Смысл волновой функции состоит в том что. Волновая функция и ее статистический смысл

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения таких частиц. Теория, охватывающая все свойства элементарных частиц, должна учитывать не только их корпускулярные свойства, но и волновые. Из опытов, рассмотренных ранее, следует, что пучок элементарных частиц обладает свойствами плоской волны, распространяющейся в направлении скорости частиц. В случае распространения вдоль оси этот волновой процесс может быть описан уравнением волны де Бройля (7.43.5):

(7.44.1)

где – энергия, – импульс частицы. При распространении в произвольном направлении :

(7.44.2)

Назовем функцию волновой функцией и выясним ее физический смысл путём сравнения дифракции световых волн и микрочастиц.

Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задаётся квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность же больше там, где больше число частиц. Таким образом, дифракционная картина для микрочастиц является проявлением статистической закономерности и можно говорить, что знание вида волны де Бройля, т.е. Ψ -функции, позволяет судить о вероятности того или иного из возможных процессов.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объёмом равна

(7.44.3)

Величина

(7.44.4)

имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объёме в окрестности заданной точки. Таким образом, физический смысл имеет не сама - функция, а квадрат её модуля , которым задаётся интенсивность волн де Бройля. Вероятность найти частицу в момент времени в конечном объёме , согласно теореме сложения вероятностей, равна

(7.44.5)

Так как частица существует, то она обязательно где-то обнаруживается в пространстве. Вероятность достоверного события равна единице, тогда


. (7.44.6)

Выражение (7.44.6) называется условием нормировки вероятности. Волновая функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объёма, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

· Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Волнова́я фу́нкция , или пси-фу́нкция \psi - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle - координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle - волновая функция в координатном представлении .

Нормированность волновой функции

Волновая функция \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

{\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \Psi_1 и \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных c_1 и c_2.

Очевидно, что можно говорить и о суперпозиции (наложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента {c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией {\Psi}_n.

Поэтому для нормированных волновых функций \sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл (1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией, т.е принадлежала гильбертовому пространству L^2. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial y}, \frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода .

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции , представляет собой полную систему коммутирующих наблюдаемых . В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении , то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении , то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс .

Матричная и векторная формулировки

Волновая функция одного и того же состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности . То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, - это проблема самой сути научного метода познания мира.

См. также

Напишите отзыв о статье "Волновая функция"

Литература

  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. Энциклопедия, 1984. - 944 с.

Ссылки

  • Квантовая механика - статья из Большой советской энциклопедии .

Волновая функция
Wave function

Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантовомеханической системы. Её знание позволяет получить максимально полные сведения о системе, принципиально достижимые в микромире. Так с её помощью можно рассчитать все измеряемые физические характеристики системы, вероятность пребывания её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.
Волновая функция ψ (x, y, z, t) ≡ ψ (x,t) точечной бесструктурной частицы является комплексной функцией координат этой частицы и времени. Простейшим примером такой функции является волновая функция свободной частицы с импульсом и полной энергией Е (плоская волна)

.

Волновая функция системы А частиц содержит координаты всех частиц: ψ ( 1 , 2 ,..., A ,t).
Квадрат модуля волновой функции отдельной частицы | ψ (,t)| 2 = ψ *(,t) ψ (,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, | ψ (,t)| 2 dv ≡ | ψ (x, y, z, t)| 2 dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1 , 2 ,..., A в элементе объема многомерного пространства дается величиной | ψ ( 1 , 2 ,..., A ,t)| 2 dv 1 dv 2 ...dv A .
Волновая функция полностью определяет все физические характеристики квантовой системы. Так среднее наблюдаемое значение физической величины F у системы дается выражением

,

где - оператор этой величины и интегрирование проводится по всей области многомерного пространства.
В качестве независимых переменных волновой функции вместо координат частиц x, y, z могут быть выбраны их импульсы p x , p y , p z или другие наборы физических величин. Этот выбор зависит от представления (координатного, импульсного или другого).
Волновая функция ψ (,t) частицы не учитывает ее внутренних характеристик и степеней свободы, т. е. описывает ее движение как целого бесструктурного (точечного) объекта по некой траектории (орбите) в пространстве. Этими внутренними характеристиками частицы могут быть её спин, спиральность, изоспин (для сильновзаимодействующих частиц), цвет (для кварков и глюонов) и некоторые другие. Внутренние характеристики частицы задаются специальной волновой функцией её внутреннего состояния φ. При этом полная волновая функция частицы Ψ может быть представлена в виде произведения функции орбитального движения ψ и внутренней функции φ:

