Параллельное проецирование. Параллельная проекция

Частный случай центрального проецирования с центром проекций, находящимся в бесконечности (в несобственной точке O ). Осуществляется связкой лучей заданного направленияS (рис. 2).

Аппарат параллельного проецирования:

  плоскость проекций;

S - направление проецирования;

[O A ][O B ] S

A  = [OA ]  - параллельная проекция точки А на плоскость;

l  = (AA  BB ) -параллельная проекция прямой на плоскость .

Обратимости нет. Одна центральная проекция точки не позволяет судить о положении точки в пространстве. А = D

Геометрические фигуры проецируются на плоскость проекций, в общем случае, с искажением. Характер искажений зависит от аппарата проецирования и положения проецируемой фигуры относительно плоскости проекций.

В частности, при параллельном проецировании нарушаются метрические характеристики геометрических фигур (искажаются линейные и угловые величины). Некоторые свойства фигуры сохраняются на ее проекции.

Сохраняющиеся в проекции свойства фигуры называются независимыми или ИНВАРИАНТНЫМИ. Эти инвариантные свойства часто называют сокращенно: инварианты.

Инварианты параллельного проецирования

    Проекция точки есть точка (рис. 1; рис.2)

    Проекция прямой есть прямая (рис. 1; рис.2)

3 . Проекция точки, принадлежащей прямой, принадлежит проекции.

этой прямой (рис. 1; рис.2)

    Проекция точки пересечения прямых определяется пересечением проекций этих прямых (рис. 3)

    Проекции взаимно параллельных прямых взаимно параллельны (рис. 4)

    Отношение длин отрезков взаимно параллельных прямых равно отношению длин их проекций (рис. 4)

СЛЕДСТВИЕ: если отрезок прямой делится точкой в каком-либо отношении, то проекция отрезка делится проекцией этой точки в том же отношении (рис. 5)

7 . Плоская фигура, параллельная плоскости проекций, проецируется на эту плоскость в конгруэнтную фигуру (рис. 6)


Рис. 3 Рис. 4


Рис. 5 Рис. 6

    1. Прямоугольное (ортогональное) проецирование

Частный случай параллельного проецирования, при котором напраление проецирования перпендикулярно плоскости проекций (рис. 7)

В дальнейшем безоговорочно используется ортогональное проецирование.

В ортогональном проецировании сохраняются все свойства параллельного проецирования. Кроме того, для ортогонального проецирования справедлива теорема о проецировании прямого угла (смотри тему №6) и применим способ определений расстояния между точками (т.е. длины отрезка, смотри тему №3), называемый способом прямоугольного треугольника.

Рис. 7

БОЛЕЕ ПОДРОБНО...

Положение предмета в пространстве определяют четыре его точки, не лежащие в одной плоскости. Изображение пространственного предмета на чертеже сводится к построению проекций множества точек этого предмета на плоскости R (называемой плоскостью проекций) при помощи прямых линий (проецирующих лучей), проходящих через точки предмета и направленных к центру проецированияS .

Однако, чтобы построить проекцию предмета, не обязательно строить все его точки. Достаточно найти лишь проекции характерных точек (вершин, ребер и т.п.), которые затем соединить соответствующей линией.

Проецирующие лучи в совокупности образуют проецирующую поверхность . Так, при проецировании прямой АВ проецирующей поверхностью является плоскость АВba (рис.).

Линия пересечения ab проецирующей плоскости с плоскостьюR представляет собой проекцию прямойAB , которая слагается из проекций отдельных ее точек.

Проекция подобна тени, отброшенной от предмета, освещенного лампой или солнцем.

При проецировании кривой линии в первом случае проецирующие лучи образуют коническую поверхность с вершиной в точке S , получаетсяк оническое(перспективное) изображение кривой (рис. 2). Во втором случае конус проецирующих лучей превращается в цилиндр и коническое изображение переходит вцилиндрическое (параллельное) (рис. 2). Проекция кривой линии рассматривается при этом как линия пересечения проецирующей поверхности с плоскостьюR .

