Радиация в космосе влияние на человека. Что такое космическая радиация? Источники, опасность

Комикс про то, как ученые в борьбе с космической радиацией освоят Марс.

В ней рассматривается несколько направлений для будущих исследований по защите космонавтов от облучения, включая лекарственную терапию, генную инженерию и технологию гибернации. Авторы также замечают, что радиация и старение убивают организм схожими методами, и предполагают, что способы борьбы с одним могут действовать и против другого. Статья с боевым девизом в названии Viva la radioresistance! («Да здравствует сопротивление радиации!») была опубликована в журнале Oncotarget .

«Ренессанс космонавтики, вероятно, приведет к первым человеческим миссиям на Марс и в глубокий космос. Но для выживания в условиях повышенной космической радиации людям придется стать более устойчивыми к внешним факторам. В этой статье мы предлагаем методологию достижения повышенной радиорезистентности, стрессоустойчивости и устойчивости к старению. В процессе работы над стратегией мы собрали ведущих ученых из России, а также из NASA, Европейского космического агентства, Канадского радиационного центра и более чем 25 других центров по всему миру. На Земле тоже пригодятся технологии радиорезистентности, особенно если «побочным эффектом» будет здоровое долголетие», – комментирует Александр Жаворонков, адъюнкт-профессор МФТИ.

. " alt="Мы сделаем так, чтобы радиация не препятствовала человечеству в покорении космоса и колонизации Марса. Благодаря ученым долетим до Красной планеты и будем устраивать там диско и жарить барбекю. " src="/sites/default/files/images_custom/2018/03/mars7.png">

Мы сделаем так, чтобы радиация не препятствовала человечеству в покорении космоса и колонизации Марса. Благодаря ученым долетим до Красной планеты и будем устраивать там диско и жарить барбекю.

Космос против человека

«В космических масштабах наша планета – всего лишь небольшой корабль, неплохо защищенный от космического излучения. Магнитное поле Земли отклоняет солнечные и галактические заряженные частицы, тем самым существенно снижая уровень радиации на поверхности планеты. При дальних космических полетах и колонизации планет с очень слабыми магнитными полями (например, Марса) такой защиты не будет, и астронавты и колонисты будут подвергаться постоянному воздействию потоков заряженных частиц с огромной энергией. Фактически космическое будущее человечества зависит от того, как мы преодолеем эту проблему», – делится заведующий отделом экспериментальной радиобиологии и радиационной медицины Федерального медицинского биофизического центра имени А. И. Бурназяна, профессор РАН, сотрудник лаборатории разработки инновационных лекарственных средств МФТИ Андреян Осипов.

Человек беззащитен перед опасностями космоса: солнечное облучение, галактические космические лучи, магнитные поля, радиоактивная среда Марса, радиационный пояс Земли, микрогравитация (невесомость).

Человечество со всей серьезностью нацелилось колонизировать Марс – SpaceX обещает доставить человека на Красную планету уже в 2024 году, однако некоторые существенные проблемы до сих пор не решены. Так, одной из основных опасностей для здоровья космонавтов является космическая радиация. Ионизирующее излучение повреждает биологические молекулы, в частности ДНК, что приводит к различным нарушениям: нервной системы, сердечно-сосудистой системы и, главным образом, к раку. Ученые предлагают объединить усилия и, используя последние достижения биотехнологий, повысить радиорезистентность человека, чтобы он мог покорять просторы глубокого космоса и колонизировать другие планеты.

Человеческая оборона

У организма есть способы защищаться от повреждений ДНК и восстанавливать их. На наше ДНК постоянно воздействует природная радиация, а также активные формы кислорода (АФК), которые образуются при нормальном клеточном дыхании. Но при починке ДНК, особенно в случае тяжелых повреждений, могут происходить ошибки. Накопление повреждений ДНК считается одной из главных причин старения, так что радиация и старение – схожие враги человечества. Однако клетки могут адаптироваться к облучению. Показано, что маленькая доза радиации может не только не навредить, но и подготовить клетки ко встрече с более высокими дозами. Сейчас международные стандарты радиационной защиты это не учитывают. Последние же исследования говорят о том, что существует некий порог радиации, ниже которого действует принцип «тяжело в учении – легко в бою». Авторы статьи считают, что нужно исследовать механизмы радиоадаптивности, чтобы взять их на вооружение.

Способы повышения радиорезистентности: 1) генная терапия, мультиплексная генная инженерия, экспериментальная эволюция; 2) биобанкинг, регенеративные технологии, инженерия тканей и органов, индуцированное обновление клеток, клеточная терапия; 3) радиопротекторы, геропротекторы, антиоксиданты; 4) гибернация; 5) дейтерированные органические компоненты; 6) медицинский отбор радиорезистентных людей.

Заведующий лабораторией генетики продолжительности жизни и старения МФТИ, член-корреспондент РАН, доктор биологических наук Алексей Москалев поясняет: «Наши многолетние исследования эффектов малых доз ионизирующих излучений на продолжительность жизни модельных животных показали, что небольшие повреждающие воздействия способны стимулировать собственные защитные системы клеток и организма (репарацию ДНК, белки теплового шока, удаление нежизнеспособных клеток, врожденный иммунитет). Однако в космосе люди столкнутся с более существенным и опасным диапазоном доз радиации. Нами накоплена большая база данных по геропротекторам. Полученные знания говорят о том, что многие из них функционируют по механизму активизации резервных возможностей, повышения стрессоустойчивости. Вполне вероятно, что подобная стимуляция поможет будущим колонизаторам космических просторов».

Инженерия космонавтов

Более того, среди людей радиорезистентность отличается: кто-то больше устойчив к радиации, кто-то меньше. Медицинский отбор радиорезистентных индивидов предполагает взятие образцов клеток у потенциальных кандидатов и всесторонний анализ радиоадаптивности этих клеток. Самые устойчивые к облучению полетят в космос. Кроме этого, можно проводить полногеномные исследования людей, проживающих в областях с высоким уровнем фонового излучения или сталкивающихся с ним по профессии. Геномные отличия людей, менее подверженных раку и другим заболеваниям, связанным с облучением, можно в будущем выделить и «привить» космонавтам с помощью современных методов генной инженерии, таких как редактирование генома.

Есть несколько вариантов, какие гены нужно внести, чтобы повысить радиорезистентность. Во-первых, гены антиоксидантов помогут защитить клетки от активных форм кислорода, появляющихся в результате облучения. Несколько экспериментальных групп уже успешно попробовали снизить чувствительность к радиации с помощью таких трансгенов. Однако от прямого воздействия облучения этот способ не спасет, только от опосредованного.

Можно вносить гены белков, ответственных за восстановление ДНК. Такие опыты уже проводились – некоторые гены действительно помогали, а некоторые приводили к повышенной геномной неустойчивости, так что эта область ждет новых исследований.