поскольку обычно внутренние характеристики частицы и её степени свободы, описывающие орбитальное движение, не зависят друг от друга.
В качестве примера ограничимся случаем, когда единственной внутренней характеристикой, учитываемой функцией , является спин частицы, причем этот спин равен 1/2. Частица с таким спином может пребывать в одном из двух состояний − с проекцией спина на ось z, равной +1/2 (спин вверх), и с проекцией спина на ось z, равной -1/2 (спин вниз). Эту двойственность описывают спиновой функцией взятой в виде двухкомпонентного спинора:

Тогда волновая функция Ψ +1/2 = χ +1/2 ψ будет описывать движение частицы со спином 1/2, направленным вверх, по траектории, определяемой функцией ψ , а волновая функция Ψ -1/2 = χ -1/2 ψ будет описывать движение по той же траектории этой же частицы, но со спином, направленным вниз.
В заключении отметим, что в квантовой механике возможны такие состояния, которые нельзя описать с помощью волновой функции. Такие состояния называют смешанными и их описывают в рамках более сложного подхода, использующего понятие матрицы плотности. Состояния квантовой системы, описываемые волновой функцией, называют чистыми.

Экспериментальное подтверждение идеи Луи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречия ряда экспериментов с применяемыми в начале XX века теориями привели к новому этапу развития квантовой физики – созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность , а величина , названная амплитудой вероятности и обозначаемая . Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

(4.3.1)

где , где – функция комплексно-сопряженная с Ψ.

Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический , вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волны де Бройля) определяет вероятность нахождения частицы в момент времени в области с координатами x и dx , y и dy , z и dz .

Итак, в квантовой механике состояние частицы описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых

. (4.3.2)

Величина (квадрат модуля Ψ-функции) имеет смысл плотности вероятности , т.е. определяет вероятность нахождения частицы в единице объема в окрестности точки , имеющей координаты x , y , z . Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля , которым определяется интенсивность волн де Бройля .

Вероятность найти частицу в момент времени t в конечном объеме V , согласно теореме о сложении вероятностей, равна:

.

Т.к. определяется как вероятность, то необходимо волновую функцию Ψ представить так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей:

(4.3.3)

где данный интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x , y , z от до . Таким образом, условие нормировки говорит об объективном существовании частицы во времени и пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть:

· конечной (вероятность не может быть больше единицы);

· однозначной (вероятность не может быть неоднозначной величиной);

· непрерывной (вероятность не может меняться скачком).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями , , … , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

где (n = 1, 2, 3…) – произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории , в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояния микрообъектов . Например, среднее расстояние электрона от ядра вычисляется по формуле

,

В этой статье описывается волновая функция и ее физический смысл. Также рассматривается применение этого понятия в рамках уравнения Шредингера.

Наука на пороге открытия квантовой физики

В конце девятнадцатого века молодых людей, которые хотели связать свою жизнь с наукой, отговаривали становиться физиками. Бытовало мнение, что все явления уже открыты и великих прорывов в этой области уже не может быть. Сейчас, несмотря на кажущуюся полноту знаний человечества, подобным образом говорить никто не решится. Потому что так бывает часто: явление или эффект предсказаны теоретически, но людям не хватает технической и технологической мощи, чтобы доказать или опровергнуть их. К примеру, Эйнштейн предсказал более ста лет назад, но доказать их существование стало возможным лишь год назад. Это касается и мира (а именно к ним применимо такое понятие, как волновая функция): пока ученые не поняли, что строение атома сложное, у них не было необходимости изучать поведение таких маленьких объектов.