В перспективе предмет изображается таким, каким он представляется глазу наблюдателя. Хрусталик глаза является центром проецирования. Каждому из нас знакомо следующее явление: если смотреть вдоль полотна железной дороги, нам кажется, что рельсы как бы сближаются между собой и на горизонте сходятся в одну точку (центр), а опоры, расположенные вдоль путей, уменьшаются по мере удаления.

Параллельное проецирование - частный случай перспективы. Суть параллельного проецирования заключается в следующем: если условно удалить центр проецирования в бесконечность, то проецирующие лучи можно считать параллельными.

Так, чтобы построить параллельную проекцию треугольника ABC (рис.), нужно задать:R - плоскость проекций (не параллельную и не совпадающую с направлением проецирующих лучей);S - направление проецирующих лучей (направление проецирования).

Далее, через характерные точки предмета проводят проецирующие лучи Аа ,Вb иСс параллельно направлению проецирования, а затем находят точкиa ,b и с их пересечения с плоскостьюR . Эти точки - искомые параллельные проекции точекА ,В иС заданного треугольника.

Проекция abc - линия пересечения проецирующей призматической поверхности с плоскостьюR . Форма и размеры параллельной проекции какого-либо предмета при заданном направлении проецирования зависят только от выбора направления плоскости проекций и не зависят от ее удаления от предмета. Треугольник, расположенный в плоскостиR 1 , параллельной плоскости проекций, проецируется равным заданному. В этом случаеab =AB ,bc =BC ,ac =AC .

В зависимости от угла наклона проецирующего луча к плоскости проекций параллельное проецирование делится на два вида: прямоугольное и косоугольное.

ПРЯМОУГОЛЬНЫМ (или ортогональным) проецирование называется в том случае, когда направление проецирования выбрано перпендикулярным плоскости проекций. В другом случае оно называетсяКОСОУГОЛЬНЫМ .

При прямоугольном проецировании (рис. 7) величина коэффициента искажения не может превышать единицы.

В косоугольных проекциях (рис. 5) коэффициент искажения (К =ab /AB ) данного отрезкаАВ может принимать любые числовые значения в зависимости от наклона отрезка и проецирующих лучей к плоскости проекций. В частности, если направление отрезка совпадает с направлением проецирования, то проекцией этого отрезка будет точка, а коэффициент искажения равен нулю.

В параллельном проецировании сохраняются основные свойства перспективы, а именно:

1) проекция точки есть точка;

2) проекция прямой в общем случае будет прямая;

3) каждой точке, принадлежащей какой-либо линии, соответствует проекция этой точки на проекции данной линии.

Кроме того, параллельное проецирование имеет еще ряд (только ему присущих) свойств:

4) если точка лежит на отрезке прямой, то проекция этой точки делит проекцию отрезка в том же отношении, в каком

точка делит отрезок, т.е. AC /CB =ас /cb (рис. 5);

5) проекцией пересекающихся отрезков будут также пересекающиеся отрезки, а точка их пересечения будет проекцией точки пересечения данных отрезков (рис. 3);

6) проекции параллельных отрезков параллельны, одного направления, а их отношение равно отношению длин отрезков, т.е. ab cd иAB /CD =ab /cd (рис. 4);

    при прямоугольном проецировании прямой угол проецируется прямым углом только в том случае, если одна из его сторон параллельна плоскости проекций, а вторая не является проецирующим лучом (теорема о проецировании прямого угла) .

Параллельное проецирование

Широкое распространение в практике получил частный случай центрального проецирования, когда центр проецирования S удален в бесконечность от плоскости проекций П¢. Проецирующие лучи при этом практически параллельны между собой, поэтому данный способ получил название параллельного проецирования , а полученные с его помощью изображения (проекции) фигуры на плоскости называют параллельными проекциями .