Более перспективный метод – это использование радиозащитных трансгенов. Многие организмы (например тихоходки) обладают высокой степенью радиорезистентности, и если выяснить, какие гены и молекулярные механизмы за этим стоят, их можно перевести на людей с помощью генной терапии. Чтобы убить 50% тихоходок, нужна доза облучения, в 1000 превышающая смертельную для человека. Недавно был обнаружен белок, который, предположительно, является одним из факторов такой выносливости – так называемый супрессор повреждений Dsup. В эксперименте с клеточной линией человека оказалось, что введение гена Dsup уменьшает повреждения на 40%. Это делает ген перспективным кандидатом в защитники человека от радиации.

Аптечка бойца

Лекарства, которые увеличивают радиационную защиту организма, называются «радиопротекторами». На сегодняшний день существует только один радиопротектор, одобренный FDA . Но основные сигнальные пути в клетках, которые включены в процессы старческих патологий, участвуют также и в ответах на облучение. Исходя из этого геропротекторы – лекарства, которые уменьшают скорость старения и продлевают продолжительность жизни – могут служить и радиопротекторами. Согласно базам данных Geroprotectors.org и DrugAge , существует более 400 потенциальных геропротекторов. Авторы считают, что будет полезно рассмотреть существующие лекарства на наличие геро- и радиопротекторных свойств.

Так как ионизирующее облучение действует также через активные формы кислорода, справляться с радиацией могут помочь редокс-поглотители, или, проще говоря, антиоксиданты, такие как глутатион, NAD и его предшественник NMN. Последние, по-видимому, играют важную роль в ответе на повреждение ДНК, поэтому представляют большой интерес с точки зрения защиты от радиации и старения.

Гипернация в гибернации

Вскоре после запуска первых космических полетов ведущий конструктор советской космической программы Сергей Королев начал разрабатывать амбициозный проект пилотируемого полета на Марс. Его идея заключалась в том, чтобы привести экипаж в состояние гибернации (англ. hibernation - «зимняя спячка») во время длительных космических путешествий. При гибернации все процессы в организме замедляются. Эксперименты с животными показывают, что в таком состоянии повышается устойчивость к экстремальным факторам: понижению температуры, смертельным дозам облучения, перегрузкам и так далее. В СССР проект Марса был закрыт после смерти Сергея Королева. А в настоящее время Европейское космическое агентство работает над проектом «Аврора» по полетам на Марс и Луну, в котором рассматривается вариант спячки космонавтов. ЕКА считает, что при длительном автоматизированном полете гибернация обеспечит большую безопасность. Если же говорить о будущей колонизации космоса, то проще перевозить и защищать от радиации банк криоконсервированных зародышевых клеток, а не популяцию «готовых» людей. Но это явно будет не в ближайшем будущем, и, возможно, к тому моменту методы радиозащиты будут развиты достаточно, чтобы человек не боялся космоса.

Тяжелая артиллерия

Все органические соединения содержат углерод-водородные связи (С-Н). Однако можно синтезировать соединения, которые содержат вместо водорода дейтерий – более тяжелый аналог водорода. Из-за большей массы связи с дейтерием сложнее разорвать. Однако организм рассчитан на работу с водородом, поэтому если слишком много водорода заменить на дейтерий, это может привести к плохим последствиям. Было показано на разных организмах, что добавление дейтерированной воды увеличивает продолжительность жизни и оказывает противораковое действие, но больше 20% дейтерированной воды в рационе начинает оказывать токсическое действие. Авторы статьи считают, что следует проводить доклинические испытания и искать порог безопасности.

Интересной альтернативой представляется замена не водорода, а углерода на более тяжелый аналог. 13 C тяжелее 12 C всего на 8%, в то время как дейтерий тяжелее водорода на 100% – такие изменения для организма будут менее критичны. Однако этот способ не защитит от разрыва N-H и O-H связи, которые скрепляют основания ДНК. К тому же производство 13 C на сегодняшний день является очень дорогим. Тем не менее, если получится снизить стоимость производства, то замена углерода может быть дополнительной защитой человека от космической радиации.

«Проблема радиационной безопасности участников космических миссий относится к классу очень сложных проблем, которые невозможно решить в рамках одного научного центра или даже целой страны. Именно по этой причине мы решили объединить специалистов из ведущих центров в России и по всему миру для того, чтобы узнать и консолидировать их видение путей решения данной проблемы. В частности, среди российских авторов статьи есть ученые из ФМБЦ им. А. И. Бурназяна, ИМБП РАН, МФТИ и других всемирно известных учреждений. В ходе работы над проектом многие его участники впервые познакомились друг с другом и теперь планируют продолжать начатые совместные исследования», – заключает координатор проекта Иван Озеров, радиобиолог, руководитель группы анализа клеточных сигнальных путей Сколковского стартапа «Инсилико».

Дизайнер Елена Хавина, пресс-служба МФТИ

где μ – массовый коэффициент ослабления рентгеновского излучения см 2 /г, х/ ρ – массовая толщина зашиты г/см 2 . Если рассматривают несколько слоев, тогда под экспонентой находятся несколько слагаемых со знаком минус.

Мощность поглощенной доза радиации от рентгеновского излучения за единицу времени N определяется интенсивностью излучения I и массовым коэффициентом поглощения μ EN

N = μ EN I

Для расчетов массовые коэффициенты ослабления и поглощения для разных значений энергии рентгеновского излучения взяты согласно NIST X-Ray Mass Attenuation Coefficients.

В таблице 1 приведены используемые параметры и результаты расчетов для поглощенной и эквивалентной дозы радиации от защиты.

Таблица 1. Характеристика рентгеновского излучения, коэффициенты ослабления в Al и поглощения в организме, толщина защиты, результат расчета поглощенной и эквивалентной дозы радиации за сутки*

Рентгеновское излучение от Солнца

Коэф. ослаб. и поглощ.

