Отличие реактора на быстрых нейтронах от медленных. Принцип работы реакторов на быстрых нейтронах

В нашей стране первые оценки по свойствам быстрого спектра нейтронов в приложении к ядерным реакторам были сделаны в 1946 г. по инициативе И.В. Курчатова. С 1949 г. руководителем работ по быстрым реакторам становится А.И. Лейпунский, под научным руководством которого примерно в то же время расчетным путем была показана возможность расширенного воспроизводство ядерного горючего и использование жидкометаллического теплоносителя в реакторах с быстрым спектром нейтронов. Обширные исследования с целью разработки физических и физико-технических основ быстрых реакторов начались в Физико-энергетическом институте в Обнинске, а затем во многих других организациях.

Для проведения исследований по физике и инженерным проблемам реакторов на быстрых нейтронах в ФЭИ были построены и введены в действие критические сборки (реакторы «нулевой» мощности) и исследовательские реакторы (ИР) на быстрых нейтронах: БР-1 (в 1955 г.), БР-2 (в 1956 г.), БР-5 (в 1959 г.), БФС-1 (в 1961 г.), БФС-2 (в 1969 г.), БР-10 (реконструкция БР-5, в 1973 г.).

В результате проведенных исследований на этих первых установках была подтверждена возможность достижения коэффициента воспроизводства ядерного горючего в быстрых реакторах КВ>1, в качестве основного ядерного топлива была рекомендована двуокись урана, а основного теплоносителя - жидкий натрий.

Первым демонстрационным быстрым реактором был ныне действующий исследовательский реактор БОР-60 .

  • получение опыта эксплуатации реакторов на быстрых нейтронах большей мощности;
  • проверка методов расчета нейтронно-физических характеристик (критмасса, поле тепловыделения, наработка плутония и его качество, коэффициенты реактивности);
  • проверка надежности оборудования, топлива; установка обессоливания морской воды, проверка систем безопасности;
  • проблемы с маслом, с парогенераторами, с твэлами, барабаном отработавших сборок (БОС), с системой перегрузки, с конструкционными материалами твэлов, ТВС и их решения;
  • материаловедческие исследования, исследования коэффициента воспроизводства, проверка естественной циркуляции, эксперимент с выходом в режим кипения в ТВС, эксперименты по динамике развития межконтурной течи.

Быстрый реактор БН-600 - работает в составе энергоблока мощностью 600 МВт - с 1980 года поставляет электроэнергию в сеть. В нем используется главным образом топливо на основе оксида урана, обогащенного до 17, 21 и 26%, и небольшое количество МОКС-топлива. Это реактор интегрального типа, промежуточные натрий-натриевые теплообменники и главные циркуляционные насосы находятся в корпусе реактора. Давление натриевого теплоносителя в корпусе немного (на 0,05 МПа) превышает атмосферное, поэтому опасность разрыва корпуса исключается. Парогенераторы, установленные за пределами корпуса, снабжают паром три 200 МВт турбогенератора.

27 июня 2014 г. состоялся физический пуск энергоблока №4 с реактором БН-800 , 10 декабря 2015 г. он был впервые включён в единую энергосистему страны, 31 октября 2016 г. - введен в промышленную эксплуатацию. Реактор начал работать с использованием так называемой гибридной активной зоны, в которой основную часть (84%) составляют ТВС с урановым топливом, и 16% – ТВС с МОХ-топливом. Перевод этого реактора на полную загрузку МОХ-топливом планируется в 2019 г. Для производства МОКС топлива построен завод.

Вреакторе БН-800 использованы как проверенные технические решения, реализованные в БН-600 , так и новые, существенно повышающие безопасность энергоустановки, такие как: нулевой натриевый пустотный эффект реактивности, гидравлически взвешенные стержни аварийной защиты, срабатывающие при снижении расхода теплоносителя, пассивные системы аварийного расхолаживания, под активной зоной предусмотрена специальная «ловушка» для сбора и удержания расплава и фрагментов активной зоной при ее разрушении в результате тяжелой аварии, повышена сейсмостойкость конструкции.