Спектры и фотография

Толчком к развитию квантовой физики стало развитие техники фотографии. До начала двадцатого века запечатление изображений было делом громоздким, долгим и дорогостоящим: фотоаппарат весил десятки килограммов, а моделям приходилось стоять по полчаса в одной позе. К тому же малейшая ошибка при обращении с хрупкими стеклянными пластинами, покрытыми светочувствительной эмульсией, приводила к необратимой потере информации. Но постепенно аппараты становились все легче, выдержка - все меньше, а получение отпечатков - все совершеннее. И наконец, стало возможно получить спектр разных веществ. Вопросы и несоответствия, которые возникали в первых теориях о природе спектров, и породили целую новую науку. Основой для математического описания поведения микромира стали волновая функция частицы и её уравнение Шредингера.

Корпускулярно-волновой дуализм

После определения строения атома, возник вопрос: почему электрон не падает на ядро? Ведь, согласно уравнениям Максвелла, любая движущаяся заряженная частица излучает, следовательно, теряет энергию. Если бы это было так для электронов в ядре, известная нам вселенная просуществовала бы недолго. Напомним, нашей целью является волновая функция и ее статистический смысл.

На выручку пришла гениальная догадка ученых: элементарные частицы одновременно и волны, и частицы (корпускулы). Их свойствами являются и масса с импульсом, и длина волны с частотой. Кроме того, благодаря наличию двух ранее несовместимых свойств элементарные частицы приобрели новые характеристики.

Одной из них является трудно представимый спин. В мире более мелких частиц, кварков, этих свойств настолько много, что им дают совершенно невероятные названия: аромат, цвет. Если читатель встретит их в книге по квантовой механике, пусть помнит: они совсем не то, чем кажутся на первый взгляд. Однако как же описать поведение такой системы, где все элементы обладают странным набором свойств? Ответ - в следующем разделе.

Уравнение Шредингера

Найти состояние, в котором находится элементарная частица (а в обобщенном виде и квантовая система), позволяет уравнение :

i ħ[(d/dt) Ψ]= Ĥ ψ.

Обозначения в этом соотношении следующие:

  • ħ=h/2 π, где h - постоянная Планка.
  • Ĥ - Гамильтониан, оператор полной энергии системы.

Изменяя координаты, в которых решается эта функция, и условия в соответствии с типом частицы и поля, в котором она находится, можно получить закон поведения рассматриваемой системы.

Понятия квантовой физики

Пусть читатель не обольщается кажущейся простотой использованных терминов. Такие слова и выражения, как «оператор», «полная энергия», «элементарная ячейка», - это физические термины. Их значения стоит уточнять отдельно, причем лучше использовать учебники. Далее мы дадим описание и вид волновой функции, но эта статья носит обзорный характер. Для более глубокого понимания этого понятия необходимо изучить математический аппарат на определенном уровне.

Волновая функция

Ее математическое выражение имеет вид

|ψ(t)> = ʃ Ψ(x, t)|x> dx.

Волновая функция электрона или любой другой элементарной частицы всегда описывается греческой буквой Ψ, поэтому иногда ее еще называют пси-функцией.

Для начала надо понять, что функция зависит от всех координат и времени. То есть Ψ(x, t) - это фактически Ψ(x 1 , x 2 … x n , t). Важное замечание, так как от координат зависит решение уравнения Шредингера.

Далее необходимо пояснить, что под |x> подразумевается базисный вектор выбранной системы координат. То есть в зависимости от того, что именно надо получить, импульс или вероятность |x> будет иметь вид | x 1 , x 2 , …, x n >. Очевидно, что n будет также зависеть от минимального векторного базиса выбранной системы. То есть в обычном трехмерном пространстве n=3. Для неискушенного читателя поясним, что все эти значки около показателя x - это не просто прихоть, а конкретное математическое действие. Понять его без сложнейших математических выкладок не удастся, поэтому мы искренне надеемся, что интересующиеся сами выяснят его смысл.

И наконец, необходимо объяснить, что Ψ(x, t)=.

Физическая сущность волновой функции

Несмотря на базовое значение этой величины, она сама не имеет в основании явления или понятия. Физический смысл волновой функции заключается в квадрате ее полного модуля. Формула выглядит так:

|Ψ (x 1 , x 2 , …, x n , t)| 2 = ω,

где ω имеет значение плотности вероятности. В случае дискретных спектров (а не непрерывных) эта величина приобретает значение просто вероятности.