Поглощенная и эквивалентная доза радиации от внешней защиты, рад/сут (мЗв/сут)

длина
волны,
А
E, кэВ сред. поток, Ватт/м 2 Al, см 2 /г орг.
кость,
см 2 /г
1,5 г/ см 2 (LM-5) 0,35 г/ см 2 (скаф. Кречет) 0,25 г/ см 2 (скаф. XA-25) 0,15 г/ см 2 (скаф. XA-15) 0,25 г/ см 2 (скаф. XO-25) 0,21 г/ см 2 (скаф. ОрланМ) 0,17 г/ см 2 (скаф. A7L)
1,2560 10,0 1,0·10 -6 26,2 28,5 0,0000 0,0006 0,0083 0,1114 1,0892 1,2862 1,5190
0,6280 20,0 3,0·10 -9 3,44 4,00 0,0001 0,0038 0,0054 0,0075 0,0061 0,0063 0,0065
0,4189 30,0 1,0·10 -9 1,13 1,33 0,0003 0,0010 0,0010 0,0012 0,0009 0,0009 0,0009

Итого рад/сут:

Итого мЗв/сут:

0,000 0,004 0,005 0,054 0,015 0,147 0,120 1,202 1,0961 10,961 1,2934 12,934 1,5263 15,263

*Примечание – толщина защиты LM-5 и скафандров “Кречет”, “ХА-25” и “ХА-15” в алюминиевом эквиваленте, что соответствует 5,6, 1,3, 0,9 и 0,6 мм листового алюминия; толщина защиты “ХО-25”, “Орлан-М” и A7L тканеэквивалентного вещества, что соответствует 2,3, 1,9 и 1,5 мм тканеэквивалента.

Данную таблицу используют для оценки дозы радиации за сутки для других значений интенсивности рентгеновского излучения, умножая на коэффициент отношения между табличным значением потока и искомым усредненным за сутки. Результаты расчетов приведена на рис. 3 и 4 в виде шкалы поглощенной дозы радиации.

Расчет показывает, что лунный модуль с защитой 1,5 г/см 2 (или 5,6 мм Al) полностью поглощает мягкое и жесткое рентгеновское излучение Солнца. Для самой мощной вспышке от 4 ноября 2003 года (по состоянию на 2013 год и регистрируемых с 1976 года) интенсивность ее рентгеновского излучения в пике составляла 28·10−4 Вт/м 2 для мягкого излучения и 4·10−4 Вт/м 2 для жесткого излучения. За сутки усредненная интенсивность составит, соответственно, 10 Вт/м 2 сут и 1,3 Вт/м 2 . Доза радиации для экипажа за сутки равна 8 рад или 0,08 Гр, что безопасно для человека.

Вероятность подобных событий, как 4 ноября 2003 года, определяется как 30 минут за 37 лет. Или равна ~1/650000 час−1. Это очень низкая вероятность. Для сравнения – среднестатистический человек проводит вне дома за всю свою жизнь ~300000 часов, что соответствует возможности быть очевидцем ренгеновского события от 4 ноября 2003 года с вероятностью 1/2.

Для определения радиационных требований к скафандру мы рассматриваем рентгеновские вспышки на Солнце, когда их интенсивность увеличивается в 50 раз для мягкого излучения и 1000 раз для жесткого излучения по отношению к среднему суточному фону максимальной активности Солнца. Согласно рис. 4, вероятность таких событий – 3 вспышки за 30 лет. Интенсивность для мягкого рентгеновского излучения будет равна 4,3 Ватт/м 2 сутки и для жесткого – 0,26 Вт/м 2 .

Радиационные требования и параметры лунного скафандра

В скафандре на поверхности Луны эквивалентные дозы радиации от рентгеновского излучения увеличиваются.

При использовании скафандра “Кречет” для табличных значений интенсивности излучения доза радиации составит 5 мрад/сут. Защиту от рентгеновского излучения обеспечивает 1,2-1,3 мм листового алюминия, уменьшая интенсивность излучения в ~e9=7600 раз. При использовании меньшей толщины листового алюминия дозы радиации увеличиваются: для 0,9 мм Al – 15 мрад/сути, для 0,6 мм Al – 120 мрад/сути.

Согласно МАГАТЭ, такой радиационный фон признан нормальным условием для человека.

При увеличении мощности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,6 мм Al равна 1,2 рад/сути, что находится на границе нормальных и опасных условий для здоровья человека.

Лунный скафандр “Кречет”. Вид на открытый ранцевый люк, через который космонавт входит в скафандр. В рамках советской лунной программы понадобилось создать скафандр, позволяющий достаточно длительное время работать непосредственно на Луне. Он имел название «Кречет» и стал прообразом скафандров «Орлан», которые используются сегодня на для работы в открытом космосе. Вес 106 кг.

Доза радиации увеличивается на порядок при использовании защиты тканеэквивалентного вещества (полимеры, как майлар, капрон, фетр, стекловолокно). Так для скафандра “Орлан-М” при защите 0,21 г/см 2 тканеэквивалентного вещества интенсивность излучения уменьшается в ~e3=19 раз и доза радиации от рентгеновского излучения для костной ткани организма составит 1,29 рад/сути. Для защиты 0,25 г/см 2 и 0,17 г/см 2 , соответственно, 1,01 и 1,53 рад/сути.

Экипаж Аполлон-16 Джон Янг (командир), Томас Маттингли (пилот командного модуля) и Чарльз Дьюк (пилот лунного модуля) в скафандре A7LB. Самостоятельно одеть такой скафандр сложно.

Юджин Сернан в скафандре A7LB, миссия Аполлона-17.

A7L - основной тип скафандра использовавшийся астронавтами НАСА в программе Аполлон до 1975 года.Вид с разрезом верхней одежды. Верхняя одежда включала: 1) огнеупорная ткань из стекловолокна весом 2 кг, 2) экранно-вакуумная тепловая изоляция (ЭВТИ) для защиты человека от перегрева при нахождении на Солнце и от чрезмерной потери тепла на неосвещенной поверхности Луны, представляет собой пакет из 7 слоев тонкой пленки майлара и капрона с блестящей алюминированной поверхностью, между слоями проложена тончайшая вуаль волокон дакрона, вес составлял 0,5 кг; 3) противометеорный слой из нейлона с неопреновым покрытием (толщиной 3–5 мм) и весом 2–3 кг. Внутренняя оболочка скафандра изготавливалась из прочной ткани, пластика, прорезиненной ткани и резины. Масса внутренней оболочки ~20 кг. В комплект входили шлем, рукавицы, боты и СОЖ. Масса комплекта скафандра A7L для внекорабельной деятельности 34,5 кг

При увеличении интенсивности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,25 г/см 2 , 0,21 г/см 2 и 0,17 г/см 2 тканеэквивалентного вещества, соответственно, равна 10,9, 12,9 и 15,3 рад/сути. Такая доза равноценна 500-700 процедурам рентгенографии грудной клетки человека.Однократная доза 10-15 рад влияет на нервную систему и психику, на 5% повышается риск заболевания лейкозом крови, наблюдают умственную отсталость у потомков родителей. По МАГАТЭ такой радиационный фон представляет очень серьезную опасность для человека.

При интенсивности рентгеновского излучения 4,3 Ватт/м 2 сутки дозы радиации за сутки имеет значение 50-75 рад и вызывает радиационные заболевания.