Рисунок 1-2

Возьмем в пространстве какую-либо фигуру, например линию АВ (рисунок1-2). Спроецируем ее на плоскость проекций П¢. Направление проецирования укажем стрелкой S. Чтобы спроецировать точку А на плоскость П¢ надо провести через эту точку параллельно направлению S прямую линию до пересечения с плоскостью проекций П¢. Полученная точка А¢ называется параллельной проекцией точки А. Аналогично находим проекции других точек линии АВ.

Совокупность всех проецирующих лучей определяет (представляет) в пространстве цилиндрическую поверхность, поэтому такой способ проецирования называют цилиндрическим.

2.3Основные свойства параллельного проецирования

1) Проекцией точки является точка. АÞА¢ (рисунок 1-3а).



2) Проекцией прямой является прямая (свойство прямолинейности ).

Действительно, при параллельном проецировании все проецирующие лучи будут лежать в одной плоскости Е. Эта плоскость пересекает плоскость проекций по прямой линии (рисунок 1-3б).

3) Если в пространстве точка принадлежит линии (лежит на ней), то проекция этой точки принадлежит проекции линии (свойство принадлежности ), (рисунок 1-Зб, точка М).

4) Проекции взаимно параллельных прямых также взаимно параллельны, т.к. (рисунок 1-3б, в), (l )ll(m )Þ (l ¢) II (m ").

5) Если отрезок прямой делится точкой в некотором отношении, то проекция отрезка делится проекцией этой точки в том же отношении.

Докажем это: введем СЕ//A’С" и DВ//С"B", тогда . Из подобия треугольников следует, что

½АС½/½СВ½=½СЕ½/½DB½=½A¢C¢½/½C¢B¢½.

6) Параллельный перенос плоскости проекций или фигуры (без поворота) не меняет вида и размеров проекции фигуры (рисунок1-4).



2.4 Прямоугольное проецирование

Частный случай параллельного проецирования, при котором направление проецирования S перпендикулярно плоскости проекций П¢, еще больше упрощает построение чертежа и наиболее часто применяется в конструкторской практике. Этот способ называют прямоугольным проецированием или (что тоже) ортогональным проецированием.

Метод ортогональных проекций был впервые изложен французским геометром Гаспаром Монжем, поэтому иногда его называют методом Монжа. Этот метод является основным при составлении технических чертежей, поскольку позволяет наиболее полно судить о размерах изображенных предметов. В этом случае нетрудно установить соотношение между длиной некоторого отрезка АВ в пространстве и длиной его проекции А¢В¢(рисунок 1-5).

Рассмотренные способы проецирования позволяют однозначно решать прямую задачу - по данному оригиналу строить его проекционный чертеж. Однако только одна параллельная проекция без каких-либо дополнений недостаточна для полного представления о том, каким является этот предмет в натуре. По такому изображению (рисунок 1-6) нельзя определить не только форму и размеры предмета, но и его положение в пространстве, т.е. параллельная проекция не обладает свойством обратимости. Для получения обратимых чертежей проекционный чертеж дополняют необходимыми данными. Способы дополнения бывают различными. Мы в курсе начертательной геометрии будем рассматривать два вида обратимых чертежей:

1. комплексные чертежи в ортогональных проекциях;

2. аксонометрические чертежи.

В задачах по геометрии успех зависит не только от знания теории, но от качественного чертежа.
С плоскими чертежами все более-менее понятно. А в стереометрии дело обстоит сложнее. Ведь изобразить надо трехмерное тело на плоском чертеже, причем так, чтобы и вы сами, и тот, кто смотрит на ваш чертеж, увидели бы то же самое объемное тело.

Как это сделать?
Конечно, любое изображение объемного тела на плоскости будет условным. Однако существует определенный набор правил. Существует общепринятый способ построения чертежей — параллельное проецирование .

Возьмем объемное тело.
Выберем плоскость проекции .
Через каждую точку объемного тела проведем прямые, параллельные друг другу и пересекающие плоскость проекции под каким-либо углом. Каждая из этих прямых пересекает плоскость проекции в какой-либо точке. А все вместе эти точки образуют проекцию объемного тела на плоскость, то есть его плоское изображение.