Быстрые реакторы, работающие в мире на данный момент

Реактор Статус реактора, компоновка, теплоноситель Мощность (тепловая/
электрическая)
Топливо
Страна Годы эксплуатация
БОР-60 Исследовательский, петлевой, натрий 55/10 оксид Россия 1969-2020
БН-600 1470/600 оксид Россия 1980-2020
БН-800 Опытно-промышленный, интегральный, натрий 2100/800 МОКС Россия 2016-2043
FBTR 40/13,2 карбид (металл) Индия 1985-2030
PFBR Прототип, интегральный, натрий 1250/500 оксид (металл) Индия -
CEFR Экспериментальный, интегральный, натрий 65/20 оксид
(МОКС)
Китай 2010-2040
Joyo Экспериментальный, интегральный, натрий 140/- оксид Япония 1978-2007, в данный момент находится на длительной реконструкции, возможен запуск 2021
Monju Прототип, петлевой, натрий 714/280 оксид Япония 1994-96, 2010, вывод из эксплуатации по решению японского правительства

Правительство Японии приняло решение полностью вывести из эксплуатации АЭС Monju - единственную в стране атомную электростанцию с реактором на быстрых нейтронах.

Агентство по ядерному регулированию (NRA) отложило рассмотрение вопроса о повторном пуске быстрого натриевого исследовательского реактора JOYO . Заявка на разрешение повторного пуска JOYO была подана в регулирующий орган 30 марта 2017 года. В заявке отсутствует предполагаемая дата рестарта.

Таким образом, с 1972 года (с момента пуска БН-350) в нашей стране быстрые реакторы используются для получения электроэнергии, опреснения воды. В настоящее время Россия является единственной в мире страной, в структуре атомной энергетики которой присутствуют реакторы на быстрых нейтронах. Это достигнуто благодаря тому, что только в нашей стране успешно пройдены все необходимые этапы освоения технологии БН - быстрых реакторов с натриевым теплоносителем.

Ядерные реакторы на быстрых нейтронах

Первая в мире атомная электростанция (АЭС), построенная в городе Обнинске под Москвой, дала ток в июне 1954 года. Мощность ее была весьма скромной – 5 МВт. Однако она сыграла роль экспериментальной установки, где накапливался опыт эксплуатации будущих крупных АЭС. Впервые была доказана возможность производства электрической энергии на основе расщепления ядер урана, а не за счет сжигания органического топлива и не за счет гидравлической энергии.

АЭС использует ядра тяжелых элементов – урана и плутония. При делении ядер выделяется энергия – она и «работает» в атомных электростанциях. Но можно использовать только ядра, имеющие определенную массу – ядра изотопов. В атомных ядрах изотопов содержится одинаковое число протонов и разное – нейтронов, из-за чего ядра разных изотопов одного и того же элемента имеют разную массу. У урана, например, 15 изотопов, но в ядерных реакциях участвует только уран-235.

Реакция деления протекает следующим образом. Ядро урана самопроизвольно распадается на несколько осколков; среди них есть частицы высокой энергии – нейтроны. В среднем на каждые 10 распадов приходится 25 нейтронов. Они попадают в ядра соседних атомов и разбивают их, высвобождая нейтроны и огромное количество тепла. При делении грамм урана выделяется столько же тепла, сколько при сгорании трех тонн каменного угля.

Пространство в реакторе, где находится ядерное топливо, называют активной зоной. Здесь идет деление атомных ядер урана и выделяется тепловая энергия. Чтобы предохранить обслуживающий персонал от вредного излучения, сопровождающего цепную реакцию, стенки реактора делают достаточно толстыми. Скоростью цепной ядерной реакции управляют регулирующие стержни из вещества, поглощающего нейтроны (чаще всего это бор или кадмий). Чем глубже опускают стержни в активную зону, тем больше нейтронов они поглощают, тем меньше нейтронов участвует в реакции и меньше выделяется тепла. И наоборот, когда регулирующие стержни поднимают из активной зоны, количество нейтронов, участвующих в реакции, возрастает, все большее число атомов урана делится, освобождая скрытую в них тепловую энергию.

На случай, если возникнет перегрев активной зоны, предусмотрена аварийная остановка ядерного реактора. Аварийные стержни быстро падают в активную зону, интенсивно поглощают нейтроны, цепная реакция замедляется или прекращается.

