Расстояние между скрещивающимися прямыми метод. Расстояние между скрещивающимися прямыми

Наряду с точкой и плоскостью. Это бесконечная фигура, которой можно соединить любые две точки в пространстве. Прямая всегда принадлежит какой-либо плоскости. Исходя из расположения двух прямых, следует применять разные методы поиска расстояния между ними.

Существует три варианта расположения двух прямых в пространстве друг относительно друга: они параллельны, пересекаются или . Второй вариант возможен, только если они в одной плоскости, не исключает принадлежности двум параллельным плоскостям. Третья ситуация говорит о том, что прямые лежат в разных параллельных плоскостях.

Чтобы найти расстояние между двумя параллельными прямыми, нужно определить длину перпендикулярного отрезка, соединяющего их в любых двух точках. Поскольку прямые имеют две одинаковые координаты, что следует из определения их параллельности, то уравнения прямых в двухмерном координатном пространстве можно записать так:
L1: а х + b у + с = 0;
L2: а х + b у + d = 0.
Тогда можно найти длину отрезка по формуле:
s = |с - d|/√(a² + b²), причем нетрудно заметить, что при С = D, т.е. совпадении прямых, расстояние будет равно нулю.

Понятно, что расстояние между пересекающимися прямыми в двухмерной координат не имеет смысла. Зато когда они расположены в разных плоскостях, его можно найти как длину отрезка, лежащего в плоскости, перпендикулярной им обеим. Концами этого отрезка будут точки, являющиеся проекциями любых двух точек прямых на эту плоскость. Иными , его длина равна расстоянию между параллельными плоскостями, содержащими эти прямые. Таким образом, если плоскости заданы общими уравнениями:
α: А1 х + В1 у + С1 z + Е = 0,
β: А2 х + В2 у + С2 z + F = 0,
расстояние между прямыми можно по формуле:
s = |Е – F|/√(|А1 А2| + В1 В2 + С1 С2).

Обратите внимание

Прямые вообще и скрещивающиеся в частности интересны не только математикам. Их свойства полезны во многих других областях: в строительстве и архитектуре, в медицине и в самой природе.

Совет 2: Как найти расстояние между двумя параллельными прямыми

Определение расстояния между двумя объектами, находящимися в одной или нескольких плоскостях, является одной из самых распространенных задач в геометрии. Руководствуясь общепринятыми методами, вы можете найти расстояние между двумя параллельными прямыми.

Инструкция

Параллельными называются прямые, лежащие в одной плоскости, которые либо не пересекаются, либо совпадают. Для нахождения расстояния между параллельными прямыми следует выбрать произвольную точку на одной из них, после чего опустить перпендикуляр ко второй прямой. Теперь остается лишь измерить длину получившегося отрезка. Длина соединяющего две параллельные прямые перпендикуляра и будет являться расстоянием между ними.

Обратите внимание на порядок проведения перпендикуляра от одной параллельной прямой к другой, поскольку от этого зависит точность рассчитанного расстояния. Для этого воспользуйтесь чертежным инструментом «треугольником» с прямым углом. Выберите точку на одной из прямых, приложите к ней одну из сторон треугольника, примыкающих к прямому углу (катет), а вторую сторону совместите с другой прямой. Остро заточенным карандашом проведите вдоль первого катета линию так, чтобы она достигла противоположной прямой.

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA 1 B 1 C 1 D 1 найдите расстояние между прямыми BA 1 и DB 1 .

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB 1 (точку O ) проведем прямую, параллельную прямой A 1 B . Точки пересечения данной прямой с ребрами BC и A 1 D 1 обозначаем соответственно N и M . Прямая MN лежит в плоскости MNB 1 и параллельна прямой A 1 B , которая в этой плоскости не лежит. Это означает, что прямая A 1 B параллельна плоскости MNB 1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A 1 B до плоскости MNB 1 . Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA , ось Y — вдоль ребра BC , ось Z — вдоль ребра BB 1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB 1 в данной системе координат. Для этого определяем сперва координаты точек M , N и B 1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB 1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле.

Приведем без доказательств сведения из стереометрии, необходимые для решения названной задачи.

1. Общим перпендикуляром двух скрещивающихся прямых называется отрезок,

концы которого лежат на данных прямых и который перпендикулярен к ним.

2. Общий перпендикуляр двух скрещивающихся прямых существует и единствен.

3. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра.

Задача. Даны скрещивающиеся прямые АВ и CD. Определить расстояние между прямыми (рис. 8.7).

Решение задачи выполним методом замены плоскостей проекций. Проекционный алгоритм решения в этом случае может быть следующим:

1) вводится новая система плоскостей проекций

П 1 , П 4 , таким образом, что П 4 // АВ, т.е. на КЧ

строится ось х 1 // А 1 В 1 ;

2) на П 4 строятся новые проекции А 4 В 4 (НВ отрезка АВ) и C 4 D 4 ;

3) вводится новая система плоскостей П 4 , П 5 с

осью х 2 ^ А 4 В 4 такая, что П 5 ^ AB;

4) на П 5 строятся новые проекции – отрезок C 5 D 5 и точка А 5 = В 5 ;

5) строится перпендикуляр E 5 F 5 ^ C 5 D 5 из точки

Е 5 (= А 5 = В 5);

В итоге, по смыслу построений в методе замены плоскостей проекций и приведенному понятию расстояния между скрещивающимися прямыми, получаем, что r(E 5 , C 5 D 5) = r(AB, CD). Для полноты решения задачи необходимо вернуть отрезок EF длиной r(AB, CD) на исходные плоскости проекций:

1) строим E 4 F 4 // x 2 ;

2) строим E 1 F 1 по проекциям E 5 F 5 , E 4 F 4 ; E 2 F 2 по проекциям E 4 F 4 , E 1 F 1 .

