Разделительный твердый знак пишется после правило. Написание слов с разделительным твёрдым знаком (ъ)

Тема урока: Функция y=aи её свойства.

Тип урока : Изучение нового материала.

Цели урока :

Задачи урока:

Формировать:

    умение применять свойства квадратичной функции;

    умение строить графики функции;

    умения сформулировать свойства квадратичной функции;

    умения высказывать свое мнение, делать выводы;

Развивать: мышление, память, умение осуществлять самостоятельную деятельность на уроке.

Методы обучения

    по источнику знаний: беседа, упражнения;

    по характеру познавательной деятельности: поисковый, объяснительно-иллюстративный, репродуктивный.

Формы обучения : фронтальная.

Этапы урока :

    Организационный момент (1 мин).

    Актуализация опорных знаний и способов действий (5 мин).

    Изучение нового материала (15 мин).

    Первичное применение нового материала (20 мин).

    Постановка домашнего задания (1 мин).

    Подведение итогов урока (3 мин).

Деятельность учителя

Деятельность ученика

    Организационный момент

Здравствуйте ребята, присаживайтесь.

Учащиеся рассаживаются, слушают учителя.

    Актуализация опорных знаний и способов действий

Итак, начнем. Откройте тетради, запишите число, классная работа.

Сегодня на уроке мы будем изучать новый материал. Перед тем, как перейти к новой теме, ответьте на несколько вопросов.

Учитель задаёт ученикам вопросы

- Что такое функция?

Что называют графиком функции?

С какими видами функции вы знакомы?

Что называется линейной функцией?

Что называется квадратичной функцией?

С каким видом квадратичной функции вы уже работали?

Как это функция получилась и как она называется?

Сегодня вы познакомитесь с новым видом квадратичной функции. Поэтому записываем новую тему: «Функция и её свойства».

Записывают в тетради число, классная работа.

Отвечают на вопросы учителя

- Функция – зависимость одной переменной величины от другой.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты – соответствующим значениям функции.

С линейной и квадратичной.

Линейной функцией называется функция вида .

- Квадратичная функция – это функция , где – заданные действительные числа, – действительная переменная.

Это функция называется параболой. Так как квадратичная функция имеет вид , то парабола получилась при коэффициентах

Записывают новую тему в тетрадь

    Изучение нового материала

При а=1 формула принимает вид . Мы уже сказали, что графиком этой функции является парабола. Поэтому построим график функции .

Записываем задача №1:

Построить график функции .

Давайте вызовем кого - нибудь к доске.

Как для любой другой функции, мы составляем таблицу значений.

Какой график у нас получился?

, то мы заметим, что при одном и том же х значение функции в 2 раза больше значения функции . Это значит, что каждую точку графика можно получить из точки графика с той же абсциссой увеличением ее ординаты в 2 раза. Следовательно, график функции получается растяжением графика функции от оси Ох вдоль оси Оу в 2 раза.

Следующая задача:

Построить график функции

К доске пойдёт ….

Учитель вызывает к доске ученика

Решаем также по аналогии с предыдущим примером.

Теперь по данным точкам построим график.

Соединим точки плавной кривой.

Если мы сравним графики функций , то мы заметим, что каждую точку графика можно получить из точки графика функции с той же абсциссой уменьшением ее ординаты в 2 раза. Следовательно, график функции получается сжатием графика функции к оси Ох вдоль оси Оу в 2 раза.

Как вы считаете, какими будут графики ?

Куда тогда будут направлены ветви параболы графика ?

После всех решенных примеров, какой вывод мы можем сделать по функции ?

Теперь поговорим о свойствах функции .

На доске записаны графики функции, по ним учитель рассказывает свойства

1)Если a0, то функция принимает положительные значения при ; если a принимает отрицательные значения при ; значение функции равно 0 только при х=0.

2)Парабола симметрична относительно оси координат.

3) Если a0, то функции возрастает при и убывает при если a убывает при и возрастает при .

Слушают учителя

Задача №1: Построить график функции .

Решают вместе с учителем.

У нас получилась парабола.

Записывают первое задание в тетрадь

Задача №2: Построить график функции

Решают вместе с учителем.

Один из учеников выходит к доске

Они будут симметричными, так как график будет иметь противоположные значения графика .

Ветви параболы будут направлены вниз.

График функции также является параболой. При a0 ветви направлены вверх, при a

Слушают учителя

    Первичное применение нового материала

А теперь попробуем на практике применить полученные знания. Открываем учебники на стр. 161 и записываем в тетради номера.

Учитель вызывает учеников к доске для решения заданий

Разберем устно №596. Определить направление ветвей параболы:

Записываем в тетрадь №597 (1,3): На одной координатной плоскости построить графики функций

Учитель вызывает ученика к доске

Открывают учебники и записывают номер в тетрадь

Ученики у доски решают задания

Устно проговаривают решение задачи

1) - вверх, т. к. a0

2) - вверх, т. к. a0

3) - вниз, т. к. a

4) -вниз, т. к. a

Один из учеников выходит к доске

    Постановка домашнего задания

Учитель сообщает домашнее задание.

Наш урок подошел к концу. Запишите домашнее задание.

Учитель записывает домашнее задание на доске.

П 37 стр. 157. Выучить свойства.

595(2): На миллиметровой бумаге построить график функции . По графику приближенно найти значения х, если у=9; 6; 2; 8; 1,3.

597 (2,4): На одной координатной плоскости построить графики функций

Используя графики, выяснить, какие из этих функций возрастают на промежутке .

Записывают домашнее задание.