Тепло из ядерного реактора выводят с помощью жидкого или газообразного теплоносителя, который прокачивают насосами через активную зону. Теплоносителем может быть вода, металлический натрий или газообразные вещества. Он отбирает у ядерного топлива тепло и передает его в теплообменник. Эта замкнутая система с теплоносителем называется первым контуром. В теплообменнике тепло первого контура нагревает до кипения воду второго контура. Образующийся пар направляют в турбину или используют для теплофикации промышленных и жилых зданий.

До катастрофы на АЭС в Чернобыле советские ученые с уверенностью говорили о том, что в ближайшие годы в атомной энергетике будут широко использовать два основных типа реакторов. Один из них, ВВЭР – водо-водяной энергетический реактор, а другой – РБМК – реактор большой мощности, канальный. Оба типа относятся к реакторам на медленных (тепловых) нейтронах.

В водо-водяном реакторе активная зона заключена в огромный, диаметром 4 и высотой 15 метров, стальной корпус-цилиндр с толстыми стенами и массивной крышкой. Внутри корпуса давление достигает 160 атмосфер. Теплоносителем, отбирающим тепло в зоне реакции, служит вода, которую прокачивают насосами. Эта же вода служит и замедлителем нейтронов. В парогенераторе она нагревает и превращает в пар воду второго контура. Пар поступает в турбину и вращает ее. И первый и второй контуры – замкнутые.

Раз в полгода выгоревшее ядерное горючее заменяют на свежее, для чего надо реактор остановить и охладить. В России по этой схеме работают Нововоронежская, Кольская и другие АЭС.

В РБМК замедлителем служит графит, а теплоносителем – вода. Пар для турбины получается непосредственно в реакторе и туда же возвращается после использования в турбине. Топливо в реакторе можно заменять постепенно, не останавливая и не расхолаживая его.

Первая в мире Обнинская АЭС относится именно к этому типу. По той же схеме построены Ленинградская, Чернобыльская, Курская, Смоленская станции большой мощности.

Одной из серьезных проблем АЭС является утилизация ядерных отходов. Во Франции, к примеру, этим занимается крупная фирма «Кожема». Топливо, содержащее уран и плутоний, с большой осторожностью, в специальных транспортных контейнерах – герметичных и охлаждаемых – направляется на переработку, а отходы – на остекловывание и захоронение.

«Нам показали отдельные этапы переработки топлива, привезенного с АЭС с величайшей осторожностью, – пишет в журнале «Наука и жизнь» И. Лаговский. – Разгрузочные автоматы, камера разгрузки. Заглянуть в нее можно через окно. Толщина стекла в окне 1 метр 20 сантиметров. У окна манипулятор. Невообразимая чистота вокруг. Белые комбинезоны. Мягкий свет, искусственные пальмы и розы. Теплица с настоящими растениями для отдыха после работы в зоне. Шкафы с контрольной аппаратурой МАГАТЭ – международного агентства по атомной энергии. Операторский зал – два полукруга с дисплеями, – отсюда управляют разгрузкой, резанием, растворением, остекловыванием. Все операции, все перемещения контейнера последовательно отражаются на дисплеях у операторов. Сами залы работ с материалами высокой активности находятся довольно далеко, на другой стороне улицы.

Остеклованные отходы невелики по объему. Их заключают в стальные контейнеры и хранят в вентилируемых шахтах, пока не повезут на место окончательного захоронения…

Сами контейнеры являют собой произведение инженерного искусства, целью которого было соорудить нечто такое, что невозможно разрушить. Железнодорожные платформы, груженные контейнерами, пускали под откос, таранили на полном ходу встречными поездами, устраивали другие мыслимые и немыслимые аварии при перевозке – контейнеры выдерживали все».

После чернобыльской катастрофы 1986 года ученые стали сомневаться в безопасности эксплуатации АЭС и, в особенности, реакторов типа РБМК. Тип ВВЭР в этом отношении более благополучен: авария на американской станции Тримайл-айленд в 1979 году, где частично расплавилась активная зона реактора, радиоактивность не вышла за пределы корпуса. В пользу ВВЭР говорит долгая безаварийная эксплуатация японских АЭС.