Космонавт Михаил Тюрин в скафандре Орлан-М. Скафандр использовался на станции МИР и МКС с 1997 по 2009. Вес 112 кг. В настоящее время на МКС используется Орлан-МК (модернизированный, компьютеризированный). Вес 120 кг.

Самый простой выход – это снижение времени пребывания космонавта под прямыми лучами Солнца до 1 часа. Поглощенная доза радиации в скафандре Орлан-М уменьшится до 0,5 рад. Другой подход – работа в тени космической станции, в этом случае длительность внекорабельной деятельности можно значительно увеличить, несмотря на высокое внешнее рентгеновское излучение. В случае пребывания на поверхности Луны далеко за пределами лунной базы быстрое возвращение и укрытие не всегда возможно. Можно воспользоваться тенью лунного ландшафта или зонтиком от ренгеновских лучей…

Простым эффективным способом защиты от рентгеновского излучения Солнца является использование листового алюминия в скафандре. При 0,9 мм Al (толщина 0,25 г/см 2 в алюминиевом эквиваленте) скафандр имеет 67-кратный запас от среднего рентгеновского фона. При 10 кратном увеличении фона до 0,86 Ватт/м 2 сутки доза радиации равна 0,15 рад/сути. Даже при внезапном 50-кратном увеличении рентгеновского потока от среднего фона до значения 4,3 Ватт/м 2 сутки поглощенная доза радиации за сутки не превысит 0,75 рад.

При 0,7 мм Al (толщина 0,20 г/см 2 в алюминиевом эквиваленте) защита сохраняет 35-кратный радиационный запас. При 0,86 Ватт/м 2 сутки доза радиации составит не более 0,38 рад/сути. При 4,3 Ватт/м 2 сутки поглощенная доза радиации не превысит 1,89 рад.

Как показывают расчеты, для обеспечения радиационной защиты, как 0,25 г/см 2 в алюминиевом эквиваленте, требуется тканеэквивалент в 1,4 г/см 2 . При таком значении массовой защиты скафандра возрастет его толщина в несколько раз и понижает его юзабилити.

ИТОГИ И ВЫВОДЫ

В случае протонного излучения тканеэквивалентная защита имеет преимущество перед алюминием на 20-30%.

При рентгеновском излучении предпочтение имеет защита скафандра в алюминиевом эквиваленте, чем из полимеров. Данный вывод совпадает с результатами исследований Дэвида Смита (David Smith) и Джона Скало.

Лунные скафандры должны иметь два параметра защиты:

1) параметр защиты скафандра тканеэквивалентного вещества от протонного излучения, не ниже 0,21 г/см 2 ;
2) параметр защиты скафандра в алюминиевом эквиваленте от рентгеновского излучения, не ниже 0,20 г/см 2 .

При использовании во внешней оболочке скафандра с площадью 2,5-3 м 2 защиты Al масса скафандра на базе Орлан-МК увеличится на 5-6 кг.

Для лунного скафандра суммарная поглощенная доза радиации от солнечного ветра и рентгеновских лучей Солнца в год максимума солнечной активности составит 0,19 рад/сут (эквивалентная доза радиации – 8,22 мЗв/сут). Такой скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра и 35-кратный запас радиационной прочности для рентгеновского излучения. Никакие дополнительные меры защиты, как радиационные алюминиевые зонтики, не нужны.

Для скафандра Орлан-М, соответственно, 1,45 рад/сут (эквивалентная доза радиации – 20,77 мЗв/сут). Скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра.

Для скафандра A7L (A7LB) миссии Аполлон, соответственно, 1,70 рад/сут (эквивалентная доза радиации – 23,82 мЗв/сут). Скафандр имеет 3-кратный запас радиационной прочности для солнечного ветра.

При непрерывном пребывание в течении 4 суток на поверхности Луны в современных скафандрах Орлан или типа A7L человек набирает дозу радиации 0,06-0,07 Гр, что представляет опасность для его здоровья. Это соответствует выводам Дэвида Смита и Джона Скало, что в окололунном космическом пространстве в современном скафандре за 100 часов с вероятностью 10% человек получит опасную для здоровья и жизни дозу радиации выше 0,1 Грэй. Для скафандров Орлан или типа A7L необходимы дополнительные меры защиты от рентгеновского излучения, как радиационные алюминиевые зонтики.

Предлагаемый лунный скафандр на базе Орлан за 4 суток набирает дозу радиации 0,76 рад или 0,0076 Гр. (Один час пребывания на поверхности луны в скафандре под солнечным ветром соответствует двум процедурам рентгенографии грудной клетки). Согласно МАГАТЭ радиационный риск признан нормальным условием для человека.

NASA проводит испытания нового скафандра для готовящегося в 2020 году полета человека на Луну.

Кроме радиационного риска от солнечного ветра и рентгеновского излучения Солнца идет поток . Об этом далее.

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса

во время миссии «Аполлон-8» (архив НАСА)

Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал: «Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

Орбиты атмосферных частиц в экзосфере (dic.academic.ru)

У Луны нет поясов Ван Аллена. У нее также нет защитной атмосферы. Она открыта всем солнечным ветрам. Если бы во время лунной экспедиции произошла сильная солнечная вспышка, то колоссальный поток радиации испепелил бы и капсулы, и астронавтов на той части поверхности Луны, где они проводили свой день. Эта радиация не просто опасна - она смертельна!

В 1963 году советские ученые заявили известному британскому астроному Бернарду Ловеллу, что они не знают способа защитить космонавтов от смертельного воздействия космической радиации. Это означало, что даже намного более толстостенные металлические оболочки российских аппаратов не могли справиться с радиацией. Каким же образом тончайший (почти как фольга) металл, используемый в американских капсулах, мог защитить астронавтов? НАСА знало, что это невозможно. Космические обезьяны погибли менее чем через 10 дней после возвращения, но НАСА так и не сообщило нам об истинной причине их гибели.

Обезьяна-астронавт (архив РГАНТ)

Большинство людей, даже сведущих в космосе, и не подозревают о существовании пронизывающей его просторы смертельной радиации. Как ни странно (а может быть, как раз по причинам, о которых можно догадаться), в американской «Иллюстрированной энциклопедии космической технологии» словосочетание «космическая радиация» не встречается ни разу. Да и вообще эту тему американские исследователи (особенно связанные с НАСА) обходят за версту.

Между тем Ловелл после беседы с русскими коллегами, которые отлично знали о космической радиации, отправил имевшуюся у него информацию администратору НАСА Хью Драйдену, но тот проигнорировал ее.

Один из якобы посетивших Луну астронавтов Коллинз в своей книге упоминал о космической радиации только дважды:

«По крайней мере, Луна была далеко за пределами земных поясов Ван Аллена, что предвещало хорошую дозу радиации для тех, кто побывал там, и смертельную - для тех, кто задержался».