Отрезки E 2 F 2 , E 1 F 1 представляют собой основные проекции отрезка EF.

В стереометрии известно еще одно определение рассматриваемого расстояния: расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведенными через эти прямые.

Такое определение расстояния позволяет предложить более короткий путь решения рассматриваемой задачи. Пусть AB и CD – скрещивающиеся прямые (рис. 8.8). Переместим в пространстве прямую АВ параллельно самой себе в положение А 1 В 1 до пересечения с CD. Если взять теперь на прямой АВ любую точку Е и опустить из этой точки перпендикуляр ЕЕ 1 на образовавшуюся плоскость Σ(CD, A 1 B 1), то длина этого перпендикуляра будет искомым расстоянием r(AB,CD). Рассмотрим проекционное решение задачи.

Задача. Даны скрещивающиеся прямые АВ и CD (рис. 8.9). Определить расстояние между ними.

Решение задачи может быть следующим.

1. Перенесем прямую АВ параллельно самой себе до пересечения с CD. Таких

переносов может быть бесконечное множество. Один из переносов, например

А 1 В 1 ® А 1 1 В 1 1 , А 2 В 2 = А 2 1 В 2 1 – наиболее простой для данного КЧ вариант.

2. Получаем новые условия задачи: задана плоскость Σ (А 1 В 1 , CD), где А 1 В 1 Ç CD и точка А; требуется определить расстояние r(А, Σ). Решение задачи выполняется методом замены плоскостей проекций по ранее изложенной схеме проекционного решения.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ Координатным и векторным способом Алферова Наталья Васильевна, учитель математики МКОУ «Горячеключевская СОШ» Омского района Омской области

2 слайд

Описание слайда:

Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.

3 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. х y z Точки A1 (1;0;1), B (1;1;0) Вектор A1B {0;1;-1} Точки D (0;0;0), B1 (1;1;1) Вектор DB1 {1;1;1} Пусть КМ ┴А1В и КМ┴DВ1, значит КМ – искомое расстояние. Пусть точка К лежит на прямой A1B, а точка М на прямой DB1. Рассмотрим векторы А1К и DM, сонаправленные с направляющими векторами данных прямых. По лемме о коллинеарных векторах вектор А1К = а · А1В, т.е. вектор А1К{0;a;-a}, вектор DM = b · DB1, т.е. вектор DM {b;b;b}. Тогда К(1;а;1-а), М(b;b;b) и вектор КМ {b-1;b-a;b-1+a}. К М

4 слайд

Описание слайда:

Решим систему из условия перпендикулярности двух векторов KM·A1B=0 0·(b-1)+1·(b-a)-1·(b-1+a) = 0, KM·DB1=0 1·(b-1)+1·(b-a)+1·(b-1+a) = 0 Решив систему получаем a=1/2, b=2/3, подставим эти значения в координаты вектора КМ: КМ { -1/3; 1/6; 1/6}. Найдём длину вектора |КМ| =√х²+y²+z², |КМ| =√1/9+1/36+1/36=√6/6. Ответ: √6/6 a·b = x1x2+y1y2+z1z2 = 0

5 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. K M x y z KM=MB1+BB1+BK=a·DB1+B1B+b·BA1 DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1} KM = {a; a ;a} + {0; 0; 1} + {0; -b ; b}= = {a; a- b; a+1+b} KM·BA1=0 0·a-1·(a-b) +1·(a+1+b)=0, KM·DB1=0 1·a+1·(a-b)+1·(a+1+b) = 0 b= -½, a= -⅓ KM {-1/3; 1/6;1/6} |KM|= √1/9+1/36+1/36 =√6/6

6 слайд

Описание слайда:

В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ1 z y x Рассмотрим плоскость (А1В1С), содержащую прямую В1С и параллельную прямой АВ. Расстоянием между скрещивающимися прямыми будет расстояние от точки прямой АВ, например от А, до плоскости (А1В1С). Введём прямоугольную систему координат ОХУZ так, чтобы ось ОХ была параллельна высоте ВН основания, ось ОУ совпадала с АС, ось ОZ совпадала с АА1. Н

7 слайд

Описание слайда:

Рассмотрим ∆АВС в плоскости ОХУ x y A C B H ∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2. Составим уравнение плоскости (А1В1С): Ax+By+Cz+D=0. A1(0;0;1), B1(√3/2; 1/2 ;1), C(0;1;0) , подставляем координаты точек в уравнение плоскости, получим систему: 0A+0B+1C+D=0, (√3/2)A+(1/2)B+1C+D=0, 0A+1B+0C+D=0. Получаем C=-D, B=-D, A= (√3/3)D. Уравнение плоскости (А1В1С1): (√3/3)Dx-Dy-Dz+D=0, (√3/3)x-1y-1z+1=0, Формула расстояния от точки до плоскости: d= где (х0;у0;z0)- координаты точки A, d = |√3/3·0-1·0-1·0 +1| / √ (√3/3)²+1+1 =√21/7. Ответ: √21/7. х у z H



Понравилась статья? Поделитесь с друзьями!