И, тем не менее, есть еще одно направление, которое, по мнению ученых, способно обеспечить человечество теплом и светом на ближайшее тысячелетие. Имеются в виду реакторы на быстрых нейтронах, или реакторы-размножители. В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп хорошо поглощает быстрые нейтроны и превращается в другой элемент – плутоний-239. Реакторы на быстрых нейтронах очень компактны: им не нужны ни замедлители, ни поглотители – их роль играет уран-238. Называются они реакторами-размножителями, или бридерами (от английского слова «breed» – размножать). Воспроизведение ядерного горючего позволяет в десятки раз полнее использовать уран, поэтому реакторы на быстрых нейтронах считаются одним из перспективных направлений атомной энергетики.

В реакторах такого типа, кроме тепла, нарабатывается еще и вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь ни в первом, ни во втором контурах нет высокого давления. Теплоноситель – жидкий натрий. Он циркулирует в первом контуре, нагревается сам и передает тепло натрию второго контура, а тот, в свою очередь, нагревает воду в пароводяном контуре, превращая ее в пар. Теплообменники изолированы от реактора.

Одна из таких перспективных станций – ей дали название Монзю – была построена в районе Шираки на побережье Японского моря в курортной зоне в четырехстах километрах к западу от столицы.

«Для Японии, – говорит руководитель отдела ядерной корпорации Кансаи К. Такеноучи, – использование реакторов-размножителей означает возможность уменьшить зависимость от привозного природного урана за счет многократного использования плутония. Поэтому понятно наше стремление к разработке и совершенствованию "быстрых реакторов", достижению технического уровня, способного выдержать конкуренцию с современными АЭС в отношении экономичности и безопасности.

Развитие реакторов-размножителей должно стать основной программой выработки электроэнергии в ближайшем будущем».

Строительство реактора Монзю – уже вторая стадия освоения реакторов на быстрых нейтронах в Японии. Первой было проектирование и постройка экспериментального реактора Джойо (что по-японски означает «вечный свет») мощностью 50-100 МВт, который начал работать в 1978 году. На нем исследовались поведение топлива, новые конструкционные материалы, узлы.

Проект Монзю стартовал в 1968 году. В октябре 1985 года начали сооружать станцию – рыть котлован. В процессе освоения площадки 2 миллиона 300 тысяч кубометров скального грунта было сброшено в море. Тепловая мощность реактора – 714 МВт. Топливом служит смесь окислов плутония и урана. В активной зоне 19 регулирующих стержней, 198 топливных блоков, в каждом из которых по 169 топливных стержней (тепловыделяющих элементов – ТВЭЛов) диаметром 6,5 миллиметров. Они окружены радиальными топливовоспроизводящими блоками (172 штуки) и блоками нейтронных экранов (316 штук).

Весь реактор собран как матрешка, только разобрать его уже невозможно. Огромный корпус реактора, из нержавеющей стали (диаметр – 7,1 метра, высота – 17,8 метра), помещен в защитный кожух на случай, если при аварии разольется натрий.

«Стальные конструкции камеры реактора, – сообщает в журнале «Наука и жизнь» А Лаговский, – обечайки и стеновые блоки – в качестве защиты заполнены бетоном. Первичные натриевые системы охлаждения вместе с корпусом реактора окружены противоаварийной оболочкой с ребрами жесткости – ее внутренний диаметр 49,5 метра, а высота – 79,4 метра. Эллипсоидное дно этой громады покоится на сплошной бетонной подушке высотой 13,5 метра. Оболочка окружена полутораметровым кольцевым зазором, а далее следует толстый слой (1-1,8 метра) армированного бетона. Купол оболочки также защищен слоем армированного бетона толщиной 0,5 метра.

Вслед за противоаварийной оболочкой устроен еще один защитный корпус – вспомогательный – размером 100 на 115 метров, удовлетворяющий требованиям противосейсмического строительства. Чем не саркофаг?

Во вспомогательном корпусе реактора размещены вторичные системы натриевого охлаждения, пароводяные системы, топливные загрузочно-разгрузочные устройства, резервуар для хранения отработанного топлива. В отдельных помещениях расположены турбогенератор и резервные дизель-генераторы.

Прочность противоаварийной оболочки рассчитана как на избыточное давление в 0,5 атмосферы, так и на вакуум в 0,05 атмосферы. Вакуум может образоваться при выгорании кислорода в кольцевом зазоре, если разольется жидкий натрий. Все бетонные поверхности, которые могут войти в контакт с разлившимся натрием, сплошь облицованы стальными листами, достаточно толстыми для того, чтобы выдержать тепловые напряжения. Так защищаются на тот случай, которого вообще может и не произойти, поскольку должна быть гарантия и на трубопроводы, и на все другие части атомной установки».