«Таким образом, радиационные пояса Ван Аллена, окружающие Землю, и возможность солнечных вспышек требуют понимания и подготовки, чтобы не подвергать экипаж повышенным дозам радиации».

Так что же означает «понимание и подготовка»? Означает ли это, что за пределами поясов Ван Аллена остальной космос свободен от радиации? Или у НАСА была секретная стратегия укрытия от солнечных вспышек после принятия окончательного решения об экспедиции?

НАСА утверждало, что просто может предсказывать солнечные вспышки, и поэтому отправляло на Луну астронавтов тогда, когда вспышек не ожидалось, и радиационная опасность для них была минимальна.

Пока Армстронг и Олдрин выполняли работу в открытом космосе

на поверхности Луны,Майкл Коллинз

ставался на орбите (архив НАСА)

Впрочем, другие специалисты утверждают: «Возможно предсказать только приблизительную дату будущих максимальных излучений и их плотность».

Советский космонавт Леонов все же вышел в 1966 году в открытый космос - правда, в сверхтяжелом свинцовом костюме. Но спустя всего лишь три года американские астронавты прыгали на поверхности Луны, причем отнюдь не в сверхтяжелых скафандрах, а скорее совсем наоборот! Может, за эти годы специалисты из НАСА сумели найти какой-то сверхлегкий материал, надежно защищающий от радиации?

Однако исследователи вдруг выясняют, что по крайней мере «Аполлон-10», «Аполлон-11» и «Аполлон-12» отправились в путь именно в те периоды, когда количество солнечных пятен и соответствующая солнечная активность приближались к максимуму. Общепринятый теоретический максимум 20-го солнечного цикла длился с декабря 1968 по декабрь 1969 гг. В этот период миссии «Аполлон-8», «Аполлон-9», «Аполлон-10», «Аполлон-11» и «Аполлон-12» предположительно вышли за пределы зоны защиты поясов Ван Аллена и вошли в окололунное пространство.

Дальнейшее изучение ежемесячных графиков показало, что единичные солнечные вспышки - явление случайное, происходящее спонтанно на протяжении 11-летнего цикла. Бывает и так, что в «низкий» период цикла случается большое количество вспышек за короткий промежуток времени, а во время «высокого» периода - совсем незначительное количество. Но важно именно то, что очень сильные вспышки могут иметь место в любое время цикла.

В эпоху «Аполлонов» американские астронавты провели в космосе в общей сложности почти 90 дней. Поскольку радиация от непредсказуемых солнечных вспышек долетает до Земли или Луны менее чем за 15 минут, защититься от нее можно было бы только с помощью свинцовых контейнеров. Но если мощности ракеты хватило, чтобы поднять такой лишний вес, то почему надо было выходить в космос в тонюсеньких капсулах (буквально в 0,1 мм алюминия) при давлении в 0,34 атмосфер?

Это притом, что даже тонкий слой защитного покрытия, именуемого «майларом», по утверждениям экипажа «Аполлон-11», оказался столь тяжек, что его пришлось срочно стирать с лунного модуля!

Похоже, в лунные экспедиции НАСА отбирало особенных парней, правда, с поправкой на обстоятельства, отлитых не из стали, а из свинца. Американский исследователь проблемы Ральф Рене не поленился рассчитать, как часто каждая из якобы состоявшихся лунных экспедиций должна была попасть под солнечную активность.

Между прочим, один из авторитетных сотрудников НАСА (заслуженный физик, кстати) Билл Модлин в своей работе «Перспективы межзвездных путешествий» откровенно сообщал: «Солнечные вспышки могут выбрасывать ГэВ протоны в том же энергетическом диапазоне, что и большинство космических частиц, но гораздо более интенсивные. Увеличение их энергии при усиленной радиации представляет особую опасность, поскольку ГэВ протоны проникают сквозь несколько метров материала… Солнечные (или звездные) вспышки с выбросом протонов - это периодически возникающая очень серьезная опасность в межпланетном пространстве, которая обеспечивает дозу радиации в сотни тысяч рентген за несколько часов на расстоянии от Солнца до Земли. Такая доза является смертельной и в миллионы раз превышает допустимую. Смерть может наступить уже после 500 рентген за короткий промежуток времени».

Да, бравые американские парни потом должны были сиять похлеще четвертого чернобыльского энергоблока. «Космические частицы опасны, они исходят со всех сторон и требуют как минимум двух метров плотного экрана вокруг любых живых организмов». А ведь космические капсулы, которые по сей день демонстрирует НАСА, имели чуть более 4 м в диаметре. При толщине стен, рекомендуемой Модлиным, астронавты, даже без всякого оборудования, в них бы не влезли, уж не говоря о том, что и не хватило бы топлива для того, чтобы такие капсулы поднять. Но, очевидно, ни руководство НАСА, ни посланные им на Луну астронавты книжек своего коллеги не читали и, находясь в блаженном неведении, преодолели все тернии по дороге к звездам.

Впрочем, может быть, НАСА и впрямь разработало для них некие сверхнадежные скафандры, используя (понятно, очень засекреченный) сверхлегкий материал, защищающий от радиации? Но почему же его так больше нигде и не использовали, как говорится, в мирных целях? Ну ладно, с Чернобылем СССР они не захотели помогать: все-таки перестройка еще не началась. Но ведь, к примеру, в 1979 году в тех же США на АЭС «Тримайл-Айленд» произошла крупная авария реакторного блока, которая привела к расплавлению активной зоны реактора. Так что же американские ликвидаторы не использовали космические скафандры по столь разрекламированной технологии НАСА стоимостью ни много ни мало в $7 млн, чтобы ликвидировать эту атомную мину замедленного действия на своей территории?..

Все организмы с момента своего появления на Земле существовали, развивались и эволюционировали при постоянном воздействии радиации. Радиация - это такое же естественное природное явление, как ветер, приливы и отливы, дождь и т. п.

Естественный радиационный фон (ЕРФ) присутствовал на Земле на всех этапах ее формирования. Он был задолго до того, как появилась жизнь, а затем и биосфера. Радиоактивность и сопровождающие ее ионизирующие излучения явились фактором, оказавшим влияние на современное состояние биосферы, эволюцию Земли, жизнь на Земле и элементный состав Солнечной системы. Любой организм подвергается воздействию характерного для данной местности радиационного фона. До 1940-х гг. он был обусловлен двумя факторами: распадом радионуклидов естественного происхождения, находящихся как в среде обитания данного организма, так и в самом организме, и космическими лучами.

Источники естественной (природной) радиации - это космос и природные радионуклиды, содержащиеся в естественной форме и концентрации во всех объектах биосферы: почве, воде, воздухе, минералах, живых организмах и т. д. Любой из окружающих нас предметов и мы сами в абсолютном смысле слова радиоактивны.