Как строить проекции объемных тел?
Представьте, что у вас есть каркас объемного тела — призмы, пирамиды или цилиндра. Освещая его параллельным пучком света, получаем изображение — тень на стене или на экране. Заметим, что в разных ракурсах получаются разные изображения, но некоторые закономерности все же присутствуют:

Проекцией отрезка будет отрезок.

Конечно, если отрезок перпендикулярен плоскости проекции — он отобразится в одну точку.

Проекцией круга в общем случае окажется эллипс.

Проекцией прямоугольника — параллелограмм.

Вот как выглядит проекция куба на плоскость:

Здесь передняя и задняя грани параллельны плоскости проекции

Можно сделать по-другому:

Какой бы ракурс мы ни выбрали, проекциями параллельных отрезков на чертеже тоже будут параллельные отрезки . Это один из принципов параллельного проецирования.

Рисуем проекции пирамиды,

цилиндра:

Еще раз повторим основной принцип параллельного проецирования. Выбираем плоскость проекции и через каждую точку объемного тела проводим параллельные друг другу прямые. Эти прямые пересекают плоскость проекции под каким-либо углом. Если этот угол равен 90° — речь идет о прямоугольном проецировании . С помощью прямоугольного проецирования строятся чертежи объемных деталей в технике. В этом случае мы говорим о виде сверху, виде спереди и виде сбоку.

Рассматриваемые вопросы:

  • 1. Понятие о проецировании
  • 4. Метод Монжа
  • 5. Аксонометрическая проекция

Понятие о проецировании. Изображения предметов на чертежах получают проецированием. Проецирование есть процесс построения изображения предмета на плоскости при помощи проецирующих лучей. В результате этого процесса получается изображение, называемое проекцией .

Слово «проекция» в переводе с латинского означает бросание вперед, вдаль. Проекцию можно наблюдать, рассматривая тень, отбрасываемую предметом на поверхность стены при освещении этого предмета источником света. компьютерный графика проецирование эскизирование

Под проецированием подразумевается процесс, в результате которого получаются изображения (проекции на плоскости), т.е. когда через характерные точки фигуры проводятся лучи до пересечения их с плоскостью, и полученные точки от пересечения лучей с плоскостью соединяют прямыми или кривыми линиями соответствующим образом.

Центральное (коническое) проецирование. В пространстве будет плоскость П1, назовем ее плоскостью проекции или картинной плоскостью. Возьмем какую-либо точку S, не принадлежащую плоскости проекции П1. Назовем ее центром проекции (Рис. 19).

Чтобы спроецировать фигуру АВС, называемую оригиналом, надо провести из точки S через точки А, В, С прямые, называемые проецирующими лучами, до пересечения их с плоскостью П1 в точках А1, В1, С1. Соединив их последовательно прямыми линиями, получим фигуру А1В1С1. Это будет центральная проекция А1В1С1 данной фигуры АВС на плоскость проекции П1.

Рис.19.

Параллельное (цилиндрическое) проецирование. При параллельном проецировании, как и в случае центрального проецирования, берут плоскость проекций П1, а вместо центра проекций S задают направление проецирования.

Задаем направление проецирования S не параллельно плоскости П1, считая, что точка S - центр проецирования - удалена в бесконечность. Оригинал проецирования та же фигура АВС, расположенная в пространстве. Чтобы спроецировать фигуру АВС, проводим через точки А, В, С параллельно направлению проецирования S проецирующие лучи до пересечения их с плоскостью проекцией П1 в точках А1,В1,С1. Точки А1,В1,С1 соединим прямыми линями, получим фигуры А1В1С1; это будет параллельная проекция фигуры АВС на плоскость П1. Таков процесс параллельного проецирования (Рис. 20).

Рис.20.

Если оригиналом является прямая линия, то все проецирующие лучи точек этой прямой будут располагаться в одной плоскости, называемой проецирующей плоскостью.