    Подведение итогов урока

Что мы изучили на уроке?

Все ли вам было понятно?

На этом наш урок закончен. Ученики, которые выходили к доске, подойдите ко мне с дневниками. До свидания!

Учащиеся отвечают на вопросы:

Мы изучили новый вид квадратичной функции и её свойства.

Прощаются с учителем. Подходят с дневниками.

Рассмотрим выражение вида ах 2 +вх+с, где а, в, с - действительные числа, а отлично от нуля. Это математическое выражение известно как квадратный трехчлен.

Напомним, что ах 2 - это старший член этого квадратного трехчлена, а - его старший коэффициент.

Но не всегда у квадратного трехчлена присутствуют все три слагаемые. Возьмем для примера выражение 3х 2 + 2х, где а=3, в=2, с=0.

Перейдем к квадратичной функции у=ах 2 +вх+с, где а, в, с - любые произвольные числа. Эта функция является квадратичной, так как содержит член второй степени, то есть х в квадрате.

Довольно легко построить график квадратичной функции, например, можно воспользоваться методом выделения полного квадрата.

Рассмотрим пример построения графика функции у равно -3х 2 - 6х + 1.

Для этого первое, что вспомним, схему выделения полного квадрата в трехчлене -3х 2 - 6х + 1.

Вынесем -3 у первых двух слагаемых за скобки. Имеем -3 умножить на сумму х квадрат плюс 2х и прибавить 1. Добавив и отняв единицу в скобках, получаем формулу квадрата суммы, которую можно свернуть. Получим -3 умножить на сумму (х+1) в квадрате минус 1 прибавить 1. Раскрывая скобки и приводя подобные слагаемые, выходит выражение: -3 умноженное на квадрат суммы (х+1) прибавить 4.

Построим график полученной функции, перейдя к вспомогательной системе координат с началом в точке с координатами (-1; 4).

На рисунке из видео эта система обозначена пунктирными линиями. Привяжем функцию у равно -3х 2 к построенной системе координат. Для удобства возьмем контрольные точки. Например, (0;0), (1;-3), (-1;-3), (2;-12), (-2;-12). При этом отложим их в построенной системе координат. Полученная при построении парабола является необходимым нам графиком. На рисунке это красная парабола.

Применяя метод выделения полного квадрата, мы имеем квадратичную функцию вида: у = а*(х+1) 2 + m.

График параболы у = ах 2 + bx + c легко получить из параболы у=ах 2 параллельным переносом. Это подтверждено теоремой, которую можно доказать, выделив полный квадрат двучлена. Выражение ах 2 + bx + c после последовательных преобразований превращается в выражение вида: а*(х+l) 2 + m. Начертим график. Выполним параллельное перемещение параболы у = ах 2 , совмещая вершину с точкой с координатами (-l;m). Важно то, что х= -l, а значит -b/2а. Значит эта прямая является осью параболы ах 2 + bx + c, ее вершина находится в точке с абсциссой х нулевое равно минус в, деленное на 2а, а ордината вычисляется по громоздкой формуле 4ас - b 2 /. Но эту формулу запоминать не обязательно. Так как, подставив значение абсциссы в функцию, получим ординату.

Для определения уравнения оси, направления ее ветвей и координат вершины параболы, рассмотрим следующий пример.

Возьмем функцию у = -3х 2 - 6х + 1. Составив уравнение оси параболы, имеем, что х=-1. А это значение является координатой х вершины параболы. Осталось найти только ординату. Подставив значение -1 в функцию, получим 4. Вершина параболы находится в точке (-1; 4).

График функции у = -3х 2 - 6х + 1 получен при параллельном переносе графика функции у = -3х 2 , значит, и ведет себя аналогично. Старший коэффициент отрицателен, поэтому ветви направлены вниз.

Мы видим, что для любой функции вида y = ах 2 + bx + c, самым легким является последний вопрос, то есть направление веток параболы. Если коэффициент а положительный, то ветви - вверх, а если отрицательный, то - вниз.

Следующим по сложности идет первый вопрос, потому что требует дополнительных вычислений.

И самый сложный второй, так как, кроме вычислений, еще необходимы знания формул, по которым находятся х нулевое и у нулевое.

Построим график функции у = 2х 2 - х + 1.

Определяем сразу - графиком является парабола, ветви направлены вверх, так как старший коэффициент равен 2, а это положительное число. По формуле находим абсциссу х нулевое, она равна 1,5. Для нахождения ординаты вспомним, что у нулевое равно функции от 1,5, при вычислении получим -3,5.

Вершина - (1,5;-3,5). Ось - х=1,5. Возьмем точки х=0 и х=3. у=1. Отметим данные точки. По трем известным точкам строим искомый график.

Для построения графика функции ах 2 + bx + c необходимо:

Найти координаты вершины параболы и отметить их на рисунке, потом провести ось параболы;

На оси ох взять две симметричные, относительно оси, параболы точки, найти значение функции в этих точках и отметить их на координатной плоскости;

Через три точки построить параболу, при необходимости можно взять еще несколько точек и строить график по ним.

В следующем примере мы научимся находить наибольшее и наименьшее значения функции -2х 2 + 8х - 5 на отрезке .

По алгоритму: а=-2, в=8, значит х нулевое равно 2, а у нулевое - 3, (2;3) - вершина параболы, а х=2 является осью.

Возьмем значения х=0 и х=4 и найдем ординаты этих точек. Это -5. Строим параболу и определяем, что наименьшее значение функции -5 при х=0, а наибольшее 3, при х=2.

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.



Понравилась статья? Поделитесь с друзьями!