Основную дозу облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения проникают к поверхности земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи (в этом случае говорят о внешнем облучении) или они могут оказаться в воздухе, которым дышит человек, в пище или воде и попасть внутрь организма (такой способ облучения называют внутренним).

Облучению от естественных источников радиации подвергается любой житель Земли. Это зависит, в частности, от того, где люди живут Уровень радиации в некоторых местах земного шара, особенно там, где залегают радиоактивные породы, оказывается значительно выше среднего, а в других местах - ниже. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом, путем внешнего облучения.



Естественный радиационный фон формируется космическим излучением (16%) и излучением, создаваемым рассеянными в природе радионуклидами, содержащимися в земной коре, приземном воздухе, почве, воде, растениях, продуктах питания, в организмах животных и человека, (84%). Техногенный радиационный фон связан главным образом с переработкой и перемещением горных пород, сжиганием каменного угля, нефти, газа и других горючих ископаемых, а также с испытаниями ядерного оружия и ядерной энергетикой.

Естественный радиационный фон есть неотъемлемый фактор окружающей среды, оказывающий существенное воздействие на жизнедеятельность человека. Естественный радиационный фон колеблется в широких пределах в различных регионах Земли. Эквивалентная доза в организме человека в среднем 2 мЗв = 0,2 бэр. Эволюционное развитие показывает, что в условиях естественного фона обеспечиваются оптимальные условия для жизнедеятельности человека, животных, растений. Поэтому при оценке опасности, обусловленной ионизирующим излучением, крайне важно знать характер и уровни облучения от различных источников.

Поскольку радионуклиды, как и любые атомы, образуют в природе определенные соединения и в соответствие со своими химическими свойствами входят в состав определенных минералов, то распределение естественных радионуклидов в земной коре неравномерно. Космическое излучение, как говорилось выше, также зависит от ряда факторов и может отличаться в несколько раз. Таким образом, естественный радиационный фон в разных местах земного шара разный. С этим связана условность понятия «нормальный радиационный фон»: с высотой над уровнем моря фон увеличивается за счет космического излучения, в местах выхода на поверхность гранитов или богатых торием песков радиационный фон также выше и так далее. Поэтому можно говорить лишь о среднем естественном радиационном фоне для данной местности, территории, страны и т. д.



Среднее значение эффективной дозы, получаемое жителем нашей планеты от природных источников за год, составляет 2,4 мЗв .

Примерно 1/3 этой дозы формируется за счет внешнего излучения (примерно поровну от космоса и от радионуклидов) и 2/3 обусловлены внутренним облучением, то есть природными радионуклидами, находящимися внутри нашего организма. Средняя удельная активность человека составляет около 150 Бк/кг. Естественный радиационный фон (внешнее облучение) на уровне моря в среднем составляет около 0,09 мкЗв/ч. Это соответствует примерно 10 мкР/ч.

Космическое излучение - это поток ионизирующих частиц, который падает на Землю из космического пространства. В состав космического излучения входят:

Космическое излучение состоит из трех компонентов, различающихся происхождением:

1) излучение частиц, захваченных магнитным полем Земли;

2) галактическое космическое излучение;

3) корпускулярное излучение Солнца.

Излучение заряженных частиц, захваченных магнитным полем Земли - на расстоянии 1,2-8 земных радиусов расположены так называемые радиационные пояса, содержащие протоны с энергией 1-500 МэВ (в основном 50 МэВ), электроны с энергией около 0,1-0,4 МэВ и незначительное количество альфа-частиц.

Состав. Галактические космические лучи состоят в основном из протонов (79 %) и α-частиц (20 %), что отражает распространенность водорода и гелия во Вселенной. Из числа тяжелых ионов наибольшее значение имеют ионы железа вследствие относительно высокой интенсивности и большого атомного числа.

Происхождение. Источниками галактических космических лучей являются звездные вспышки, взрывы сверхновых, пульсарное ускорение, взрывы галактических ядер и т. п.

Время жизни. Время существования частиц в космическом излучении - порядка 200 млн лет. Удержание частиц происходит за счет магнитного поля межзвездного пространства.

Взаимодействие с атмосферой . Входя в атмосферу, космические лучи взаимодействуют с атомами азота, кислорода и аргона. Столкновения частиц с электронами происходят чаще, чем с ядрами, но при этом высокоэнергичные частицы теряют мало энергии. При столкновениях же с ядрами частицы практически всегда выбывают из потока, поэтому ослабление первичного излучения практически полностью обусловлено ядерными реакциями.

При столкновении протонов с ядрами из ядер выбиваются нейтроны и протоны, идут реакции расщепления ядер. Образующиеся вторичные частицы обладают значительной энергией и сами индуцируют такие же ядерные реакции, т. е. происходит формирование целого каскада реакций, образуется так называемый широкий атмосферный ливень. Одна первичная частица высокой энергии может породить ливень, включающий десять последовательных поколений реакций, в которых рождаются миллионы частиц.

Новые ядра и нуклоны, составляющие ядерно-активный компонент излучения, образуются в основном в верхних слоях атмосферы. В ее нижней части поток ядер и протонов значительно ослабляется за счет ядерных столкновений и далее - потерь на ионизацию. На уровне моря он формирует только единицы процентов мощности дозы.

Космогенные радионуклиды

В результате ядерных реакций, идущих под влиянием космических лучей в атмосфере и частично в литосфере, образуются радиоактивные ядра. Из них в создание дозы наибольший вклад вносят (β-излучатели: 3 H (Т 1/2 = 12,35 лет), 14 C (T 1/2 = 5730 лет), 22 Na (T 1/2 = 2,6 лет), - поступающие в организм человека вместе с пищей. Как следует из приведенных данных, наибольший вклад в облучение вносит углерод-14. Взрослый человек потребляет с пищей ~ 95 кг углерода в год.

Солнечное излучение, состоящее из электромагнитного излучения вплоть до рентгеновского диапазона, протонов и альфа-частиц;

Перечисленные виды излучения являются первичными, они почти полностью исчезают на высоте около 20 км вследствие взаимодействия с верхними слоями атмосферы. При этом образуется вторичное космическое излучение, которое достигает поверхности Земли и воздействует на биосферу (в том числе на человека). В состав вторичного излучения входят нейтроны, протоны, мезоны, электроны и фотоны.

Интенсивность космического излучения зависит от ряда факторов:

Изменений потока галактического излучения,

Активности солнца,

Географической широты,

Высоты над уровнем моря.

В зависимости от высоты интенсивность космического излучения резко возрастает.


Радионуклиды земной коры.