Плоскость Р, проходящая через проецирующие прямые ВВ1 и СС1, пересекает плоскость проекции П1 по прямой. Эту прямую можно рассматривать как проекцию прямой, заданной точками В и С. В зависимости от направления проецирования S к плоскости проекций параллельное проецирование разделяют на прямоугольные (ортогональные) и косоугольные проецирование (Рис. 21).


Рис.21 Прямоугольное и косоугольное проецирование

Прямоугольное проецирование , когда направление проецирования S с плоскостью проекций составляет прямой угол (Рис. 21а).

Косоугольное проецирование , когда направление проецирования составляет с плоскостью проекции угол меньше 90 ?(Рис. 21б).

Метод Монжа . Сведения и приемы построений, обусловливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно еще с древних времен. В течение продолжительного периода плоские изображения выполнялись преимущественно как изображения наглядные. С развитием техники первостепенное значение приобрел вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т. е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путем простых приемов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приемы построений таких изображений были приведены в систему и развиты в труде французского ученого Гаспара Монжа, изданном в 1799 г.

Прямоугольное проецирование есть частный случай параллельного проецирования. Метод ортогональных проекций называют методом Монжа . Этот метод является наиболее распространенным при составлении технических чертежей. Он не дает наглядности изображения, но зато является простым и удобным при выполнении чертежа и дает высокую точность. Метод Монжа - это прямоугольная параллельная проекция на две взаимно перпендикулярные плоскости проекций. Такой комплекс двух связанных между собой ортогональных проекций выявляет положение проецируемого предмета в пространстве. Изложенный Монжем метод обеспечивает выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей (рисунок 22).

Слово прямоугольный часто заменяют словом ортогональный, образованным из слов древнегреческого языка, обозначающих «прямой» и «угол». В дальнейшем изложении термин ортогональные проекции будет применяться для обозначения системы прямоугольных проекций на взаимно перпендикулярных плоскостях. На рисунке 22 изображены две взаимно перпендикулярные плоскости. Примем их за плоскости проекций. Одна из них, обозначенная буквой П1, расположена горизонтально; другая, обозначенная буквой П2, -- вертикально. Эту плоскость называют фронтальной плоскостью проекций, плоскость П1 называют горизонтальной плоскостью проекций . Плоскости проекций П1, и П2 образуют систему П1, П2.

Линия пересечения плоскостей проекций называется осью проекций . Ось проекций разделяет каждую из плоскостей П1, и П2 на полуплоскости. Для этой оси будем применять обозначение х или обозначение в виде дроби П2 / П1.

Рис.22.

Аксонометрическая проекция . Если предмет с отнесенными к нему осями прямоугольных координат расположить перед плоскостью проекций и проецировать параллельными лучами на одну плоскость, которую в этом случае называют картинной, то получают аксонометрическую проекцию.

На рис. 23 показаны куб, отнесенные к нему оси прямоугольных координат х0,у0,z0, плоскость проекций Р и аксонометрическое изображение куба.

Рис.23. Образование аксонометрических проекций: а и б - фронтальной диметрической; в и г - изометрической

Аксонометрия - слово греческое, в переводе означает измерение по осям. При построении аксонометрических проекций размеры откладывают вдоль осей х,у,z.

Аксонометрические проекции достаточно наглядны, поэтому в ряде случаев они применяются для пояснения прямоугольных проекций сложных машин и механизмов и их отдельных деталей. При аксонометрическом проецировании фигура связывается с пространственной системой координатных осей, затем эту фигуру с осями координат проецируют на одну плоскость. Эту плоскость называют плоскостью аксонометрических проекций.

Аксонометрические проекции, полученные прямоугольным проецированием фигуры с координатными осями, называют прямоугольными, а полученные при косоугольном проецировании - косоугольными.

Плоскостью проекций называют плоскость, на которой получают проекцию предмета.



Понравилась статья? Поделитесь с друзьями!