Из книги Непознанное, отвергнутое или сокрытое автора Царева Ирина Борисовна

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Из книги Большая Советская Энциклопедия (РЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядерные боеприпасы Ядерные боеприпасы, боевые части ракет, торпед, авиационные (глубинные) бомбы, артиллерийские выстрелы, фугасы с ядерными зарядами. Предназначены для поражения различных целей, разрушения укреплений, сооружений и других задач. Действие Я. б. основано

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Из книги Эксплуатация электрических подстанций и распределительных устройств автора Красник В. В.

Из книги 100 великих тайн Востока [с иллюстрациями] автора Непомнящий Николай Николаевич

Из книги Большая энциклопедия консервирования автора Семикова Надежда Александровна

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги Бестселлер на миллион. Как написать, издать и раскрутить ваш бестселлер автора Масленников Роман Михайлович

Может собственных Платонов / И быстрых разумов Невтонов / Российская земля рождать Из оды «На день восшествия на престол императрицы Елизаветы» (1747) Михаила Васильевича Ломоносова (1711 - 1765).«Невтон» - старинное произношение имени английского физика и математика Исаака

Из книги автора

Что может собственных Платонов / И быстрых разумом Невтонов / Российская земля рождать Из «Оды на день восшествия на всероссийский престол ее Величества Государыни Императрицы Елисаветы Петровны 1747 года» Михаила Васильевича Ломоносова (1711 - 1765). «Невтон» -

Из книги автора

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше - с эффективным

Из книги автора

Из книги автора

Из книги автора

Реакторы химические Реакторы химические – устройства, обеспечивающие химические реакции. Различаются по конструкции, условиям протекания реакции, состоянию веществ, которые в реакторе взаимодействуют (их концентрации, давлению, температуре). В зависимости от

Из книги автора

Три раздела для самых быстрых Эта книга небольшая, так задумано специально. Как волшебный пинок! Прочитали – сделали – получили результат.Сейчас будут три раздела для самых активных. Если вы быстро схватываете, вам будет достаточно уже этих пяти страниц, чтобы совершить

Слайд 11. В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным 235U топливом. Активная зона окружается зоной воспроизводства, состоящей

из твэлов, содержащих топливное сырье (обедненный 228U или 232Th). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

Основное назначение реактора на быстрых нейтронах - производство оружейного плутония (и некоторых других делящихся актинидов), компонентов атомного оружия. Но подобные реакторы находят применение и в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 239Pu из 238U с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Слайд 12. Реактор-размножитель, ядерный реактор, в котором «сжигание» ядерного топлива сопровождается расширенным воспроизводством вторичного топлива. В реакторе-размножителе, нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 235U), взаимодействуют с ядрами помещенного в реактор сырьевого материала (например,238U), в результате образуется вторичное ядерное топливо (239Pu). В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 235U, воспроизводится 233U), в реакторе типа реактор - конвертер - изотопы разных химических элементов (например, сжигается 235U, воспроизводится 239Pu).

В быстрых реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа 235U . Такой реактор обеспечивает расширенное воспроизводство ядерного горючего (в нем наряду с исчезновением атомов, способных к делению, происходит регенерация некоторых из них (например, образование 239Pu)). Основное число делений вызывается быстрыми нейтронами, причем каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 238U превращает их (посредством двух последовательных в--распадов) в ядра 239Pu, т.е. нового ядерного топлива. Это значит, что, например, на 100 разделившихся ядер горючего (235U) в реакторах на быстрых нейтронах образуется 150 ядер 239Pu, способных к делению. (Коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг 235U получается до 1,5 кг Pu). 239Pu можно использовать в реакторе как делящийся элемент.

С точки зрения развития мировой энергетики, преимущество реактора на быстрых нейтронах (БН) состоит в том, что он позволяет использовать как топливо изотопы тяжелых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U - основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U. Отметим, что в обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Слайд 13. БН - ядерный реактор, на быстрых нейтронах. Корпусной реактор-размножитель. Теплоносителем первого и второго контуров обычно является натрий. Теплоноситель третьего контура - вода и пар. В быстрых реакторах замедлитель отсутствует.