В земной коре рассеяны долгоживущие (с периодом полураспада в миллиарды лет) изотопы, которые не успели распасться за время существования нашей планеты. Они образовались, наверное, одновременно с образованием планет Солнечной системы (относительно короткоживущие изотопы распались полностью). Эти изотопы называются естественными радиоактивными веществами, это значит такими, которые образовались и постоянно вновь образовываются без участия человека. Распадаясь, они образуют промежуточные, также радиоактивные, изотопы.

Внешними источниками излучений являются более 60 естественных радионуклидов, находящихся в биосфере Земли. Естественные радиоактивные элементы содержатся в относительно небольшом количестве во всех оболочках и ядре Земли. Особое значение для человека имеют радиоактивные элементы биосферы, т.е. той части оболочки Земли (лито-, гидро-и атмосфере), где находятся микроорганизмы, растения, животные и человек.

В течение миллиардов лет шел постоянный процесс радиоактивного распада нестабильных ядер атомов. В результате этого общая радиоактивность вещества Земли, горных пород постепенно снижалась. Относительно короткоживущие изотопы распались полностью. Сохранились главным образом элементы с полураспадом, измеряемым миллиардами лет, а также относительно короткоживущие вторичные продукты радиоактивного распада, образующиеся последовательные цепочки преобразований, так называемые семейства радиоактивных элементов. В земной коре естественные радионуклиды могут быть более или менее равномерно рассеяны или сконцентрированы в виде месторождений.

Природные (естественные) радионуклиды можно разделить на три группы:

Радионуклиды, принадлежащие радиоактивным семействам (рядам),

Другие (не принадлежащие радиоактивным семействам) радионуклиды, вошедшие в состав земной коры при формировании планеты,

Радионуклиды, образовавшиеся под действием космического излучения.

В процессе формирования Земли в состав ее коры наряду со стабильными нуклидами вошли и радионуклиды. Большая часть этих радионуклидов относится к так называемым радиоактивным семействам (рядам). Каждый ряд представляет собой цепочку последовательных радиоактивных превращений, когда ядро, образующееся при распаде материнского ядра, тоже, в свою очередь, распадается, вновь порождая неустойчивое ядро и т. д. Началом такой цепочки является радионуклид, который не образуется из другого радионуклида, а содержится в земной коре и биосфере с момента их рождения. Этот радионуклид называют родоначальником и его именем называют все семейство (ряд). Всего в природе существует три родоначальника - уран-235, уран-238 и торий-232, и, соответственно, три радиоактивных ряда - два урановых и ториевый. Заканчиваются все ряды стабильными изотопами свинца.

Самый большой период полураспада у тория (14 млрд. лет), поэтому он со времени аккреции Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреции Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Около 0,0003% (по разным данным 0,00025-0,0004%) Массы земной коры - это уран. То есть в одном кубометре самого обычного грунта содержится в среднем 5 граммов урана. Есть места, где это количество в тысячи раз больше - это месторождения урана. В кубометре морской воды содержится около 1,5 мг урана. Этот природный химический элемент представлен двумя изотопами -238U и 235U, каждый из которых является родоначальником своего радиоактивного ряда. Подавляющая часть природного урана (99,3%) - это уран-238. Этот радионуклид весьма устойчив, вероятность его распада (а именно - альфа-распада) очень мала. Эта вероятность характеризуется периодом полураспада, равным 4,5 миллиарда лет. То есть со времен формирования нашей планеты его количество уменьшилось вдвое. Из этого, в свою очередь, следует, что радиационный фон на нашей планете раньше был выше. Цепочки радиоактивных превращений, порождающей природные радионуклиды уранового ряда:

Радиоактивный ряд включает как долгоживущие радионуклиды (то есть радионуклиды с большим периодом полураспада), так и короткоживущие, но в природе существуют все радионуклиды ряда, даже те, которые быстро распадаются. Это связано с тем, что с течением времени установилось равновесие (так называемое «вековое равновесие») - скорость распада каждого радионуклида равна скорости его образования.

Существуют природные радионуклиды, которые вошли состав земной коры в процессе формирования планеты и которые не принадлежат урановым или ториевому рядам. В первую очередь - это калий-40. Содержание 40 К в земной коре около 0,00027% (масс), период полураспада 1,3 миллиарда лет. Дочерний нуклид - каль-ций-40 - является стабильным. Калий-40 в значительном количестве входит в состав растений и живых организмов, вносит существенный вклад в общую дозу внутреннего облучения человека.

Природный калий содержит три изотопа: калий-39, калий-40 и калий-41, из которых только калий-40 радиоактивен. Количественное соотношение этих трех изотопов в природе выглядит так: 93,08 %, 0,012 % и 6,91 %.

Калий-40 распадается двумя путями. Около 88% его атомов испытывают бета-излучение и превращаются в атомы кальция-40. Остальные 12% атомов, испытывая К-захват, превращаются в атомы аргона-40. На этом свойстве калия-40 основан калий-аргоновый метод определения абсолютного возраста горных пород и минералов.

Третью группу природных радионуклидов составляют космогенные радионуклиды. Эти радионуклиды образуются под действием космического излучения из стабильных нуклидов в результате ядерных реакций. К ним относятся тритий, бериллий-7, углерод-14, натрий-22. Например, ядерные реакции образования трития и углерода-14 из азота под действием космических нейтронов:

Особое место среди природных радиоизотопов занимает углерод. Природный углерод состоит из двух стабильных изотопов, среди которых преобладает углерод-12 (98,89 %). Остальная часть почти целиком приходится на изотоп углерод-13 (1,11 %).

Помимо стабильных изотопов углерода известны еще пять радиоактивных. Четыре из них (углерод-10, углерод-11, углерод-15 и углерод-16) характеризуются весьма малыми периодами полураспада (секунды и доли секунды). Пятый радиоизотоп, углерод-14, имеет период полураспада 5730 лет.

В природе концентрация углерода-14 крайне мала. Например, в современных растениях один атом этого изотопа приходится на 10 9 атомов углерода-12 и углерода-13. Однако с появлением атомного оружия и ядерной техники углерод-14 получается искусственно при взаимодействии медленных нейтронов с азотом атмосферы, поэтому количество его постоянно растет.

Существует некоторая условность относительно точки зрения того, какой фон считать «нормальным». Так, при «среднепланетарной» годовой эффективной дозе на одного человека 2,4 мЗв во многих странах эта величина составляет 7-9 мЗв/год. То есть испокон веков миллионы людей живут в условиях природных дозовых нагрузок, которые в несколько раз выше, чем среднестатистические. Медицинские исследования и демографическая статистика показывают, что это никак не сказывается на их жизни, не оказывают никакого негативного влияния на их здоровье и здоровье их потомства.

