княгине? О своих разочарованиях?… О своих надеждах на будущее?… Да и нет. Главное, о чем ему хотелось плакать, была вдруг живо сознанная им страшная противуположность между чем то бесконечно великим и неопределимым, бывшим в нем, и чем то узким и телесным, чем он был сам и даже была она. Эта противуположность томила и радовала его во время ее пения.
Только что Наташа кончила петь, она подошла к нему и спросила его, как ему нравится ее голос? Она спросила это и смутилась уже после того, как она это сказала, поняв, что этого не надо было спрашивать. Он улыбнулся, глядя на нее, и сказал, что ему нравится ее пение так же, как и всё, что она делает.
Князь Андрей поздно вечером уехал от Ростовых. Он лег спать по привычке ложиться, но увидал скоро, что он не может спать. Он то, зажжа свечку, сидел в постели, то вставал, то опять ложился, нисколько не тяготясь бессонницей: так радостно и ново ему было на душе, как будто он из душной комнаты вышел на вольный свет Божий. Ему и в голову не приходило, чтобы он был влюблен в Ростову; он не думал о ней; он только воображал ее себе, и вследствие этого вся жизнь его представлялась ему в новом свете. «Из чего я бьюсь, из чего я хлопочу в этой узкой, замкнутой рамке, когда жизнь, вся жизнь со всеми ее радостями открыта мне?» говорил он себе. И он в первый раз после долгого времени стал делать счастливые планы на будущее. Он решил сам собою, что ему надо заняться воспитанием своего сына, найдя ему воспитателя и поручив ему; потом надо выйти в отставку и ехать за границу, видеть Англию, Швейцарию, Италию. «Мне надо пользоваться своей свободой, пока так много в себе чувствую силы и молодости, говорил он сам себе. Пьер был прав, говоря, что надо верить в возможность счастия, чтобы быть счастливым, и я теперь верю в него. Оставим мертвым хоронить мертвых, а пока жив, надо жить и быть счастливым», думал он.

Одна из основных задач теории точечных множеств - изучение свойств различных типов точечных множеств. Познакомимся с этой теорией на двух примерах и изучим свойства так называемых замкнутых и открытых множеств.


Множество называется замкнутым , если оно содержит все свои предельные точки. Если множество не имеет ни одной предельной точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым , если каждая его точка является для него внутренней.


Приведем примеры замкнутых и открытых множеств. Всякий отрезок есть замкнутое множество, а всякий интервал - открытое множество. Несобственные полуинтервалы и замкнуты, а несобственные интервалы и открыты. Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек. Множество, состоящее из точек



замкнуто; это множество имеет единственную предельную точку , которая принадлежит множеству.


Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.


1. Пересечение любого числа замкнутых множеств замкнуто.


2. Сумма любого числа открытых множеств есть открытое множество.


3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.


Пусть - произвольное множество точек на прямой. Назовем дополнением множества и обозначим через множество всех точек па прямой, не принадлежащих множеству . Ясно, что если есть внешняя точка для , то она является внутренней точкой для множества и обратно.


4. Если множество замкнуто, то его дополнение открыто и обратно.


Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.


Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть - замкнутое множество. Интервал , обладающий тем свойством, что ни одна из его точек не принадлежит множеству , а точки и принадлежат , называется смежным интервалом множества . К числу смежных интервалов мы будем также относить несобственные интервалы или , если точка или точка принадлежит множеству , а сами интервалы с не пересекаются. Покажем, что если точка не принадлежит замкнутому множеству , то она принадлежит одному из его смежных интервалов.


Обозначим через часть множества , расположенную правее точки . Так как сама точка не принадлежит множеству , то можно представить в форме пересечения



Каждое из множеств и замкнуто. Поэтому, в силу предложения 1, множество замкнуто. Если множество пусто, то весь полуинтервал не принадлежит множеству . Допустим теперь, что множество не пусто. Так как это множество целиком расположено на полуинтервале , то оно ограничено снизу. Обозначим через его нижнюю грань. Согласно предложению 3, , а значит . Далее, так как есть нижняя грань множества , то полуинтервал , лежащий левее точки , не содержит точек множества и, следовательно, не содержит точек множества . Итак, мы построили полуинтервал , не содержащий точек множества , причем либо , либо точка принадлежит множеству . Аналогично строится полуинтервал , не содержащий точек множества , причем либо , либо . Теперь ясно, что интервал содержит точку и является смежным интервалом множества . Легко видеть, что если и - два смежных интервала множества , то эти интервалы либо совпадают, либо не пересекаются.


Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества . Так как каждый интервал содержит по крайней мере одну рациональную точку, а всех рациональных точек на прямой - счетное множество, то легко убедиться, что число всех смежных интервалов не более чем счётно. Отсюда получаем окончательный вывод. Всякое замкнутое множество на прямой получается путем удаления из прямой не более чем счетного множества непересекающихся интервалов.


В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).


Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Канторово совершенное множество

Построим одно специальное замкнутое множество, обладающее рядом замечательных свойств. Прежде всего удалим из прямой несобственные интервалы и . После этой операции у нас останется отрезок . Далее, удалим из этого отрезка интервал , составляющий его среднюю треть. Из каждого из оставшихся двух отрезков и удалим его среднюю треть. Этот процесс удаления средних третей у остающихся отрезков продолжим неограниченно. Множество точек на прямой, остающееся после удаления всех этих интервалов, называется канторовым совершенным множеством; мы будем обозначать его буквой .


Рассмотрим некоторые свойства этого множества. Множество замкнуто, так как оно образуется путем удаления из прямой некоторого, множества непересекающихся интервалов. Множество не пусто; во всяком случае в нем содержатся концы всех выброшенных интервалов.


Замкнутое множество называется совершенным , если оно не содержит изолированных точек, т. е. если каждая его точка является предельной точкой. Покажем, что множество совершенно. Действительно, если бы некоторая точка была изолированной точкой множества , то она служила бы общим концом двух смежных интервалов этого множества. Но, согласно построению, смежные интервалы множества не имеют общих концов.


Множество не содержит ни одного интервала. В самом деле, допустим, что некоторый интервал целиком принадлежит множеству . Тогда он целиком принадлежит одному из отрезков, получающихся на -м шаге построения множества . Но это невозможно, так как при длины этих отрезков стремятся к нулю.


Можно показать, что множество имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество.

Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии.


Приведем несколько примеров появления точечных множеств в классических разделах анализа. Пусть - непрерывная функция, заданная на отрезке . Зафиксируем число и рассмотрим множество тех точек , для которых . Нетрудно показать, что это множество может быть произвольным замкнутым множеством, расположенным на отрезке . Точно так же множество точек , для которых , может быть каким угодно открытым множеством . Если есть последовательность непрерывных функций, заданных на отрезке , то множество тех точек , где эта последовательность сходится, не может быть произвольным, а принадлежит к вполне определенному типу.


Математическая дисциплина, занимающаяся изучением строения точечных множеств, называется дескриптивной теорией множеств . Весьма большие заслуги в деле развития дескриптивной теории множеств принадлежат советским математикам - Н.Н. Лузину и его ученикам П.С. Александрову, М.Я. Суслину, А.Н. Колмогорову, М.А. Лаврентьеву, П.С. Новикову, Л.В. Келдыш, А.А. Ляпунову и др.


Исследования Н.Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.



Понравилась статья? Поделитесь с друзьями!