К достоинствам быстрых реакторов можно отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам - дороговизну, из-за невозможности использования простейшего теплоносителя - воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива.

Высокообогащенный уран - уран с содержанием изотопа урана-235 по массе равным или более 20 %. Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. Обычно используются жидкие металлы, например, расплав натрия (температура плавления натрия 98 °C). К недостаткам натрия следует отнести его высокую химическую активность по отношению к воде, воздуху и пожароопасность. Температура теплоносителя на входе в реактор - 370 оС, а на выходе - 550, что в десять раз выше аналогичных показателей, скажем, для ВВЭР - там температура воды на входе - 270 градусов, а на выходе - 293.

Сопровождающееся выделением температуры, в зависимости от конструктивных особенностей различают две их разновидности - реактор на быстрых нейтронах и медленных, иногда называемых тепловыми.

Нейтроны, выделившиеся в процессе реакции, обладают очень высокой начальной скоростью, теоретически преодолевая за секунду тысячи километров. Это - быстрые нейтроны. В процессе перемещения из-за столкновения с атомами окружающей материи их скорость замедляется. Одним из простых и доступных способов искусственно снизить скорость является размещение у них на пути воды или графита. Таким образом, научившись регулировать уровень этих частиц, человек получил возможность создать два типа реакторов. Свое название «тепловые» нейтроны получили благодаря тому, что скорость их перемещения после замедления практически соответствует естественной скорости внутриатомного теплового движения. В численном эквиваленте она составляет до 10 км в секунду. Для микромира это значение относительно низко, поэтому захват частиц ядрами происходит очень часто, вызывая новые витки деления (цепную реакцию). Следствием этого является необходимость в гораздо меньшем количестве делящегося вещества, чем не могут похвастаться реакторы на быстрых нейтронах. Кроме того, снижаются некоторые другие Данный момент как раз и объясняет, почему большинство работающих ядерных станций используют именно медленные нейтроны.

Казалось бы - если все просчитано, то зачем нужен реактор на быстрых нейтронах? Оказывается, не все так однозначно. Важнейшее преимущество таких установок - способность обеспечивать другие реакторы, а также создавать увеличенный цикл деления. Остановимся на этом более подробно.

Реактор на быстрых нейтронах более полно использует загруженное в активную зону топливо. Начнем по порядку. Теоретически, использовать в качестве горючего можно лишь два элемента: плутоний-239 и уран (изотопы 233 и 235). В природе встречается лишь изотоп U-235, но его совсем мало, чтобы говорить о перспективности такого выбора. Указанные уран и плутоний - это производные от тория-232 и урана-238, которые образуются в результате воздействия на них потока нейтронов. А вот уже эти два гораздо чаще встречаются в естественной форме. Таким образом, если бы удалось запустить самоподдерживающуюся цепную реакцию деления U-238 (или плутония-232) , то ее результатом стало бы возникновение новых порций делящегося вещества - урана-233 или плутония-239. При замедлении нейтронов до тепловой скорости (классические реакторы) такой процесс невозможен: топливом в них служат именно U-233 и Pu-239, а вот реактор на быстрых нейтронах позволяет выполнить такое дополнительное преобразование.

Процесс выглядит следующим образом: загружаем уран-235 или торий-232 (сырье), а также порцию урана-233 или плутония-239 (топливо). Последние (любой из них) обеспечивают поток нейтронов, необходимый для «зажигания» реакции в первых элементах. В процессе распада выделяется преобразуемая генераторами станции в электричество. Быстрые нейтроны воздействуют на сырье, преобразуя эти элементы в…новые порции топлива. Обычно количества сгоревшего и образовавшегося топлива равны, но если сырья загружено больше, то генерация новых порций делящегося материала происходит даже быстрее, чем расход. Отсюда второе название таких реакторов - размножители. Излишки топлива можно использовать в классических медленных разновидностях реакторов.

Недостаток моделей на быстрых нейтронах в том, что перед загрузкой уран-235 должен быть обогащен, что требует дополнительных финансовых вложений. Кроме того, сама конструкция активной зоны более сложна.



Понравилась статья? Поделитесь с друзьями!