Говоря об условности понятия «нормальный» природный фон, можно указать также ряд мест на планете, где уровень природной радиации превышает среднестатистический не только в разы, но и в десятки раз (таблица), этому воздействию подвержены десятки и сотни тысяч жителей. И это тоже норма, это тоже никак не сказывается на их здоровье. Более того, многие районы с повышенным радиационным фоном в течение столетий являются местами массового туризма (морские побережья) и признанными курортами (Кавказские Минеральные Воды, Карловы Вары и др.).

Космос радиоактивен. Укрыться от радиации просто невозможно. Представьте себе, что вы стоите посреди песчаной бури, и вокруг вас постоянно кружит водоворот из мелких камешков, которые ранят вашу кожу. Примерно так выглядит космическая радиация. И эта радиация наносит немалый вред. Но проблема в том, что в отличие от камушков и кусочков земли ионизирующее излучение не отскакивает от человеческой плоти. Оно проходит сквозь нее, как пушечное ядро пробивает насквозь здание. И эта радиация наносит немалый вред.

На прошлой неделе ученые из медицинского центра при университете города Рочестера опубликовали результаты исследования, свидетельствующие о том, что длительное воздействие галактической радиации, которому могут подвергнуться астронавты, отправившиеся на Марс, способно повысить риск заболевания болезнью Альцгеймера.

Читая сообщения СМИ об этом исследовании, я начала любопытствовать. Мы отправляем людей в космос уже более полувека. Мы имеем возможность следить за целым поколением астронавтов - как эти люди старятся и умирают. И мы постоянно отслеживаем состояние здоровья тех, кто сегодня летает в космос. Научные работы, подобные осуществленным в университете Рочестера, проводятся на лабораторных животных, таких, как мыши и крысы. Они призваны помочь нам подготовиться к будущему. Но что мы знаем о прошлом? Повлияла ли радиация на людей, которые уже побывали в космосе? Как она воздействует на находящихся на орбите в данный момент?

Существует одно ключевое отличие астронавтов сегодняшнего дня от астронавтов будущего. Отличие это - сама Земля.

Галактическое космическое излучение, называемое иногда космической радиацией, это как раз то, что вызывает наибольшую тревогу у исследователей. Оно состоит из частиц и кусочков атомов, которые могли появиться в результате образования сверхновой звезды. Большая часть этого излучения, примерно 90%, состоит из протонов, оторванных от атомов водорода. Эти частицы летят через галактику почти что со скоростью света.

А потом они наносят удар по Земле. У нашей планеты имеется пара защитных механизмов, укрывающих нас от воздействия космической радиации. Во-первых, магнитное поле Земли отталкивает некоторые частицы, а некоторые полностью блокирует. Преодолевшие данный барьер частицы начинают сталкиваться с атомами, находящимися в нашей атмосфере.

Если вы сбросите вниз с лестницы большую башню, построенную из деталей конструктора «Лего», она разлетится на мелкие куски, которые будут отлетать от нее на каждой новой ступеньке. Примерно то же самое происходит в нашей атмосфере и с галактической радиацией. Частицы сталкиваются с атомами и распадаются на части, образуя новые частицы. Эти новые частицы снова обо что-нибудь ударяются и опять распадаются на части. С каждый шагом они теряют энергию. Частицы замедляются и постепенно слабеют. К тому времени, когда они «останавливаются» на поверхности Земли, у них уже нет того мощного запаса галактической энергии, какой они обладали прежде. Это излучение намного менее опасно. Маленькая деталь от «Лего» бьет намного слабее, чем собранная из них башня.

Всем тем астронавтам, которых мы отправляли в космос, защитные барьеры Земли во многом помогли, по крайней мере, частично. Об этом мне рассказал Фрэнсис Кучинотта (Francis Cucinotta). Он - научный руководитель программы НАСА по исследованию воздействия радиации на человека. Это как раз тот парень, который может рассказать, насколько вредна радиация для астронавтов. По его словам, за исключением полетов «Аполлона» на Луну, человек присутствует в космосе в пределах действия магнитного поля Земли. Международная космическая станция, например, находится выше атмосферы, но все равно в глубине первого эшелона обороны. Наши астронавты не подвергаются в полной мере воздействию космического излучения.

Кроме того, под таким воздействием они находятся довольно непродолжительное время. Самый длительный полет в космос продолжался чуть больше года. А это важно, потому что ущерб от радиации имеет кумулятивное действие. Ты рискуешь гораздо меньше, когда шесть месяцев проводишь на МКС, чем когда отправляешься (пока теоретически) в многолетнее путешествие на Марс.

Но интересно и довольно тревожно то, сказал мне Кучинотта, что даже имея все эти механизмы защиты, мы наблюдаем, как излучение негативно воздействует на астронавтов.

Очень неприятная вещь это катаракта - изменения в хрусталике глаза, вызывающие его помутнение. Поскольку через мутный хрусталик в глаз человека попадает меньше света, больные катарактой люди хуже видят. В 2001 году Кучинотта с коллегами изучил данные продолжающегося исследования состояния здоровья астронавтов и пришел к следующему выводу. Астронавты, подвергшиеся большей дозе радиации (потому что они совершили больше полетов в космос или из-за специфики их миссий*) имели больше шансов на развитие у них катаракты, чем те, у кого доза облучения была ниже.

Наверняка существует также повышенная опасность заболевания раком, хотя количественно и точно такую опасность проанализировать трудно. Дело в том, что у нас нет данных эпидемиологов о том, какому типу радиации подвергаются астронавты. Мы знаем количество заболевших раком после атомной бомбардировки Хиросимы и Нагасаки, однако эта радиация несопоставима с галактическим излучением. В частности, Кучинотту больше всего беспокоят ионы ВВЧ - высокоатомных высокоэнергетических частиц.

Это очень тяжелые частицы, и перемещаются они очень быстро. На поверхности Земли мы не испытываем на себе их воздействие. Их отсеивают, тормозят и разбивают на части защитные механизмы нашей планеты. Однако ионы ВВЧ могут наносить больший вред и вред более разнообразный, чем то излучение, с которым радиологи хорошо знакомы. Мы знаем об этом, потому что ученые сравнивают пробы крови астронавтов до и после полета в космос.

Кучинотта называет это предполетной поверкой. Ученые берут образец крови у астронавта перед отправлением на орбиту. Когда астронавт находится в космосе, ученые делят взятую кровь на части и подвергают ее воздействию гамма-излучения различной степени. Это вроде той вредной радиации, с которой мы порой сталкиваемся на Земле. Затем, когда астронавт возвращается, они сравнивают эти подвергнутые гамма-излучению образцы крови с тем, что реально произошло с ним в космосе. «Мы отмечаем двух- трехкратную разницу у разных астронавтов», - сказал мне Кучинотта.



Понравилась статья? Поделитесь с друзьями!