Следствие физического смысла волновой функции

Такой физический смысл имеет далеко идущие последствия для всего квантового мира. Как становится понятно из значения величины ω, все состояния элементарных частиц приобретают вероятностный оттенок. Самый наглядный пример - это пространственное распределение электронных облаков на орбиталях вокруг атомного ядра.

Возьмем два вида гибридизации электронов в атомах с наиболее простыми формами облаков: s и p. Облака первого типа имеют форму шара. Но если читатель помнит из учебников по физике, эти электронные облака всегда изображаются как некое расплывчатое скопление точек, а не как гладкая сфера. Это означает, что на определенном расстоянии от ядра находится зона с наибольшей вероятностью встретить s-электрон. Однако чуть ближе и чуть дальше эта вероятность не нулевая, просто она меньше. При этом для p-электронов форма электронного облака изображается в виде несколько расплывчатой гантели. То есть существует достаточно сложная поверхность, на которой вероятность найти электрон самая высокая. Но и вблизи от этой «гантели» как дальше, так и ближе к ядру такая вероятность не равна нулю.

Нормировка волновой функции

Из последнего следует необходимость нормировать волновую функцию. Под нормировкой подразумевается такая «подгонка» некоторых параметров, при которой верно некоторое соотношение. Если рассматривать пространственные координаты, то вероятность найти данную частицу (электрон, например) в существующей Вселенной должна быть равна 1. Формула выгладит так:

ʃ V Ψ* Ψ dV=1.

Таким образом, выполняется закон сохранения энергии: если мы ищем конкретный электрон, он должен быть целиком в заданном пространстве. Иначе решать уравнение Шредингера просто не имеет смысла. И неважно, находится эта частица внутри звезды или в гигантском космическом войде, она должна где-то быть.

Чуть выше мы упоминали, что переменными, от которых зависит функция, могут быть и непространственные координаты. В таком случае нормировка проводится по всем параметрам, от которых функция зависит.

Мгновенное передвижение: прием или реальность?

В квантовой механике отделить математику от физического смысла невероятно сложно. Например, квант был введен Планком для удобства математического выражения одного из уравнений. Теперь принцип дискретности многих величин и понятий (энергии, момента импульса, поля) лежит в основе современного подхода к изучению микромира. У Ψ тоже есть такой парадокс. Согласно одному из решений уравнения Шредингера, возможно, что при измерении квантовое состояние системы изменяется мгновенно. Это явление обычно обозначается как редукция или коллапс волновой функции. Если такое возможно в реальности, квантовые системы способны перемещаться с бесконечной скоростью. Но ограничение скоростей для вещественных объектов нашей Вселенной непреложно: ничто не может двигаться быстрее света. Явление это зафиксировано ни разу не было, но и опровергнуть его теоретически пока не удалось. Со временем, возможно, этот парадокс разрешится: либо у человечества появится инструмент, который зафиксирует такое явление, либо найдется математическое ухищрение, которое докажет несостоятельность этого предположения. Есть и третий вариант: люди создадут такой феномен, но при этом Солнечная система свалится в искусственную черную дыру.

Волновая функция многочастичной системы (атома водорода)

Как мы утверждали на протяжении всей статьи, пси-функция описывает одну элементарную частицу. Но при ближайшем рассмотрении атом водорода похож на систему из всего лишь двух частиц (одного отрицательного электрона и одного положительного протона). Волновые функции атома водорода могут быть описаны как двухчастичные или оператором типа матрицы плотности. Эти матрицы не совсем точно являются продолжением пси-функции. Они скорее показывают соответствие вероятностей найти частицу в одном и другом состоянии. При этом важно помнить, что задача решена только для двух тел одновременно. Матрицы плотности применимы к парам частиц, но невозможны для более сложных систем, например при взаимодействии трех и более тел. В этом факте прослеживается невероятное подобие между наиболее «грубой» механикой и очень «тонкой» квантовой физикой. Поэтому не стоит думать, что раз существует квантовая механика, в обычной физике новых идей не может возникнуть. Интересное скрывается за любым поворотом математических манипуляций.



Понравилась статья? Поделитесь с друзьями!